On Provenance Minimization

YaelDanielTovaValAmsterdamer2Deutch3Milo2Tannen1

¹University of Pennsylvania

- ² Tel Aviv University
- ³ Ben Gurion University

On Core Provenance

- Provenance Polynomials [Green, Karvounarakis, Tannen '07] represent the computation leading to output tuples of a DB query.
- A query may be computed in different ways.
- Different computations may have different provenance
- We want to find the *core* provenance the part of provenance which is common to all possible query plans.

First Example

- Consider the equivalent queries:
- Q_1 : Ans(x) := R(x,y),R(y,x)
- Q₂: Ans(x) := $R(x,y), R(y,x), x \neq y$
 - \cup Ans(x) := R(x,x)
- Q₃: Ans(x) := $R(x,y), R(y,x), R(x,z), x \neq y, x \neq z$ ∪ Ans(x) := R(x,x)
- We apply the three on relation R:

Α	В	Provenance
а	а	s ₁
а	b	S ₂
b	а	S ₃

Computing the Output with Provenance

On Provenance Minimization

Comparing the Outputs

- The output tuple of 3 queries is the same, but the computation is different .
- Thus, the output provenance is different

	Α	Provenance
Query 1	а	$s_2 \cdot s_3 + s_1 s_1$

Query 2 a
$$s_2 \cdot s_3 + s_1$$

Query 3 a
$$s_2 \cdot s_3 \cdot s_2 + s_2 \cdot s_3 \cdot s_3 + s_1$$

Why core provenance?

- Captures the "tersest" computation.
- Informative describes the part of provenance which is inherent to the query.
- It is contained in the provenance of all equivalent queries, thus it is minimal.
 - Compact input to provenance management tools.

Main Goal

- Algorithms for computing, given a query, an equivalent query whose provenance is the core, a provenance minimal (p-minimal) query
 - Is there always such a query? (Spoiler: No!)
 - We study the problem for different classes of queries of increasing expressiveness: CQ, CQ[≠], UCQ[≠]...

Comparing Provenances

- We do this using an order relation which reflects relative "terseness" of provenance polynomials
- Monomials: we say that m≤m' if the multiplicands of m are bagincluded in those of m'.
- **Polynomials:** we say that $p \le p'$ if there is an injective mapping $I:p \rightarrow p'$ s.t. $m \le I(m)$.

P-Minimality

- Q_CQ' iff
 Q, Q' equivalent
 ∀D ∀t∈Q(D)=Q'(D)
 Prov(t,Q,D) ≤ Prov(t,Q',D).
- Problem Statement (p-minimization): Given a class of queries *C*, and Q∈*C*, we want to compute a query Q' that is equivalent to Q and is p-minimal, i.e. ∀Q"∈*C* equivalent to Q,Q', Q'⊂_PQ".

P-Minimality Characterization

- We need to characterize when some query is terser than another.
- We take inspiration from "standard" query minimization, finding an equivalent query with the minimal number of joins.

Standard Query Minimization

- Chandra & Merlin (1977) proved that for every Q, Q'∈CQ, there exists a homomorphism h:Q'→Q iff Q⊆Q'.
 - A homomorphism is a mapping between relational atoms, respecting the arguments

Standard Query Minimization – Cont.

- Moreover, Q is minimal in the standard sense iff there exists no homomorphism from Q to any of its strict sub-queries.
- Thus, to minimize a query, we look for strict sub-queries that are equivalent to that query.

P-Minimization in CQ

- **Theorem:** Given two equivalent queries Q,Q' in CQ, if there exists a surjective homomorphism h:Q' \rightarrow Q then Q \subseteq_P Q'.
- Theorem: in CQ, standard minimization is the same as pminimization
 - The proof uses the two homomorphism theorems.
 - We probably cannot compute efficiently, since standard minimization is known to be DP-Complete (Fagin, Kolaitis and Popa, 2005)
 - **DP**: a pair of an NP and a coNP problems.
 - But also good news same heuristics and optimization techniques can be used for p-minimization.

Conjunctive Queries with Disequalities (CQ[≠])

- So far, we could express equalities by using the same argument .
- The class CQ[≠] allows using disequalities (≠).
- For example,

Ans(z) := $R(w,a), R(z,v), R(z,w), z \neq a, v \neq w$

 We want to find the p-minimal equivalent query within CQ[≠].

This Time It's Different...

- Lemma: There exist $Q_1 \equiv Q_2$, two DBs D, D', s.t. P((),Q_2,D)<P((),Q_1,D) but P((),Q_1,D')<P((),Q_2,D').
- Lemma: There exists no other query equivalent to Q₁, Q₂ with less provenance on D, D'.
- Thus they have no p-minimal equivalent.
- How come?

The homomorphism theorems fail in CQ[≠].

• We will see later that a p-minimal equivalent can be found in a larger query class which allows union.

Standard minimization in CQ[≠]?

- A standard minimal equivalent query always exists the equivalent query with least joins...
- Since the homomorphism thm. does not hold, Klug (1988) gives a different way to find the minimal query.
- One open question posed by Klug: Is the minimal query unique? (as in CQ)
- By a construction given to us by Georg Gottlob: No!
 - Q₁ and Q₂ are minimal in the standard sense and equivalent, but not equal (isomorphic)...

Complete Conjunctive Queries (cCQ [≠]**)**

- Last class of conjunctive queries to consider¹.
- Consists of queries where there are explicit disequalities stated between each pair of distinct arguments.
- For example:

Ans(z) := $R(w,a), R(z,w), z \neq a, w \neq a, z \neq w$

¹ This class is very important for the algorithm of UCQ[≠] query minimization, which is not detailed in this presentation.

Our results for cCQ[≠]

- Good news: The homomorphism theorem holds for cCQ[≠] ⇒ again, in cCQ[≠] standard minimality and p-minimality are the same.
- More good news: unlike CQ, the p-minimal equivalent can be computed in cCQ[≠] in PTIME.
 - Lemma: a query in cCQ[≠] is (p-)minimal iff it does not contain duplicated relational atoms ans(x) := R(x), R(y), S(x,y), R(x), x≠y
 - The duplicated atoms can be easily found and removed in PTIME.

Conjunctive Queries - Summary

CQ

Queries w.o. disequalities.

- Standard minimization = pminimization.
- A (p-)minimal equivalent always exists.
- The decision problem is DP-Complete.

CQ≠

General conjunctive queries w. disequalities

 Standard minimization ≠ p-minimization

 For some queries there exists no pminimal equivalent

cCQ≠

all the distinct arguments are disequated

 Same as CQ, but the pminimal equivalent can be computed in PTIME

Motivation for Using Unions

- Q_1 : Ans(x) := R(x,y), R(y,x) is p-minimal in CQ.
 - Proof: There is no homomorphism from Q_1 to any of its sub-queries.
- We have also seen
 Q₂: Ans(x) := R(x,y),R(y,x),x≠y
 U Ans(x) := R(x,x)
- We gave an example of a DB where the provenance of Q₂ is actually terser: P((a), Q₂, D) = s₂·s₃+s₁ < s₂·s₃+s₁·s₁ = P((a), Q₁, D)
- In fact $Q_2 \subset_P Q_1!$
- This means we can do better using unions...

Unions of Conjunctive Queries (UCQ[≠])

- Captures SPJ**U** queries.
- Queries of the form $Q=Q_1 \cup Q_2 \cup ... \cup Q_n$, where - $Q_1, Q_2, ..., Q_n \in CQ^{\neq}$ are called the adjuncts of Q.
- The provenance of an output tuple t is Prov(t,Q,D) = Prov(t,Q₁,D)+...+Prov(t,Q_n,D)

Α	В	Provenance
а	а	s ₁
а	b	s ₂
b	а	S ₃

Good News about UCQ[≠]

- Theorem: For every query Q in UCQ[≠] there exists a pminimal equivalent in UCQ[≠].
- We have an (exponential time) algorithm for computing it.
- In particular, since CQ[≠] ⊂UCQ[≠], this means we can find a p-minimal equivalent to every CQ[≠] query in UCQ[≠].
- For some p-minimal queries in CQ, an equivalent query with terser provenance can be found outside CQ.

Related Work

Management of provenance information

- Specific provenance management techniques, e.g. why provenance, Trio provenance, Provenance semirings
- Provenance management tools

• Standard query minimization

- Conjunctive queries (Chandra & Merlin 1977)
- Unions (Sagiv and Yannakakis 1980)
- CQ w. inequalities (Klug 1988)
- Many others
- Data Exchange core of universal solutions

Acknowledgement

We are grateful to Georg Gottlob for providing us with a counterexample for non-unique minimal query for CQ[≠], which helped in proving the non-existence of a p-minimal query for this class.

Future Work

- Find restricted cases with lower complexity bounds.
- P-minimization in other classes of queries (e.g. general inequalities <, ≤,..., aggregation queries).
- Study the connection to core in data exchange.
- Optimizations
 - Employing existing heuristics and optimization techniques (of standard minimization) for pminimization.

Conclusion

In this work we have studied:

- Core provenance information, which is common to all equivalent queries.
- When a query that realizes the core provenance exists and how to compute it, in different query classes:
 - Conjunctive queries: CQ, CQ^{\neq}, cCQ^{\neq}.
 - Unions thereof: UCQ[≠].
- Direct computation of core provenance polynomials from provenance information.

