
PARIS: Probabilistic Alignment
of Relations, Instances, and Schema

Fabian M. Suchanek (Max Planck Institute for Informatics)
Serge Abiteboul (INRIA Saclay, Webdam team)
Pierre Senellart (Tlcom ParisTech)

1

1

RDF Ontologies

Singer

plays

type

born

2

Person

An RDF ontology can be seen as a graph of entities

subclassOf

1935

2

RDF Ontologies

Singer

plays

type

born

3

Person

An RDF ontology can be seen as a graph of entities

subclassOf classes

relations / properties

instances

literals1935

3

RDF Ontologies

instances

relations / properties

classes

literals

Singer

plays

type

born

4

Person

An RDF ontology can be seen as a graph of entities

subclassOf

intelligent search, QA, machine translation...

Ontologies serve all kinds of purposes:

1935

4

Existing Ontologies
There are literally hundreds of ontologies on the Web

Singer

type

born

plays

5

YAGO

Person

subclassOf

1935

5

Overlapping Data

birthDate

1935

type

RockSinger

marriedTo

YAGO
ElvisPedia

born

Singer

type

6

Many ontologies contain similar

or overlapping entities and facts

plays

1935

6

Problem: Elvis is lonely

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

born

1935

RockSinger

7

plays

Who is the spouse
of the guitar player?

?

1935

marriedTo

7

Problem: Elvis is lonely

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

born

1935

RockSinger

8

plays

Who is the spouse
of the guitar player?

?

1935

marriedTo

Complementary

information
cannot be used

8

Solution: Unify Entities

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

born

1935

RockSinger

9

plays

1935

marriedTo

identical

9

Goal: Merging Ontologies

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

born

1935

RockSinger

10

plays

To merge two ontologies, we have to identify

1935

10

Goal: Merging Ontologies

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

born

1935

RockSinger

11

To merge two ontologies, we have to identify
• equivalent instances

plays sameAs

1935

11

Goal: Merging Ontologies

subClassOf

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

born

1935

RockSinger

12

To merge two ontologies, we have to identify
• equivalent instances
• equivalent or subsuming classes

sameAsplays

1935

12

Goal: Merging Ontologies

sameAs

subClassOf

ElvisPedia

birthDate

type

Singer

marriedTo

type

YAGO

1935

born

1935

RockSinger

13

To merge two ontologies, we have to identify
• equivalent instances
• equivalent or subsuming classes
• equivalent or subsuming relations

subPropertyOf

plays

13

Previous work
Previous work
• uses hard logical constraints, which may be inadequate
• requires parameter tuning
• has not been tried on large ontologies

birthDate

marriedTo

1935

RockSinger

type

14

type

Singer

born

1935

[Gracia 2009, Jean-Mary 2009, Isaac 2007,

Aumueller 2005, Wang 2008, Noessner 2010,

Sais 2007/2009, Arasu 2009, Volz 2009,

Bhattacharya 2007, Hogan 2007/2010,

Hu 2011, Li 2009, Udrea 2007, and more]

14

Previous work
Previous work
• uses hard logical constraints, which may be inadequate
• requires parameter tuning
• has not been tried on large ontologies

birthDate

marriedTo

1935

RockSinger

type

15

type

Singer

born

(1)

• has mostly focused on
(1) instance matching or
(2) schema alignment,

... but not both

(2)

(1)

(2)

1935

[Gracia 2009, Jean-Mary 2009, Isaac 2007,

Aumueller 2005, Wang 2008, Noessner 2010,

Sais 2007/2009, Arasu 2009, Volz 2009,

Bhattacharya 2007, Hogan 2007/2010,

Hu 2011, Li 2009, Udrea 2007, and more]

15

PARIS: Aligning Everything At Once

born

There is a synergy between equality of

instances, properties and classes!

=> Compute all together!

birthDate

marriedTo

1935

type

RockSinger

type

Singer

16

PARIS

1935

16

Probabilistic Model
We chose a probabilistic model

the probability that x=y

the probability that
is a sub-property of

the probability that
is a sub-class of

marriedTo

1935

type

RockSinger

born

type

birthDate

Singer

17

Pr(c1 ⊆ c2) =
c1

c2

Pr(x ≡ y) =

Pr(p1 ⊆ p2) =

p1

p2

1935

17

Probabilistic Model

18

...Worlds:

...

w1 w2 wn All possible
alignments

between the
ontologies

18

Probabilistic Model

19

...Worlds:

...

w1 w2 wn All possible
alignments

between the
ontologies

Pr(w1) ... Pr(wn)Probabilities: Pr(w2)
∑
i Pr(wi) = 1

19

Probabilistic Model

20

...Worlds:

Probabilities:

...

...

w1 w2 wn All possible
alignments

between the
ontologies

Pr(w1) Pr(w2) Pr(wn)
∑
i Pr(wi) = 1

Events: e1
42 ≡ e2

42

We care here mainly about equality and
subsumption events.

Each event can be true or false
in a particular world.

20

Probabilistic Model

21

...Worlds:

Probabilities:

...

Marginals:

w1 w2 wn

Pr(w1) ... Pr(wn)Pr(w2)

) = Pr(w1) + Pr(w9)e1
42 ≡ e2

42Pr(

The marginal probability of an event
is given by the sum of the probabilities

of the worlds where the event holds.

21

Probabilistic Model

22

...Worlds:

Probabilities:

...

Marginals:

w1 w2 wn

Pr(w1) ... Pr(wn)Pr(w2)

e1
42 ≡ e2

42Pr() = Pr(w1) + Pr(w9)

We do not
care about
these values.

22

Probabilistic Model

23

...Worlds:

Probabilities:

...

Marginals:

w1 w2 wn

Pr(w1) ... Pr(wn)Pr(w2)

We only care

about these
marginals!

e1
42 ≡ e2

42Pr() = Pr(w1) + Pr(w9)

We do not
care about
these values.

23

Probabilistic Model

24

...Worlds:

Probabilities:

...

Marginals:

w1 w2 wn

Pr(w1) ... Pr(wn)Pr(w2)

(it is the product measure)

We are interested in marginals that fulfill certain properties.

For any set of marginals, there exists a probability distribution.

Pr() = Pr(w1) + Pr(w9) We only care

about these
marginals!

e1
42 ≡ e2

42

24

Literals

birthDate

RockSinger

type

1935

Singer

type

born

marriedTo

25

?
1936

The probability that two literals are equal

shall reflect the likelihood that the two literals
are intended to refer to the same thing.

25

Literals

birthDate

RockSinger

type

1935

Singer

type

born

marriedTo

26

?
1936

The probability that two literals are equal

shall reflect the likelihood that the two literals
are intended to refer to the same thing.

• for strings:
string distance

• for numbers:
numeric distance

• for other literals:
domain-specific

Pr(x ≡ y) =

26

Literals

birthDate

RockSinger

type

1935

Singer

type

marriedTo

27

We chose a particularly simple equality:

Pr(x ≡ y) := (x = y)?1 : 0

?
1936

born

• for strings:
string distance

• for numbers:
numeric distance

• for other literals:
domain-specific

Pr(x ≡ y) =

27

Equality of Instances
For instances, relations give a hint:

Elvis Presley

labellabel

born

1935

born

1935

Elvis Presley

marriedTo?

28

28

Equality of Instances
For instances, relations give a hint:

Elvis Presley

labellabel

born

1935

born

1935

Elvis Presley

marriedTo?

29

Not many people are

called Elvis =>

highly indicative

29

Equality of Instances
For instances, relations give a hint:

Not many people are

called Elvis =>

highly indicative

Elvis Presley

labellabel

born

1935

born

1935

Elvis Presley

marriedTo?

30

Many people are born

in 1935 =>

less indicative

30

Not many people are

called Elvis =>

highly indicative

Many people are born

in 1935 =>

less indicative

Elvis Presley

labellabel

born

1935

born

1935

Elvis Presley

marriedTo?

31

one over the number of incoming links:
The local inverse functionality of a relation with an argument is

ifun(r, y) := 1
|{x:r(x,y)}|

Local Inverse Functionality

31

Local Inverse Functionality

Elvis Presley

1935

marriedTo

label

1935

born

label

born

Elvis Presley
Only one person

is called Elvis

The local inverse functionality of a relation with an argument is
one over the number of incoming links:

?

32

ifun(r, y) := 1
|{x:r(x,y)}|

ifun(label, Elvis) = 1

32

Local Inverse Functionality

Elvis Presley

1935

marriedTo

label

1935

born

label

born

Elvis Presley
Only one person

is called Elvis

The local inverse functionality of a relation with an argument is
one over the number of incoming links:

?

33

10 people are born

in 1935

ifun(r, y) := 1
|{x:r(x,y)}|

ifun(label, Elvis) = 1

ifun(born,1935) = 0.1

33

Probability of Inverse Functionality

Elvis Presley Elvis Presley

marriedTo

label

born

1935 1935

label

born

?

34

Many people share
their year of birth

Few people share

the same name

Pr(ifun(r)) := HMyifun(r, y)

Pr(ifun(label)) = 0.8

Pr(ifun(born)) = 0.01

We define the probability of a relation being inverse functional

as the harmonic mean of the local inverse functionalities:

34

Equality of Instances

marriedTo

Elvis Presley Elvis Presley

labellabel

born born

19351935

?

35

x and x’ shall be matched if

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

35

Equality of Instances

marriedTo

Elvis Presley Elvis Presley

labellabel

born born

19351935

?

36

)

Pr(x ≡ x′)

= Pr(∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

36

Equality of Instances

marriedTo

Elvis Presley Elvis Presley

labellabel

born born

19351935

?

37

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r))

= 1−
∏
r(x,y),r(x′,y′)(1− Pr(y ≡ y′)Pr(ifun(r)))

Pr(x ≡ x′)

= Pr(

37

Equality of Instances

marriedTo

Elvis Presley Elvis Presley

labellabel

born born

19351935

?

38

This evaluates to 1 iff
• There is at least one

highly inverse functional r

• There is one shared
argument y=y’

= Pr(

= 1−
∏
r(x,y),r(x′,y′)(1− Pr(y ≡ y′)Pr(ifun(r)))

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

Pr(x ≡ x′)

)

38

Equality of Instances

• Literals: precomputed

• Others: recursive

label

marriedTo

1935 1935

bornborn

label

Elvis Presley Elvis Presley

?

39

= Pr(

= 1−
∏
r(x,y),r(x′,y′)(1− Pr(y ≡ y′)Pr(ifun(r)))

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

Pr(x ≡ x′)

)

39

Equality of Classes

Singer

type

RockSinger

If all instances of one class are instances of the other
then the former subsumes the latter

40

type

40

Equality of Classes

type

If all instances of one class are instances of the other
then the former subsumes the latter

41

subclassOf

type

SingerRockSinger

41

Equality of Classes

type

subclassOf

If all instances of one class are instances of the other
then the former subsumes the latter

42

type

SingerRockSinger

Pr(C ⊆ D) = |C∩D|
|C|

42

Equality of Classes

type

subclassOf

If all instances of one class are instances of the other
then the former subsumes the latter

43

type

=
∑

x∈C Pr(∃y∈D:x≡y)

|C|
Pr(C ⊆ D) = |C∩D|

|C|

SingerRockSinger

43

Equality of Classes

type

subclassOf

If all instances of one class are instances of the other
then the former subsumes the latter

44

type

Pr(C ⊆ D) = |C∩D|
|C| =

∑
x∈C Pr(∃y∈D:x≡y)

|C|

Pr(C ⊆ D) =
∑

x∈C(1−
∏

y∈D(1−Pr(x≡y)))

|C|

SingerRockSinger

44

Equality of Relations

knows

marriedTo knows

If every pair of one relation is a pair of another relation,
then the first is a sub-property of the second.

45

45

Equality of Relations

knows

marriedTo knows

If every pair of one relation is a pair of another relation,
then the first is a sub-property of the second.

46

marriedTo
subpropertyOf

knows

46

Equality of Relations

knows

marriedTo knows

If every pair of one relation is a pair of another relation,
then the first is a sub-property of the second.

47

knows
subpropertyOf

marriedTo

Can be solved analogously to the
subsumption of classes.

47

Algorithm
1. Fix equalities for literals

48

Literals: Pr(x ≡ y) = fixedforliterals

48

Algorithm

Literals:

1. Fix equalities for literals
2. Set equalities for relations to a small initial value

49

Relations: Pr(p1 ⊆ p2) = 0.1

Pr(x ≡ y) = fixedforliterals

49

Algorithm

Instances:

Relations:

Literals:

1. Fix equalities for literals
2. Set equalities for relations to a small initial value
3. Iterate the estimations for relations and instances to convergence (*)

(*) We have no proof for convergence, but it seems to happen 50

Pr(p1 ⊆ p2) =

Pr(x ≡ y) = fixedforliterals

Pr(x ≡ y) =
∏1

42α
β...

13φ...

Iterate

50

Algorithm

Instances:

Relations:

Literals:

Iterate

1. Fix equalities for literals
2. Set equalities for relations to a small initial value
3. Iterate the estimations for relations and instances to convergence (*)
4. Compute the estimations for classes

(*) We have no proof for convergence, but it seems to happen 51

final
step

Classes:

Pr(p1 ⊆ p2) =

Pr(x ≡ y) = fixedforliterals

Pr(x ≡ y) =
∏1

42α
β...

13φ...

P r(c1 ⊆ c2) = πmc2...

51

Experiment: YAGO and DBpedia

52

Singer
SuperHuman

1977

1935
1935

died born
gender

male

born with

stillborn

twin brother

DBpedia YAGO

1.7 million instances
19 million facts

2.6 million instances
18 million facts

52

Experiment: YAGO and DBpedia

53

Singer
SuperHuman

1977

1935
1935

died born
gender

male

born with

stillborn

twin brother

DBpedia YAGO
Independent

class hierarchies

2.6 million instances
18 million facts

1.7 million instances
19 million facts

53

Experiment: YAGO and DBpedia

54

Singer
SuperHuman

1977

1935
1935

died born
gender

male

Independent

class hierarchies

born with

stillborn

twin brother

DBpedia YAGO

50% overlap

of instances

2.6 million instances
18 million facts

1.7 million instances
19 million facts

54

Experiment: YAGO and DBpedia

55

Singer
SuperHuman

1977

1935
1935

died born
gender

male

Independent

class hierarchies

50% overlap

of instances

born with

stillborn

twin brother

DBpedia YAGO

Independent
properties

2.6 million instances
18 million facts

1.7 million instances
19 million facts

55

Experiment: YAGO and DBpedia

56

Singer
SuperHuman

1977

1935
1935

died born
gender

male

Independent

class hierarchies

50% overlap

of instances

Independent
properties

born with

stillborn

twin brother

DBpedia YAGO

Many
complementary

facts
2.6 million instances
18 million facts

1.7 million instances
19 million facts

56

Experiment: YAGO and DBpedia

57

Iteration
1
2
3
4

Change
–

12%
1%
0.3%

Time
4:04h
5:06h
5:00h
5:30h

Precision
86%
89%
90%
90%

Recall
69%
73%
73%
73%

Matching the instances:

F-Measure
increases

57

Experiment: YAGO and DBpedia

58

Iteration
1
2
3
4

Change
–

12%
1%
0.3%

Time
4:04h
5:06h
5:00h
5:30h

Precision
86%
89%
90%
90%

Recall
69%
73%
73%
73%

Matching the instances:

Precision: 74%
Aligns roughly half of DBpedia’s classes

Matching the classes:

58

Experiment: YAGO and DBpedia

59

yago:actedIn = dbpedia:starring-inv
yago:hasChild = dbpedia:child
yago:hasChild = dbpedia:parent-inv
yago:created > dbpedia:writer
yago:diedIn > dbpedia:placeOfBurial

... and many more. Precision: 96%

Matching the relations:

59

Experiment: YAGO and DBpedia

60

Matching the relations:

+ experiments on IMDB
+ experiments on OAEI standard datasets

yago:actedIn = dbpedia:starring-inv
yago:hasChild = dbpedia:child
yago:hasChild = dbpedia:parent-inv
yago:created > dbpedia:writer
yago:diedIn > dbpedia:placeOfBurial

... and many more. Precision: 96%

60

Experiment: YAGO and DBpedia

61

Matching the relations:

All experiments run with the same settings.
No parameter tuning.

+ experiments on IMDB
+ experiments on OAEI standard datasets

yago:actedIn = dbpedia:starring-inv
yago:hasChild = dbpedia:child
yago:hasChild = dbpedia:parent-inv
yago:created > dbpedia:writer
yago:diedIn > dbpedia:placeOfBurial

... and many more. Precision: 96%

61

Conclusion

62

• PARIS matches relations, instances and schema holistically
• PARIS has no parameters to tune
• PARIS shows high precision and recall

marriedTo

62

Conclusion

63

• PARIS matches relations, instances and schema holistically
• PARIS has no parameters to tune
• PARIS shows high precision and recall

• PARIS allows the YAGO Elvis to marry the DBpedia Priscilla

marriedToequals

Happy End
Slides done with PowerLine, the free graphical SVG slide editor with Latex support

63

64

Backup Slides

with more details

64

Equality of Instances

65

x and x’ shall be matched if

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)large

65

Equality of Instances

66

x and x’ shall be matched if

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

¬∀r, y, y′withr(x, y), r(x′, y′) : ¬(y ≡ y′ ∧ ifun(r))

66

Equality of Instances

67

x and x’ shall be matched if

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

¬∀r, y, y′withr(x, y), r(x′, y′) : ¬(y ≡ y′ ∧ ifun(r))

¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r))

67

Equality of Instances

68

x and x’ shall be matched if

Let’s compute the probability of this happening,

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

¬∀r, y, y′withr(x, y), r(x′, y′) : ¬(y ≡ y′ ∧ ifun(r))

¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r))

Pr(¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r)))

68

Equality of Instances

69

x and x’ shall be matched if

Let’s compute the probability of this happening,

(under independence assumptions)

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

¬∀r, y, y′withr(x, y), r(x′, y′) : ¬(y ≡ y′ ∧ ifun(r))

¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r))

Pr(¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r)))

= 1−
∏
r(x,y),r(x′,y′)(1− Pr(y ≡ y′)Pr(ifun(r)))

69

Equality of Instances

70

x and x’ shall be matched if

Let’s compute the probability of this happening,

= Pr(x ≡ x′)

(under independence assumptions)

¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r))

= 1−
∏
r(x,y),r(x′,y′)(1− Pr(y ≡ y′)Pr(ifun(r)))

∃r, y, y′withr(x, y), r(x′, y′) : y ≡ y′ ∧ ifun(r)

¬∀r, y, y′withr(x, y), r(x′, y′) : ¬(y ≡ y′ ∧ ifun(r))

Pr(¬ ∧r,y,y′withr(x,y),r(x′,y′) ¬(y ≡ y′ ∧ ifun(r)))

70

Unequality of Instances

19701935

bornborn

marriedTo

How do we guard against inequalities?

71

?

Elvis Presley

label

Elvis Presley

label

71

Unequality of Instances

19701935

bornborn

marriedTo

How do we guard against inequalities?

72

?

Elvis Presley

label

Elvis Presley

label
These cannot be equal,
because they have

a different value
for a functional relation.

72

Unequality of Instances

19701935

bornborn

marriedTo

How do we guard against inequalities?

73

?

Elvis Presley

label

Elvis Presley

label
These cannot be equal,
because they have

a different value
for a functional relation.

The functionality is defined analogously to the inverse functionality.

fun(bornIn) = 1

73

Unequality of Instances

19701935

bornborn

marriedTo

Every value in one ontology should have a pendant in the other,

weighted by the functionality:

74

?

This factor makes sure that
for every y, there is one
equivalent y’

Pr(x ≡ x′) = ...
∏
r(x,y)(1− fun(r)

∏
r(x′,y′) Pr(y 6≡ y′))

74

Unequality of Instances

19701935

bornborn

marriedTo

Every value in one ontology should have a pendant in the other,

weighted by the functionality:

75

?

This factor makes sure that
for every y, there is one
equivalent y’

sang

Lavender Blue
Twinkle Twinkle

sang

All shook up

Jailhouse Rock

Pr(x ≡ x′) = ...
∏
r(x,y)(1− fun(r)

∏
r(x′,y′) Pr(y 6≡ y′))

75

Equality of Relations

knows

marriedTo knows

marriedTo

If every pair of one relation is a pair of another relation,
then the first is a sub-property of the second.

76

(Those in the intersection)

(Those that have a pendant)

knows
subpropertyOf

marriedTo

Pr(r ⊆ r′) =
∑

r(x,y)
(1−

∏
r′(x′,y′)(1−Pr(x≡x′)·Pr(y≡y′)))∑

r(x,y)
(1−

∏
x′,y′(1−Pr(x≡x′)·Pr(y≡y′)))

76

Example

77

Elvis

dreamsOf label

Elvis

name

Elvis

Ontology 1 Ontology 2Ontology 2

77

Example

78

Elvis

dreamsOf label

Elvis

name

Elvis

Ontology 1 Ontology 2Ontology 2

Madonna

label

Madonna

name

Ontology 1 Ontology 2

78

Example

79

Elvis

dreamsOf label

Elvis

name

Elvis

label

Madonna

name

Madonna

Ontology 1 Ontology 2Ontology 2

Ontology 1 Ontology 2

Ciccone
1958
Frozen

79

Example

80

Elvis

dreamsOf label

Elvis

name

Elvis

Ciccone
1958
Frozen

label

Madonna

name

Madonna

Ontology 1 Ontology 2Ontology 2

Ontology 1 Ontology 2

80

Example

81

Elvis

dreamsOf label

Elvis

name

Elvis

Ciccone
1958
Frozen

label

Madonna

name

Madonna

Ontology 1 Ontology 2Ontology 2

Ontology 1 Ontology 2

81

Example

82

Elvis

dreamsOf label

Elvis

name

Elvis

Ciccone
1958
Frozen

label

Madonna

name

Madonna

Ontology 1 Ontology 2Ontology 2

Ontology 1 Ontology 2

82

Example

83

Elvis

dreamsOf label

Elvis

name

Elvis

Ciccone
1958
Frozen

label

Madonna

name

Madonna

Ontology 1 Ontology 2Ontology 2

Ontology 1 Ontology 2

83

