
Structural
characterizations of
schema mapping

languages

Structural
characterizations of
schema mapping

languages

Balder ten Cate
INRIA and ENS Cachan

(research done while visiting IBM Almaden and
UC Santa Cruz)

Joint work with Phokion Kolaitis (ICDT’09)

Balder ten Cate
INRIA and ENS Cachan

(research done while visiting IBM Almaden and
UC Santa Cruz)

Joint work with Phokion Kolaitis (ICDT’09)

2 /28

Schema mappings

Schema mapping: set of declarative assertions specifying the relationship
between two DB schemas.

Example:

• Source schema S: { Emp(Name, Dept, SSN), ... }

• Target schema T: { Staff(Name, Dept, Phone), ... }

• Specifications Σ of the schema mapping:

{ ∀xyz (Emp(x,y,z) → ∃u.Staff(x,y,u)) }

3 /28

Data exchange and data integration

Schema mappings are used in data interoperability tasks such as data
exchange and data integration.

Data exchange:

• Given a schema mapping and a source instance, compute a solution:
a target instance satisfying the constraints.

Data integration:

• Given a schema mapping, a source instance I, and a target query q,
compute the certain answers ⋂{q(J)|J a solution of I}.

4 /28

Architecture of Clio

• Schema mappings provide a middle-layer in-between schema matchings
and transformation scripts, having a well-defined semantics.

Schema-matching generation

Schema-mapping generation

Executable script generation

schema matching (a set of
correspondences between

attributes of relations)

executable transformation
script (SQL/XSLT/...)

schema mappingSource schema S Target schema T

Source data

5 /28

Schema mapping languages

Many schema mappings languages have been proposed:

• s-t tgds

• full s-t tgds

• LAV s-t tgds

• SO tgds

• nested s-t tgds

These are fragments of FO logic or of SO logic.

6 /28

Why so many formalisms?

Each formalism has its own virtues. For example,

• Schema mappings specified by s-t tgds

• admit universal solutions (each source instance has a
universal solution: a solution with a homomorphism into
every other solution)

• allow for CQ rewriting (each target CQ can be rewritten
to a source UCQ computing the certain answers)

• Schema mappings specified using only full s-t tgds, or only
LAV s-t tgds, satisfy further desirable properties.

7 /28

Characterizing schema mapping
languages

Idea of the paper: to turn the tables and characterize each schema mapping
language in terms of such properties.

“a schema mapping is definable by L-constraints iff it satisfies X”

L { ∈ s-t tgds, full s-t tgds, LAV s-t tgds, ... },

X {⊆ admit-universal-solutions, allow-for-CQ-rewriting, ... }

8 /28

Motivations

Understanding the expressive power of schema mapping languages.

Understanding the scope of basic techniques in data exchange and data
integration

A check-list for definability (to test if a mapping is definable in a language,
check that it satisfies the list of properties).

• E.g., can effectively test whether a schema mapping specified by s-t
tgds can be defined using only LAV s-t tgds, etc.

9 /28

Outline

Outline of remainder of talk:

1. Characterizations of schema mapping languages

2. Complexity of testing definability

10 /28

Schema mappings: Abstract
definition

Definition: a schema mapping is a triple (S,T,W), with W is a class of pairs
(I,J) of instances for S and T, respectively, invariant for isomorphisms (if
(I,J) W ∈ and (I,J) (I’,J’), ≅ then (I’,J’) W)∈ .

If (I,J) W∈ , then J is called a solution for I.

Definition: a FO schema mapping is a schema mapping defined by a finite
FO theory over S ∪ T.

11 /28

Schema mapping languages

Source-to-target tuple generating dependency (s-t tgd): a FO sentence
∀x.(φS → ∃y.ψT), where

• φS a conjunction of atomic formulas over S

• ψT a conjunction of atomic formulas over T

• every xi occurs in φS.

Full s-t tgd: an s-t tgd without -quantifiers∃

LAV s-t tgd: an s-t tgd in which φS is an atomic formula.

These roughly correspond to GLAV[CQ], GAV[CQ], and LAV[CQ]
constraints under the sound semantics.

12 /28

Properties (i)

Every schema mapping specified by a finite set of s-t tgds ...

• is closed under target homomorphisms: if J is a solution for I and
h : J → J’ is a homomorphism constant on dom(I), then J’ is also a
solution for I.

• admits universal solutions: every source instance I has a universal
solution, i.e., a solution that has a homomorphism into every other
solution (constant on dom(I)).

• allows for CQ rewriting: for every conjunctive query q there is a
union of conjunctive queries q’ that computes the certain answers of
q.

13 /28

Properties (ii)

1+2 provide the foundation for data exchange. They imply:

• the (infinite) space of all solutions of a source instance is captured
by a single solution, namely any universal solution.

• Every source instance has a core universal solution.

3 provides the foundation for data integration. It implies:

• certain answers can be computed in LogSpace (data complexity).

14 /28

Properties (iii)

• Every schema mapping specified by a finite set of LAV s-t tgds...

4. is closed under union: if J1 is a solution for I1, and J2 for I2,
then J1 J∪ 2 it is a solution for I1 I∪ 2 .

• Every schema mapping specified by a finite set of full s-t tgds...

5. is closed under target intersection: if J1 and J2 are solutions
for I, then J1 ∩ J2 is.

15 /28

LAV s-t tgds

Theorem 1: A schema mapping is definable by a finite set of LAV s-t tgds
iff it

1. is closed under target homomorphisms

2. admits universal solution

3. allows for CQ rewriting

4. is closed under union

16 /28

Full s-t tgds

Theorem 2: A schema mapping is definable by a finite set of full s-t tgds iff
it

1. is closed under target homomorphisms

2. admits universal solution

3. allows for CQ rewriting

5. is closed under target intersection.

17 /28

arbitrary s-t tgds (i)

Recall: every schema mapping definable by a finite set of s-t tgds

1. is closed under target homomorphisms

2. admits universal solution

3. allows for CQ rewriting

Theorem. Every schema mapping satisfying 1,2,3 is defined by a possibly
infinite set of s-t tgds.

This is not a characterization! Some FO schema mappings satisfying 1,2,3
are not definable by a finite set of s-t tgds. Example: ∀x.∃y.∀z.(Rxz →
Syz)

18 /28

Arbitrary s-t tgds (ii)
Extra condition needed:

6. n-Modularity: if J is a solution for each I’ I with |I’|≤ ⊆ n then J is
a solution for I.

Theorem 3: A schema mapping is definable by a finite set of s-t tgds iff it
satisfies

• closure under target homomorphisms

• admitting universal solution

• reflecting source homomorphisms

• n-modularity for some n > 0

19 /28

Summary
Schema mapping language Characterizing properties

LAV s-t tgds 1. Closure under target homomorphisms
2. Admitting universal solutions
3. Allowing for CQ rewriting
4. Closure under union

Full s-t tgds 1. Closure under target homomorphisms
2. Admitting universal solutions
3. Allowing for CQ rewriting
5. Closed under target intersection

s-t tgds 1. Closure under target homomorphisms
2. Admitting universal solutions
3. Allowing for CQ rewriting
6. n-modularity (for some n>0)

20 /28

Some further variations

For FO schema mappings,

• the property of allowing for CQ rewriting can be replaced by the
property of reflecting source homomorphisms:

If h: I-> I’ and J’ is a solution for I’ then h extends to a
homomorphism from any universal solution of I to J’

which has a more “geometric” feeling to it and can be easier to check.

• n-modularity can be replaced by having bounded block size.

21 /28

About the proofs

• Classical model theory provides techniques for characterizing the
expressive power of logical languages

• The challenge is to obtain characterizations in the finite (Finite
Model Theory), which requires different techniques.

• An important recent result in Finite Model Theory: Rossman’s
homomorphism preservation theorem (UCQs are precisely the FO
queries preserved under homomorphisms).

• Some of our proofs use a lemma of Rossman, others use more
elementary arguments.

22 /28

Open question: characterize other languages

• SO tgds,

• nested s-t tgds (next slide)

• target dependencies (cf. Makowsky-Vardi ’86)

• ...

23 /28

Nested s-t tgds
A very natural extension of s-t tgds used in the IBM Almaden data
exchange system Clio:

Nested s-t tgds: FO sentences ∀x.(φS → ∃y.ψT), where

• φS a conjunction of atomic formulas over S

• ψT a conjunction of atomic formulas over T and/or nested s-
t tgds (possibly having x,y as FVs).

• every xi occurs in φS.

Fact: all schema mappings defined by a finite set of nested s-t tgds
satisfy 1,2,3.

Question: are nested s-t tgds characterized by 1,2,3?

24 /28

Part 2: Complexity of expressibility

25 /28

Given a schema mapping specified by s-t tgds, can it be defined using only
LAV s-t tgds?

• By our characterization, equivalent to closure under union.

• Can be effectively tested.

Similarly for full s-t tgds.

26 /28

In each case, an equivalent schema mapping can be constructed in PTIME if
it is known to exist.

Input schema
mapping language

Desired schema
mapping language

Complexity of testing
definability

s-t tgds full s-t tgds NP-complete

s-t tgds LAV s-t tgds NP-complete

full s-t tgds LAV s-t tgds PTIME

LAV s-t tgds full s-t tgds NP-complete

27 /28

Summary

1. we characterized

• s-t tgds

• LAV s-t tgds

• full s-t tgds

in terms of natural properties, e.g., admitting universal solutions.

1. we used our characterizations to derive complexity results for testing
definability in restricted fragments.

2. in the paper, we also consider BP-style (instance level) definability.

28 /28

Future directions
• Our investigations point to nested s-t tgds as a natural schema mapping

language (received little attention in the literature so far)

• What are suitable schema mapping languages for XML

• There are proposals, but no general agreement yet

• Structural characterizations would help

• Schema mapping optimization is arising as a new topic:

• Rewrite schema mappings into 'equivalent' ones that are more
efficient or otherwise more well-behaved

• Different notions of equivalent: logical equivalence, data-exchange
equivalence, conjunctive-query equivalence.

Thank You!Thank You!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

