
Static Analysis

of Active XML Systems

S. Abiteboul L. Segoufin V. Vianu

INRIA INRIA UCSD

Broader context:

Verification of data-driven systems

• growing area at the intersection of

Databases and Computer-Aided Verification

• some promising theory and implementation

• potential for significant practical impact

Applications centered around a database

• Data-driven Web services

• E-commerce

• E-government

• Business process support

• Scientific applications

Complex, prone to costly bugs:

need for verification!

How to verify

General-purpose software verification techniques

• model checking

usually requires finite-state abstraction

• theorem proving

incomplete, requires expert user feedback

Unsatisfactory!

• Recent work: can do better by taking

advantage of a proliferation of high-level

specification tools

WebML, Wave, Hilda: Web sites/services

Siena (IBM): Business processes/artifacts

Active XML (INRIA): XML services

• Ideal targets for verification

Good news: Can automatically verify

significant classes of applications!

Active XML:

XML with embedded service calls

• integrates the XML and Web service paradigms

• controlled materialization of data

keep dynamic data fresh

• implement evolving documents

Ongoing project in Serge’s group
SIGMOD 2003, PODS 04/08/09, VLDB Journal,TODS

AXML for evolving documents

• Role of AXML service: support processing tasks

loan applications, mail orders, tax forms, etc

• Evolution of a document reflects stages in

carrying out the task

• Tasks are initiated by functions calls

embedded function calls  sub-tasks

• Governed by workflow specified implicitly

by constraints on document evolution

Outline

• Specific variant of AXML

Guarded AXML (GAXML)

• Language for specifying temporal properties

Tree-LTL

• Results: boundary of decidability of verification

Challenge: infinite-state system!

Guarded AXML

• guards used to control when a function is

called and when the result is returned

powerful control mechanism

• data is passed as arguments to calls and as

results of calls: defined by queries

GAXML by example

Mail-Order-Center

Catalog !GetOrder

Mail-Order-Center

Catalog

Customer

Order

Product

“Joe” “ipod80G”

!Bill !Credit

check

!Deliver

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

!Bill !Credit

check

!Deliver

Invoice

Customer

“Joe”

Amount

“$399”

query on Order

and Catalog

guard: product available?

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

!Credit

check

!DeliverPayment

“VISA” “$399”

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

Payment !Credit

check

!Deliver

“VISA” “$399”

Request

Customer

“Joe”

Amount

“$399”

guard: paid correct amount ?

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

Payment !Deliver

“VISA” “$399”

Rating

“Good”

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

Payment Rating !Deliver

“VISA” “$399”

“Good”

guard: rating good

or excellent ?

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

Payment Rating !Deliver

“VISA” “$399”

“Good”

Delivery

Customer

“Joe”

Product

“ipod80G”

guard: rating good

or excellent ?

GAXML by example

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

Payment Rating Delivered

“VISA” “$399”

“Good”

GAXML by example

Mail-Order-Center

Catalog !GetOrder Order

GAXML by example

More details

• GAXML documents: unordered trees

• Internal nodes are labeled by tags

• Leaves are labeled by tags, data values, or

function symbols

!f call to f

?f running call to f

Static constraints on documents

• DTDs

restrict number of children with given tag,

function symbol, or containing data values

• Data constraints

Boolean combinations of tree patterns

Static constraints on documents

• Example of data constraint

Mail-Order-Center

Catalog !GetOrder Order

Product

Name Price

“ipod80G” “$399”

...

Static constraints on documents

• Example of data constraint

Mail-Order-Center

Catalog

...

Product name determines price

Product

Name Price

“ipod80G” “$399”

Product

Name Price

X Y

Mail-Order-Center

Product

Name Price

X Z



Y  Z

Function Guards and Queries

• call guards and return guards

Boolean combinations of tree patterns

• argument and return queries

similar to XML-QL

collect variable

bindings
construct result

BODY  HEAD

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

!Bill !Credit

check

!Deliver

Mail-Order-Center

Order

Customer Product

X Y Z

Product

Price

Y Z

Mail-Order-Center

Order

Customer Product

X Y

Product

Price

Y Z

Name self

Amount

Invoice

Customer

X Z

Amount

Invoice

Customer

X Z

Body Head

Example: argument query for !Bill

GAXML system: overall picture

data

data data

Service f

Service g Service h

functions:

internal or external

GAXML system: overall picture

Service f

data

GAXML service specification:

• static constraints on trees

DTDs and data constraints

• function definitions

called functions: call guards, argument queries

supported functions: return guards, return queries

Run of a GAXML system

data

data data

Service f

Service g Service h

f

!g !h
data

data data

Service f

Service g Service h

Run of a GAXML system

f

!h

!h

?g

g

data

data

Service f

Service g Service h

Run of a GAXML system

?g !h

g

?h

h

data

data data

Service f

Service g Service h

f

Run of a GAXML system

?g ?h

g

?h

h h

data

data data

Service f

Service g Service h

f

done

Run of a GAXML system

?g ?h

g

?h

h h

data

data data

Service f

Service g Service h

f

done

Run of a GAXML system

?g ?h

g h

data

data data

Service f

Service g Service h

f

Run of a GAXML system

?g ?h

g h

data

data data

Service f

Service g Service h

f

Run of a GAXML system

?h

h

data

data data

Service f

Service g Service h

f

Run of a GAXML system

?h

h

data

data data

Service f

Service g Service h

f

Run of a GAXML system

Service g Service h

Service f

data

data data

f

Run of a GAXML system

Runs are infinite

• blocking instances

repeat forever

Specifying properties of runs: Tree-LTL

Linear-time temporal logic (LTL)

• propositions p,q,r, ...

• logical connectives: , , 

• temporal operators:

G: always

F : eventually

U: until

X: next

Examples:

G p

G (p  F q)
GFp  GFq

From LTL to Tree-LTL

G(p  F q)

Tp(X) Tq(Y)

tree patterns with free variables X, Y

 X  Y

From LTL to Tree-LTL

G(p  Fq) X  Y

If a customer pays a product in the

correct amount, the product is eventually delivered

Mail-Order-Center

Order

Customer Product

X Y Z

Product

Price

Y Z

Mail-Order-Center

Order

Customer Product

X Y Z

Product

Price

Y Z

Name Payment

Tp(X,Y)

Order

Customer Product

X Y

Delivered

Mail-Order-Center

Tq(X,Y)

Other examples of properties

expressible in Tree-LTL

• no product is delivered unless it has been

previously paid for in the correct amount

• the billed amount for a product is always the

catalog price

• there are no two active orders by the same

customer for the same product

Verification problem

Given a GAXML system S and a Tree-LTL

formula , decide whether every run of S

satisfies . If not, find a counterexample run.

Restriction for decidability:

non-recursiveness

syntactic restriction ensuring that every run

reaches a blocking instance in a

bounded number of steps

Main result

It is decidable whether a non-recursive

GAXML system S satisfies a Tree-LTL

formula 

Note: still infinite-state system because of

unbounded data! Use a “small run” property.

• likely to be lower in many practical cases

-- CO-NEXPTIME if function call

graph is a tree rather than a DAG

-- CO-NP with fixed bound on depth of trees,

number of functions, and max number of

variables in tree patterns

Complexity: CO-2NEXPTIME complete

Other decidable problems

for non-recursive GAXML systems

• successful termination

does every run of S reach a blocking instance

with no running function calls?

• typechecking

if the initial instance of a run is valid, then all

instances reachable in the run are also valid

valid: satisfy DTD and data constraints

Decidability with recursion

• Sufficient condition for safety with respect to

Boolean combination of tree patterns 

1. Every valid initial instance of G satisfies 

2. If I satisfies  and I  J, then J satisfies 

complexity: CO-NEXPTIME

Decidability with recursion

• Bounded reachability of 

For fixed k, is there an instance J of S

that satisfies  and is reachable by a run

of length at most k ?

complexity: NEXPTIME

Conclusions

• Powerful framework for specifying evolving documents

• Tree-LTL can specify a wide range of useful properties

• Verification is decidable under the strong

non-recursiveness restriction

• However, non-recursiveness is common in practice

• Even for recursive GAXML systems, one can isolate and
verify meaningful non-recursive fragments

Example:

individual orders in the order processing system

Current and future work

• Extensions of verification results

allow some recursion

• Connection to other workflow specification mechanisms

• Use AXML as a model for

business artifacts

influential IBM proposal for data-centric workflows

CO-2NEXPTIME upper bound

• Main idea: prove a “small run” property

• size of “small run”: exponential length, with

instances doubly exponential in S and 

If there is a run of S violating , then there is

a “small run” of S violating 

Proof: reminiscent of small model property for

** FO sentences

model built from witnesses to * quantifiers

....

blocking run satisfying  

....

Proof: reminiscent of small model property for

** FO sentences

model built from witnesses to * quantifiers

small run built in two stages: first collect witnesses

needed to enable transitions and satisfy  

....

Proof: reminiscent of small model property for

** FO sentences

model built from witnesses to * quantifiers

then construct real run from witnesses

CO-2NEXPTIME lower bound

• Simulation of 2NEXPTIME Turing machine

2NEXPTIME Turing machine M and word w

GAXML system S and Tree-LTL formula 

S violates  iff M accepts w

Non-trivial simulation:

tricky encoding and control needed

Non-recursive GAXML system

• acyclic function call graph

• no continuous functions

• non-recursive DTD

• DTD allows bounded number of function calls

in each valid tree

Note: still infinite-state system!

Keeping dynamic data fresh

!GetWeather

newspaper

title
date

“Le Monde”

“07/14/2008”

Weather

Service

city

name

“Paris”

Keeping dynamic data fresh

newspaper

title
date

“07/14/2008”

city

name

“Paris”

“Le Monde”

current conditions

temperature

“16 C”

!GetDetailedForecast

Example: argument query for !Bill

Mail-Order-Center

Catalog Order

Customer Product

“Joe” “ipod80G”

!Bill !Credit

check

!Deliver

Invoice

Customer

“Joe”

Amount

“$399”

