
Equivalence of
Distributed Systems with
Queries and Communication

Serge Abiteboul INRIA Saclay & ENS Cachan
Balder ten Cate UC Santa Cruz
Yannis Katsis INRIA Saclay & ENS Cachan

Motivation: Distributed query optimization

Peer 1

rcv1 rcv2

∪

σ

snd1

R

Peer 3

Peer 2

snd2

S

Peer 1

rcv1 rcv2

σ

∪

snd1

R

Peer 3

Peer 2

snd2

S

σ

Peer 1

rcv1 rcv2

R

∪

snd1

σ

Peer 3

Peer 2

snd2

σ

S

Local
Rewriting:
Selection &

Union
commute

Global
Rewriting:

Push
selections
to sources

e.g. p3 asks for σ (R@p1 ∪ S@p2)

Problem: Equivalence of distributed systems

When do two systems yield the same result?

Formalization of the problem

Modeling a distributed system: Active XML

An AXML System is a set of
•  finite, unranked, labeled trees [XML docs]
 that are unordered
•  that include monotone queries [TPQs with joins]
•  and send and receive services for modeling communication

What kind of trees?

What kind of trees?

b

rcv2 q

root

rcv1

snd2

a

a

rcv2 b

Passive nodes
Annotated with labels

q

root a b

Query nodes
Annotated with queries

Send/Receive nodes
Annotated with channel ids

snd2 rcv2 rcv1

channel
snd2

snd2

rcv2

rcv2
channel

rcv1

rcv1
Input

Internal channel Input channel (no snd)

Parenthesis: Snapshot of a system

Contains only the passive data

b

rcv2 q

root

rcv1

snd2

a

a

rcv2 b

- Queries are evaluated on snapshots
- Only passive data are sent

Evolution of a system

A system can evolve by activating:
•  a query node
•  a send/receive node on an internal channel
•  a receive node on an input channel

Evolution Step: Receive on Input Channel

b

rcv2

b

a

q

root

rcv1

snd2

Model external inputs (seen as black boxes)

- Receive a forest from the input
- Place it as sibling of the rcv node

Non-deterministic

Evolution Step: Evaluate Query

b

rcv2

b

a

q

root

rcv1

snd2

Model query evaluation

- Evaluate q on the snapshot of the descendants
- Place result as siblings of the query node

b a

$x

Evolution Step: Send on Internal Channel
Model communication between peers

- Take a snapshot of the descendants of the
 snd node
- Copy it as sibling of all rcv nodes of the
 same channel

b

rcv2

b

a

q

root

rcv1

snd2

b b

Global effect of the example:
A query is applied to the external input and the result placed under r/b

Run of a system

A sequence of evolution steps I = I1 → I2 … In-1 → In = I’

I →* I’

Parenthesis: Homomorphism

b

a

b

a

b

a a

b

root

d

b

a

b

a

b

root

a

d
≡

Homomorphism from I to J: I < J
• J has more information than I

I J

Homomorphic equivalence: I ≡ J
• if I < J and J < I

Parenthesis: Homomorphism

b

a

b

a

b

a a

b

root

d

b

a

b

a

b

root

a

d
≡

Homomorphism from I to J: I < J
• J has more information than I

I J

Homomorphic equivalence: I ≡ J
• if I < J and J < I

Reduced tree: A tree s.t. there does
not exist a strict subtree J with the
same root such that I ≡ J
• Undistinguishable for our query

languages
• We consider only reduced trees

Semantics of Equivalence

Two systems I, J are equivalent

 if for each run I →* I’, there exists a run J →* J’ with
 snapshot(I’) < snapshot(J’)

 and vice versa

Main contribution:
Equivalence problem for AXML systems

No query TPQ TPQ with
XPath joins

TPQ with
joins

TPQ with
constructor

No input PTIME PTIME PTIME Hard Undecidable

Input PTIME Hard Hard ? Undecidable

Complexity increases with:
 richer query language
 input

Query-free & input-free systems

So many runs: Which one to look at?

snd2

a

root

snd1

b

rcv1

rcv2 rcv1 a

a

a

a

root

a

a

a

a …

root

a

a

a

a …

b

b

b

A system has many different runs

snapshot of
unfair run

snapshot of
fair run

a

a

a

a

Look at the Limit

a

a

a

root

…

It captures the result of an infinite fair run

I* is a limit of I if
• If I →* I’ then snapshot(I’) < I*
• For each finite prefix J* of I*, there is I’,

I →* I’ and J* < snapshot(I’)

snd2

a

root

rcv1

snd1

Thm: Two systems I and J with finitely branching limits I*, J* are
 equivalent iff I* ≡ J*

rcv1

rcv2

b b

b

A finite representation of a limit

A finite graph whose unraveling is a finitely branching limit of I

Constructing the representation of a limit

snd2

b a

root

rcv1

snd1

rcv2

rcv1

❶ For each rcvi: Add an edge from the parent of rcvi to all children of all sndi

❷ Remove all snd/rcv nodes and the nodes that are unreachable from the root

e.g.

b

a

root

Results for query-free & input-free systems

Decision procedure for equivalence
• Construct graph(I) & graph(J)
• Check whether they yield the same unravelings by checking simulation

between the two graphs

Can be done in PTIME

Results for query-free systems with inputs

Same complexity
• Replace each receive from an input channel

by a fresh passive node
• Reuse previous procedure

Why does this work?
• Without queries “one cannot

look inside the input”

snd2

a

root

snd1 rcv1

b

x3 rcv1 rcv2 rcv3

Input-free systems with queries

Query Languages

c

b

a

b

e e

c

d

b

e f

c

b

b

e e

c

d

b

e f
c

$x

b

$y $z

a TPQ

Classes of tree pattern queries

TPQ with XPath-joins
(aka downward navigational XPath with path equality)

return
subtree
rooted
here

TPQ with arbitrary joins

TPQ with node constructors Undecidable

TPQ with XPath-joins

Intermediary of a pair of joining nodes

Downward navigational XPath with path equality

No node is an
intermediary of 2 pairs

No node in the path from the root to
the result node is an intermediary

$y
$y

$y
$y

$z
$z

Any node in the shortest path between the nodes
apart from their least common ancestor

$y
$y

$x

✘ ✘
In a TPQ with XPath-joins:

result node

Results for input-free systems

Main idea
• Construct graph(I) by evaluating a datalog program with relations

child(m, n) and label(n, a)
• Compare graphs through simulation

Complexity
• P||

 : Deterministic PTIME with parallel access to an NP oracle

Restricted to XPath-joins
• PTIME (due to bounded tree-width)

NP

Systems with queries and inputs

Equivalence of systems with queries & inputs

The problem is still open

Special cases:
Input is over a finite alphabet: Decidable

•  Model limit as a monadic datalog program & check equivalence of two
such programs [GottlobKoch04]

TPQs with XPath-joins: 3EXPTIME
•  Simplify system by pushing queries directly over input channels
•  Simplification requires more expressive query language: Regular TPQs

with XPath-joins
•  Use [Figueira09] to check equivalence of such queries

Axiomatization for query-free systems
with inputs

Axiomatization

Axiom scheme consisting of 8 axioms that
•  normalize the system (moving send nodes directly below the root)
•  minimize the system (removing inaccessible channels or channels that

simulate each other)

Thm: Query-free systems I and J are equivalent iff one can rewrite
 I to J using the axioms

Conclusion

Foundations of distributed query processing

Starting point: AXML algebra

Here: Basis of a theory

Understand the impact of input, query language & other features
such as constructors on equivalence

Open questions
•  Decidability of equivalence for systems with inputs and queries
•  Axiomatization of system with queries

Study the non-monotone case
•  Synchronization issues

