
Active XML을 이용한 코드 이동성의 빠른 확보기법

타로파 에마뉴엘, 이원종, 한탁돈
연세대학교 컴퓨터 과학과

{taropaemanuelO, hantack}@kurene.yonsei.ac.kr
airtight@ yonsei.ac.kr

Fast Obtaining Weak Code Mobility Using Active XML

Emanuel Taropa0 Won-Jong Lee, Tack-Don Han
Department of Computer Science, Yonsei University

Abstract
We show how to rapidly build a framework supporting weak code mobility by using Active XML [1]. Weak code mobility is important in
mobile applications area by offering functionality at a low bandwidth cost and with little overhead imposed to the user peer architecture.
Starting from already known principles involving code mobility, we give a new definition for the functionality transfer process and we
materialize it in a working prototype.

1. Introduction

 The ever increasing domain of mobile computing applications
augments the pressure on device manufacturers and maintainers. So far
the focus has been solely on adding functionality to existent
applications and on providing better supporting hardware for them.
With the current expansion of 3G mobile phones on the market [2], an
increasing interest has developed in providing software
reconfigurability for these devices. As the hardware platform has
evolved enough to run complex operating systems, the next logical step
is to provide coherent, inexpensive means of software updates for
mobile phones.
 In the following sections we chose to limit our analysis to the
interaction between the 3G device owner and his carrier, modeled using
the classic client-server paradigm, for reasons of clarity of explanations
and lack of space. The conclusions we draw and the prototype system
we designed, can be used in much more complex interaction patterns,
such as ad-hoc networks or collaboration environments.
 The previous research in code migration has explored the directions
of both compiled and source code migration [3], [4], [5], [6], using
sometimes standard technologies such as RMI [7] or defining new
mobile scripting languages usually supported by agent frameworks [8].
Initially, the code migration problem was targeted to optimize
processor usage in multiprocessor systems, by moving the entire
process image and execution context from heavily loaded machines to
more idle ones. We say that code migrated this way exhibits strong
mobility. The interest for low overhead code migration appeared once
with the development of mobile networks with limited resources on
their nodes (i.e. sensor networks, mobile phones). Instead of moving an
entire process image, involving termination, transportation and
creation costs, the migration has been limited only to process code. We
call this kind of code migration weak mobility.
 Regardless of code migration’s mobility type – strong or weak, and
of it’s implementation method, most of the previous work has focused
on a ”push” interaction paradigm. Typical instances are systems that

have one or more code distribution nodes that choose the device onto which
the code is to be deployed or systems based on agent frameworks, where the
next point of deployment is chose by the agent program itself. In the
following sections, we will present a framework for weak code mobility
supporting both ”push” and ”poll” based interaction paradigms.
 The rest of the paper is organized as follows: section 2 gives a functional
specification of weak code mobility from a “push” and “poll” perspective.
Section 3 describes a prototype for weak code migration, pointing out
architectural details of Active XML. The paper concludes with Section 4
where conclusions are drawn and future work is presented.

2. Functional Specification

For providing the functional description of code migration, we choose a
workflow related perspective. Therefore, we will focus our analysis on the
following aspects:

1. advertising and offering functionality – easily achieved using web-
services as interfaces to the code repository
2. locating remotely available functionality – expressed in our case by
the source / object code of translation units (or programs)
3. gathering that functionality locally – bringing remotely available
source code on the client’s peer, compiling and executing it

We consider the above points to be the minimum requirements that a

complete framework supporting weak code mobility needs to address. Further
extensions can be made, with direct impact on efficiency of the migration
process, on security and on correctness of functional composition. We tried to
keep the definition of functionality minimal enough so that it can be extended
for other code mobility frameworks as well, yet complete so that we have full
expressive power when writing mobile code applications on our proposed
framework. We will focus our next analysis on source code migration,
observing that object code migration can be achieved in a similar way.

Figure 1: Functionality integration

2.1 Defining Functionality

We understand by functionality the smallest code unit that has a
specified set of inputs and offers a specified set of outputs.
 This definition can be applied in two different ways, according to
the type of code integration performed on the client’s peer: integration
of fully functional units (functions in programming languages) and
integration of code fragments. These different types of code integration
are illustrated in Figure 1.

2.2 Functionality Migration Scenarios

There are two ways in which code migration can be started:
initiated by the server or by the client. Furthermore, the migration can
happen only once (i.e. a sporadic update of an application, started by
the phone company for all its subscribers), or periodically (i.e. some
subscribers pay extra so that their mobile phone software is always kept
up to date, by receiving periodic code patches).

Server initiated migration is implemented using a ”push”
interaction scenario. The server is the one who knows its subscribers
and knows how to contact them (i.e. the phone company is sending all
its subscribers periodic notices regarding their subscription status).
Client initiated migration requires a ”poll” interaction scenario. The
client decides to contact the server and requests specific functionality.
A straightforward application of client initiated migration arises from
the need of secure transmissions. Therefore, a company might offer
encryption / decryption software source codes that the clients are able
to download and use locally, for initiating a secure exchange of
messages over a non-secure transmission media. The difference
between classic migration scenarios and the ones supported by our
framework is illustrated in Figure 2, where images a) and b) represent
classic interaction schemes, also supported by our framework and c)
represents a subscription interaction added in our framework.

2.3 Code Discovery

The intermediate layer between the clients and the servers is
represented by indexing nodes. The architecture is similar to the UDDI
[9] model in respect to the associations maintained on every node
between code locations and descriptions. The difference is that these
aggregator nodes are active and that they can initiate their own
discovery algorithm for maintaining up to date their association tables.
Furthermore, each of these nodes can send and receive code patches or
full translation units from other nodes in the network.
 The difference among source codes is made using added attributes
that contain not only the functional definition (i.e. function signature)

Figure 2: Migration scenarios

but also attributes related to security issues (i.e. allowed type of integration,
digital signature). The problem that arises is given by the heterogeneity of
possible definitions for the same function, but we feel that by using definition
languages such as WSDL [10] a common standard can be obtained.

Discovery of the source code can also be achieved by crawling the code
servers one by one periodically and indexing their results. This algorithm can
be implemented either on the client side or on a modified UDDI proxy. The
source code for the crawling algorithm is given in Figure 3

1. use initial server URL pool as seeds
2. while Q not empty do
3. get next URL u from Q
4. mark u as scanned
5. fetch code repository for u
6. for each repository entry e do
7. if e is local entry for u then
8. associate e with u
9. else
10. identify e’s outgoing links
11. for each outgoing link o do
12. if o is not in Q then
13. insert o in Q
14. goto2

Figure 3: Crawling Algorithm

2.4 Code Integration Policies

Once the remote code is locally available, we must define a modality for
integrating it in our application. The integration process has the following
steps: file placement, compilation and scheduling for execution.
The first step is controlled by the client’s application and the security
constraints imposed on the code: public code can be freely copied into a file
and visualized and private code can also be compiled and executed in a safe
environment, without user access or intervention. The benefits that come from
compiling on the user’s machine range from better optimization to decreasing
the transport overhead (i.e. only increments of source code can be sent and
not the entire object file).

3. System Description

Relying on the data integration framework provided by the Active XML
language, we were able to build a system supporting the functional
specification defined in the above section.

function f1 (…) {}

function f3 (…) {}

function f1 (…) {
 int i = 0;

 return i;
}

i = i + 1;
i = i & 5;

function f2 (…) {}

(a) full function body integration

(b) client “polling” asynchronously

(b) incremental code update as sequence of instructions

(a) server “pushing” the code

(c) client registering a subscription and
receiving periodical updates

Figure 4: Code integration using Active XML

3.1 Active XML General View

Active XML is a language designed to achieve transparent data
integration, in a peer to peer environment, using web-services. The data
unit is defined as an Active XML document, which is an XML
document with service calls embedded. The service calls are means for
requesting data available on remote systems and integrate it into the
originating document. Thus we observe that Active XML documents
evolve with time, becoming more complete. The system supports both
asynchronous and synchronous method invocation scenarios, making
possible spontaneous and continuous data integration, suiting most
applications needs.

A detailed description on web-service invocation and received data
integration, as well as possible extensions that can be made to the
language is given in [1].

An overview of data integration process is represented in Figure 4.
We can observe how a document requests data and how the framework
is responsible with providing the required data and with its integration
in the client’s document.

3.2 Implementing Migration Scenarios

The previously defined migration scenarios have a rapid im-
plementation using the calling conventions and peer interaction policies
supported by Active XML.

3.2.1 Server Initiated Migration

We assume that the server keeps a list of all its subscribers for code
downloads. Therefore, the implementation is straightforward by
sending the same update to all registered subscribers. When a
subscription is made, we require the subscriber to provide the server’s
Active XML running peer with the endpoint information for receiving
the updates. As most of this functionality is already implemented in the
service call element in Active XML, we had just to add code migration
attributes, concerning security issues and required software for
compiling and executing the code.

3.2.2 Client Initiated Migration

The client can either contact directly a directory index service,
containing the associations between source code specification and its
location or can start its own discovery mechanism. For mobile systems
with limited computing resources we recommend using a predefined
proxy for getting the desired source code. Other systems can initiate

their own discovery algorithm, having the benefit of obtaining the best
possible path to access the remote source code. Our code migration system
extends Active XML and provides a dual code discovery scheme.

3.3 Code Integration

Using Active XML’s set of integration policies, we can either replace the
node containing the service call by the received code, or we can add that code
as its sibling, thus supporting incremental code migration [5].

4. Conclusions and Future Work
In this paper we demonstrated a new modality for rapidly achieving weak

code mobility. We relied on the data integration framework offered by Active
XML [1]. We specified the process of weakly migrating and integrating the
code and we described a prototype system for code migration. Although in an
initial stage, our system supports the migration and integration of complete
translation units on different peers.

Currently the location of source code servers is assumed known, but in a
future step we intend to implement the presented discovery algorithm. We
will use these results for supporting alternative code composition scenarios
for replicated translation units.

REFERENCES

[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R. Weber Active

XML: A Data-Centric Perspective on Web Services,
Actes des 18emes journees Bases de Donnees Avancees,
Hermes 2002

[2] GSM Association - Growth of the Global Digital Mobile Market,
GSMA Statistics Q4 2004
http://www.gsmworld.com/news/statistics/index.shtml

[3] K. Bharat, L. Cardelli - Migratory Applications,
Mobile Object Systems: Towards the Programmable Internet,
pp. 131-149, Springer Verlag, 1997

[4] A. Tabatabai, G . Langdale, S. Lucco, R. Wahbe - Efficient
and Language-Independent Mobile Programs,
Conference on Programming Language Design and Implementation
(PLDI), Proceedings of the ACM SIGPLAN, pp. 127-136, 1996

[5] W. Emmerich, C. Mascolo, A .Finkelstein - Implementing
Incremental Code Migration with XML,
Proceedings of the 22nd International Conference on Software
Engineering, pp. 397-406, 2000

[6] Y. Bi, M. Hull, P. Nicholl – An XML Approach for Legacy Code
Reuse,
Jorunal of Systems and Software, Vol. 61, Issue 2, pp. 77-89,
Elseiver Science Inc, 2002

[7] JavaSoft Sun Microsystems - Java Remote Method Invocation
Specification ,
Revision 1.10, Java 2 SDK, Standard
Edition, v 1.5.0, 2003

[8] Y. Aridor and M. Oshima – Infrastructure for Mobile Agents:
Requirements and Design
Proceeding of 2nd International Workshop on Mobile Agents (MA
'98), Lecture Notes in Computer Science, Vol. 1477, pp. 38-49,
Springer Verlag, 1998

[9] OASIS – UDDI Version 2.03, Data Structure Reference
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm

[10] W3C – Web Services Description Language (WSDL)
Version 1.1
http://www.w3.org/TR/wsdl20/

</static>

<nonmutable>

</nonmutable>
<get code/> <received code/>

</static>

<static>
<nonmutable>

</nonmutable>

Time

<static>

Query

Client Document
Server Response

