Equivalence of Distributed Systems with Queries and Communication

Serge Abiteboul Balder ten Cate *Yannis Katsis* INRIA Saclay & ENS Cachan UC Santa Cruz INRIA Saclay & ENS Cachan

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE RINRIA

Motivation: Distributed query optimization

e.g. p3 asks for σ (R@p1 \cup S@p2)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RINRIA

Problem: Equivalence of distributed systems

When do two systems yield the same result?

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Formalization of the problem

Modeling a distributed system: Active XML

An AXML System is a set of

- **finite**, **unranked**, **labeled** trees that are **unordered**
- that include monotone queries
- and **send** and **receive** services for modeling communication

What kind of trees?

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche SACLAY - ÎLE-DE-FRANCE

[XML docs]

[TPQs with joins]

What kind of trees?

Parenthesis: Snapshot of a system

Contains only the passive data

- Queries are evaluated on snapshots
- Only passive data are sent

] | |

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Evolution of a system

A system can evolve by activating:

- a query node
- a send/receive node on an internal channel
- a receive node on an input channel

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Evolution Step: Receive on Input Channel

Model external inputs (seen as black boxes)

- Receive a forest from the input
- Place it as sibling of the rcv node

Non-deterministic

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Evolution Step: Evaluate Query

Model query evaluation

Evaluate *q* on the snapshot of the descendants
Place result as siblings of the query node

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Evolution Step: Send on Internal Channel

Model communication between peers

- Take a snapshot of the descendants of the snd node
- Copy it as sibling of *all* rcv nodes of the same channel

Global effect of the example: A query is applied to the external input and the result placed under r/b

Nebclam

Run of a system

A sequence of evolution steps

$$| = |_1 \rightarrow |_2 \dots |_{n-1} \rightarrow |_n = |'$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 INRIA
 centre de recherche

 SACLAY - ÎLE-DE-FRANCE

Parenthesis: Homomorphism

Homomorphism from I to J: I < J

• J has more information than I

Homomorphic equivalence: $I \equiv J$

• if I < J and J < I

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parenthesis: Homomorphism

Homomorphism from I to J: I < J

J has more information than I

Homomorphic equivalence: $I \equiv J$

• if I < J and J < I

Reduced tree: A tree s.t. there does not exist a strict subtree J with the same root such that $I \equiv J$

- Undistinguishable for our query languages
- We consider only reduced trees

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

Semantics of Equivalence

Two systems I, J are *equivalent*

if for each run I \rightarrow^* I', there exists a run J \rightarrow^* J' with snapshot(I') < snapshot(J')

and vice versa

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Main contribution: Equivalence problem for AXML systems

	No query	TPQ	TPQ with XPath joins	TPQ with joins	TPQ with constructor
No input	PTIME	PTIME	PTIME	Hard	Undecidable
Input	PTIME	Hard	Hard	?	Undecidable

Complexity increases with:

- richer query language
- ↓ input

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Query-free & input-free systems

So many runs: Which one to look at?

A system has many different runs

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RINRIA

Look at the Limit

It captures the result of an infinite fair run

```
I* is a limit of I if
```

- If $I \rightarrow^* I'$ then snapshot(I') < I*
- For each finite prefix J* of I*, there is I',
 I →* I' and J* < snapshot(I')

Thm: Two systems I and J with finitely branching limits I*, J* are equivalent iff $I^* = J^*$

Cocham

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A finite representation of a limit

A finite graph whose unraveling is a finitely branching limit of I

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Constructing the representation of a limit

For each rcv_i: Add an edge from the parent of rcv_i to all children of all snd_i
Remove all snd/rcv nodes and the nodes that are unreachable from the root

Results for query-free & input-free systems

Decision procedure for equivalence

- Construct graph(I) & graph(J)
- Check whether they yield the same unravelings by checking simulation between the two graphs

Can be done in PTIME

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Results for query-free systems with inputs

Same complexity

- Replace each receive from an input channel by a fresh passive node
- Reuse previous procedure

Why does this work?

 Without queries "one cannot look inside the input"

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Input-free systems with queries

Query Languages Classes of tree pattern queries

(aka downward navigational XPath with path equality)

TPQ with arbitrary joins

TPQ with node constructors

Undecidable

а

C

С

b

е

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

TPQ with XPath-joins

Downward navigational XPath with path equality

Intermediary of a pair of joining nodes

Any node in the shortest path between the nodes apart from their least common ancestor

In a TPQ with XPath-joins:

Results for input-free systems

Main idea

- Construct graph(I) by evaluating a datalog program with relations child(m, n) and label(n, a)
- Compare graphs through simulation

Complexity

• P_{\parallel}^{NP} : Deterministic PTIME with parallel access to an NP oracle

Restricted to XPath-joins

• PTIME (due to bounded tree-width)

Nebclam

Systems with queries and inputs

Equivalence of systems with queries & inputs

The problem is still open

Special cases:

Input is over a finite alphabet: Decidable

 Model limit as a monadic datalog program & check equivalence of two such programs [GottlobKoch04]

TPQs with XPath-joins: 3EXPTIME

- Simplify system by pushing queries directly over input channels
- Simplification requires more expressive query language: Regular TPQs with XPath-joins
- Use [Figueira09] to check equivalence of such queries

Nebclara

Axiomatization for query-free systems with inputs

Axiomatization

Axiom scheme consisting of 8 axioms that

- **normalize** the system (moving send nodes directly below the root)
- **minimize** the system (removing inaccessible channels or channels that simulate each other)

Thm: Query-free systems I and J are equivalent iff one can rewrite I to J using the axioms

> INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Conclusion

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Foundations of distributed query processing

Starting point: AXML algebra

Here: Basis of a theory

Understand the impact of input, query language & other features such as constructors on equivalence

Open questions

- Decidability of equivalence for systems with inputs and queries
- Axiomatization of system with queries

Study the non-monotone case

Synchronization issues

INSTITUT NATIONA DE RECHERCH EN INFORMATIQUI ET EN AUTOMATIQUI

