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What is the point?

Apply WebDam results to a specific application area: document
management.

Why?

Documents are everywhere, and currently poorly managed (consider your
hierarchical file system: are you happy with it?)

The goal
© Model document management functionalities with a WebLog-like
language;
@ Try to build a system based on these principles, using other
components (e.g., data management systems);

© check that the result does bring something new (the guess is: yes);

If everything is successful, then create a startup and make a lot of money.
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Starting point

Users interact with documents (and document collections) in many:
@ You create, edit, manipulate documents on your desktop;
@ You search, collect, browse documents on the Web;
© You share and exchange documents with your friends and colleagues.

@ And now, you must deal with many other contexts: your SmartPhone,
your iPad, ...

Fact: we all spend a lot of time in document manipulation.

Question: is there a way to make our life easier by declaring these
manipulations, with a generic approach?

And the bet i: yes, something like WebDamLog could be the missing layel
between document apps (users), documents repositories and
document services.
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What do we expect from the modeling language?

Do not add any complexity! users must be able to directly use their
familiar environment — e.g.

@ in a folder, editable with standard Desktop softwares,
@ and as a resource in a Web application,

@ and, after any appropriate transformation, on you iPad.

Uniformly support content management functionalities.
o Create and edit documents; associate transformations and
derivations.

@ Share with other users; manage conflicts and reconciliation; manage
access rights.

@ Annotate, classify.

@ and, of course, search, including by content.
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Introduction

Instance of the vision: The easyBib application
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Outline

In the rest of the talk:
The Model. Basically WebdamLog, tailored to content management.

[llustration with your the schema and rules of easyBib: shows how to make
IATEX bibiography management trivial.

And a demo !

Note of caution: work in progress, comments welcome.
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The Model

Types and schemas

Documents are typed in a complex values model, with references.

Book {title : string,
authors : [Author],
publisher: string,
year: int

¥

@ The schema of an intentional collection is a pair {_id : |, value : 7},
where 7 is a document type.

@ the schema of an intentional collection is simply a document type 7.
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The Model

Instances

Instance of a document:

Book@DBLP{ id : &d1
{authors : [&al, &a2, &a3, &a4, &a5],
title : "Web Data Management",
publisher : “Cambridge University Press”,
year : "2001",

}
}

Ids can be provided or automatically assigned by the system.
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The Model

Distribution

Instances can be distributed in several locations.

Example: add tags to a book reference; attach a PDF content to this
document.

TaggedBook@u{ id : &d1
book: &b,
tags : tags,
content : pdfFile
} - Book@DBLP(b),
Tag@u(t), Tagged@u(b.id, tags, pdfFile)

Replication is a trivial variant.
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Derivation (functions) — production of new contents

Restucturation: produce a derived content (a Bibtex entry) for each
DBLP ref.

Bibtex@u {bibtex: b,ref: &i } -
Book@DBLP <&i, p>, Fbibtex@R{p, b}

where Fbibtex transforms a Bibentry instance to a Bibtex string.

Extraction: call an external service (location S) that extracts terms from a
PDF document.

Index@u {article: &i,token: t } :-
Book@DBLP <&i, {pdf: p}>, Pdf2Term@S{p, t}

Pdf2Term is the service. It captures all pairs (p, t) such that t is a term in
p.
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The Model

Understanding easyBib: the Desktop View

Allows to create, by query, a virtual file system (VFS) that presents the
documents.

Relies on two predefined predicates:

@ Folder (name: string, parent: Folder)

@ File (name:string, extension: string, content: blob,
folder: Folder)

Example: create a virtual tags VFS, at location G, with one folder for
each tag t, and in each tag/folder, the list of bibentries “tagged” with t.
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The tags virtual file system




The Model

Populating the view (1: folders)

First, create the root with:

Folder@G (name: “tags’, parent: null) :-

Next, for each tag, we create a second directory level.

Folder@G (name: t.label,parent: il) :- Folder@G (<il, “tags”, null>),
TagQu(t)
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Populating the view (2: files)

Populate the “tag" directories with PDF files.

File@G (name:b.title, extension: “pdf", content: b.pdf, parent: il1) :-
Folder@G (<il, t, >), TaggedBook®@u (b), t in b.tags,
b.pdf not null

Finally, create Bibtex entries by calling the derivation service:

File@G (name:b.title, extension: “bib", content: s, parent: il) :-

Folder@G (<il, t, _>), TaggedBookQu (b),
t in b.tags, Ref2Bibtex@R(b, s)

Of course, a “file" may appear in as many Virtual File Systems as we want.
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The Model

The demo

Serge, if you read this: | will organize a personal session for you.
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To summarize

Main points of interests (IMO)

o Store your documents in a virtual space.
-> no need to worry anymore about monolithic organization.

@ Describe schema, behavior and manipulation of your documents
with a consistent language.
-> makes it easy to express and understand what the system aims at.
e Create views to manage documents organizations that fit a
specific user context.
-> any user action is reflected in all the views.

Work in progress: language implementation, and query evaluation over very
large document datasets.

The reverse point of view is also an interesting research topic: how to
extend file systems capabilities with DB-like modeling, search, and indexing
features.
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