Comparing Workflow Specification Languages: A Matter of Views

Victor Vianu
UCSD/Webdam/INRIA/LSV

- Title: work with Serge and Pierre Bourhis
 ICDT 2011
- More on workflow views: inferring specifications preliminary ideas with Luc and Serge
- AXML as a query language ongoing work with Serge and Pierre Bourhis

Comparing Workflow Specification Languages: A Matter of Views

- Framework for comparing workflow specifications: based on views
- Specific results for AXML workflow specification mechanisms: guards, automata, temporal logic
- Comparison to IBM's Tuple Atifacts

What is a data-centric workflow?

- States (with data)
- Events (with data)
- Transitions

Specifications of data-centric workflows

Two examples

- Active XML
- Tuple Artifacts (IBM)

Workflow specification mechanisms for AXML

- BAXML: static constraints only
- GAXML: function calls and returns controlled by guards
- AAXML: allowed transitions described by an automaton
- TAXML: workflow constrained by temporal property of history

IBM's Tuple Artifacts

Tuple artifacts:

- evolving tuples of data values
- local states: evolving relations
- fixed underlying database
- services (pre/post conditions on tuple, local state, and a global relational database)

System with two artifacts

Events: services

current snapshot of artifact system

Services evaluate their pre-conditions in parallel

One qualifying service is nondeterministically picked for execution

Post-condition Is Satisfied

How to compare different workflows?

Building a beehive

Building an ant nest

Use Views!

Building an ant nest

Workflow views

- Views on states: restructure, hide
- Views on events: restructure, hide → silent

View within AXML

View mapping AXML to Tuple Artifacts

function call !s service call s

Comparing workflow specification languages

- Define views mapping to a common abstraction
- Define workflow simulation

A bit more complicated for tree of runs

Workflow specification mechanisms for AXML

- BAXML: static constraints only
- GAXML: function calls and return controlled by guards
- AAXML: allowed transitions described by an automaton
- TAXML: workflow constrained by temporal property of history

Main result on AXML

BAXML can simulate GAXML, AAXML*, TAXML*

In other words:

static constraints can simulate all other mechanisms

* Modulo very minor restrictions

BAXML vs Tuple Artifacts

 BAXML can simulate Tuple Artifacts with respect to previous view

Tuple Artifacts cannot simulate BAXML
 view: keep just names of services/function calls

Note: the more information is kept in the view, the harder to simulate

Another use of views: controlled exposure of specification

- Adapt complex specifications to needs of users
- Hide private information about internal workflow

Issue: how to explain a view to its users

Example

BAXML view: keep just tree of function calls

How to explain the view

 Ideally: if it is regular, finite-state transition system whose unfolding is the infinite tree

- If the tree of runs is not regular, can it be specified in a more powerful but still reasonable way? Can it be approximated? Is the set of infinite runs regular?
- How about more complex views with data?

Conclusion

Views rule (once again)!

- Allow comparing different workflow models
- Customization of workflows
- Abstraction that can be used in verification