
Atomicity for P2P based XML Repositories

Debmalya Biswas, Il-Gon Kim
IRISA-INRIA

Campus Universitaire de Beaulieu, Rennes, 35042 France

{dbiswas, ikim}@irisa.fr

Abstract

Over the years, the notion of transactions has become

synonymous with providing fault-tolerance, reliability

and robustness to database systems. However, challenges

arise when we try to apply them to novel computing

paradigms such as ActiveXML (AXML) systems. AXML

provides an elegant platform to integrate the power of

XML, Web services and Peer to Peer (P2P) paradigms by

allowing (active) Web services calls to be embedded

within XML documents. We propose a transactional

framework which provides relaxed ACID properties to

AXML systems. Relaxed atomicity is usually provided

with the help of compensation. However, current

compensation based models assume the existence of a

pre-defined compensating operation. Also, compensation

is assumed to be more or less peer (or service provider)

dependent, i.e., the original and compensating services

are provided by the same peer. We show how

compensation for AXML transactions can be constructed

dynamically at run-time and achieved in a peer

independent manner. Finally, we consider the issue of

peer disconnection, an inherent trait of P2P systems, and

propose an innovative solution based on peer “chaining”.

1. Introduction

Active XML systems (AXML) [1] provide an elegant
way to combine the power of XML, Web services and
Peer to Peer (P2P) paradigms by allowing (active) service
calls to be embedded within XML documents. An AXML
system consists of the following main components:

- AXML documents: XML documents with embedded

Web service calls. The embedded services may be AXML
services (defined below) or generic Web services. For
example, the XML snippet below is an AXML document
with the embedded service call “getGrandSlamsWon”.

<?xml version = "1.0" encoding = "UTF-8"?>
<ATPList date = "18042005">
 <player rank = 1>
 <name>
 <firstname>Roger</firstname>
 <lastname>Federer</lastname>

 </name>
 <citizenship>Swiss</citizenship>
 <points>475</points>
 <axml:sc mode = "replace" serviceNameSpace =

"getGrandSlamsWon" serviceURL = "…" methodName =
"getGrandSlamsWon">

 <axml:params>
 <axml:param name="name">
 <axml:value>Roger Federer</axml:value>
 </axml:params>
 </axml:sc>
 </player>
…
</ATPList>

- AXML Services: Web services defined as

queries/updates over AXML documents. Note that AXML
services are also exposed as a regular Web service (with a
WSDL description file).

- AXML peers: Nodes where the AXML documents
and services are hosted. AXML peers also provide a user
interface to query/update the AXML documents stored
locally.

An embedded service call may be invoked (or
materialized): 1) in response to a query on the AXML
document (the invocation results are required to evaluate
the query), or 2) periodically (specified by the
"frequency" attribute of the AXML service call tag
<axml:sc>). The invocation results may be static XML
nodes or another service call. The service calls can have
the modes: a) replace: the previous results are replaced by
the current invocation results, or b) merge: the invocation
results are appended as siblings of the previous invocation
results.

A transaction can be considered as a group of
operations encapsulated by the operations Begin and
Commit/Abort having the following properties (ACID):

- Atomicity: Either all the operations are executed or

none of them are executed. In case of failure (abort), the
effects of any operation belonging to the transaction are
canceled (roll-back).

- Consistency: Each transaction moves the system from
one consistent state to another.

- Isolation: To improve performance, often several
transactions are executed concurrently. Isolation
necessitates that the effects of such concurrent execution
are equivalent to that of a serial execution (serializability).

- Durability: Once a transaction commits, its effects are
durable, i.e., they should not be destroyed by any system
or software failure.

While transactions are synonymous with providing

fault-tolerance, reliability and robustness to database
systems, challenges arise when we try to apply them to a
novel computing paradigm such as AXML.
Characteristics of an AXML system, important from a
transactional point of view, are as follows:

- Distributed: The distributed aspect follows from 1)

the capability to invoke services hosted on remote peers,
and 2) distributed storage of parts of an AXML document
across multiple peers [2]. In case of distributed storage, if
a query Q on peer AP1 is interested in part of an AXML
document stored on peer AP2 then there are two options:
a) the query Q is decomposed and the relevant sub-query
sent to the peer AP2 for evaluation, or b) the required
fragment of the AXML document is copied to the peer
AP1 and the query Q evaluated locally (on AP1). Both the
above options require invoking a service on the remote
peer and as such are similar in functionality to (1).

- Replication: AXML documents (or fragments of the
documents) and services may be replicated on multiple
peers [2].

- Nested: The nested aspect is mainly with respect to
the nested (recursive) invocation of services. a) Local
nesting: The service call parameters may themselves be
defined as service calls. As such, evaluating a service call
may require evaluating the parameters’ service calls first.
Analogously, a service invocation may return another
service call as its result leading to a nested invocation of
service calls. 2) Distributed nesting: Invocation of a
service SX of peer AP2 , by peer AP1, may require the peer
AP2 to invoke another service SY of peer AP3 (while
executing SX) leading to a nested invocation of services
across multiple peers.

- Duration: The duration of AXML transactions,
especially, those including generic Web services can be
very long (in hours).

- Concurrent (simultaneous) access: The number of
users accessing the system simultaneously can be very
high.

- Availability: In true P2P style, we consider that the
set of peers in the AXML system keeps changing with
peers joining and leaving the system arbitrarily.

Given the above characteristics, we propose a

transactional framework which provides relaxed ACID
properties to AXML systems. Relaxed atomicity is usually

provided with the help of compensation [3][4]. However,
current compensation based models assume the existence
of a pre-defined compensating operation (for each
operation), which is invoked in case the effects of the
original operation need to be canceled. Also,
compensation is assumed to be more or less peer (or
service provider) dependent, i.e., the original and
compensating operations/services are provided by the
same peer. We show how the compensating operations
can be constructed dynamically and compensation
achieved in a peer independent manner for AXML
transactions. Finally, peer disconnection is an inherent
trait of P2P systems. As far as we know, the issue of peer
disconnection hasn’t been considered explicitly in a
transactional context. We outline an innovative solution
based on “chaining” the involved peers to handle AXML
peer disconnection.

The rest of the paper is organized as follows. In section
2, we discuss some related work. Section 3 is dedicated to
the transactional framework for AXML systems. More
precisely, we discuss dynamic compensation construction,
nested and peer independent recovery, and the issue of
peer disconnection in respective sub-sections of section 3.
Section 4 concludes the paper and provides some
directions for future work.

2. RELATED WORK

The notion of transactions has been evolving over the
last 30 years. As such, it would be a vain effort to even try
and mention all the related research here. Given this, we
suffice to mention the transactional models which have
been proposed specifically for the XML and Web services
paradigms. Links to general transactional related work are
provided in the text as and when required.

[5] and [6] consider lock-based concurrency control
protocols customized for XML repositories. However, due
to the “active” nature of AXML documents, lock-based
protocols are not well suited for AXML systems.

[7] describes how compensating transactions can be
modeled based on the active database concept of triggers,
basically, as Event-Condition-Action (ECA) rules. [8]
presents a forward recovery based transaction model. It
introduces the concept of co-operative recovery (in the
context of Web services). In [9], Pires et. al. propose a
framework (WebTransact) for building reliable Web
services compositions. [4] stresses the importance of Cost
of Compensation and end-user feedback while performing
compensation for Web services compositions. [10] and
[11] discuss in detail the practical implications of
compensation with respect to hierarchical Web Services
Compositions. Broadly, given the process or workflow
underpinnings of Web services compositions, the focus of
the above works is towards process atomicity. However,

Web services or embedded service calls are only a part of
AXML. As mentioned earlier, AXML systems provide an
elegant integration of the XML (data), Web services
(process) and P2P (infrastructure) platforms. As such, we
also need to consider data related aspects, e.g., consistent
query and update of AXML documents, etc. From a P2P
perspective, transactions haven’t received much attention
till now as their commercial use has been mostly restricted
to file (or resource) sharing systems where failure
resilience equates to maintaining sufficient information
(by the P2P client) so that a file download can be resumed
(from the original or a different peer). However, the trend
is slowly changing with a steady rise in the use of P2P
systems for collaborative work [1][12] including the Grid
[13]. In this paper, we consider the issue of peer
disconnection from a transactional perspective.

3. AXML Atomicity

The possible operations on AXML documents are
queries, updates, inserts and deletes (update operations
with action types “replace”, “insert” and “delete”,
respectively). The operations can be submitted locally or
by invoking the query/update services (AXML services)
provided by an AXML peer. We do not differentiate
between the two modes and use the terms operation and
service interchangeably throughout the paper. We

consider a transactional unit as a set of update/query

operations (services).

3.1. Dynamic Compensation

Compensation based models, in the event of a failure,
preserve atomicity by executing a compensating operation
which is responsible for semantically undoing the effects
of the original operation. For example, the compensation
of “Book Hotel” is “Cancel Hotel Booking”. Here, it
helps to recall that compensation is not equivalent to the
traditional “undo”; rather, it is another forward operation
(transaction) which moves the system to an acceptable
state (which maybe different from the initial state [14]).
Compensation is achieved by executing the compensating
operations in the reverse order of the execution of their
respective forward operations. Usually, the compensation
handlers for a service call are pre-defined statically on the
lines of exception/fault handlers. However, static
definition of compensation handlers is not feasible for
AXML systems. We consider the issue in detail in the rest
of the section.

The compensation for an insert (AXML update
operation with action type “insert”) is delete and vice
versa. Similarly, the compensation for an update (AXML
update with action type “replace”) is another update which

reinstates the old data values. To illustrate, let us consider
the following AXML document:

ATPList.xml:

 1:<?xml version = "1.0" encoding = "UTF-8"?>
 2:<ATPList date = "18042005">
 3: <player rank = 1>
 4: <name>
 5: <firstname>Roger</firstname>
 6: <lastname>Federer</lastname>
 7: </name>
 8: <citizenship>Swiss</citizenship>
 9: <axml:sc mode = "replace" serviceNameSpace =
"getPoints" serviceURL = "…" methodName =
"getPoints">
10: <axml:params>
11: <axml:param name = "name">
12: <axml:value>Roger Federer</axml:value>
13: </axml:params>
14: <points>475</points>
15: </axml:sc>
16: <axml:sc mode = "merge" serviceNameSpace =
"getGrandSlamsWonbyYear" serviceURL = "…"
methodName = "getGrandSlamsWonbyYear">
17: <axml:params>
18: <axml:param name = "name">
19: <axml:value>Roger Federer</axml:value>
20: <axml:param name = "year">
21: <axml:value>$year (external
value)</axml:value>
22: </axml:params>
23: <grandslamswon year = "2003">A,
W</grandslamswon>
24: <grandslamswon year = "2004">A,
U</grandslamswon>
25: </axml:sc>
26: </player>
 …
…</ATPList>

AXML update operations (analogous to XQuery
updates [15]) can be divided into two parts: 1) the
<location> query to locate the target nodes, and 2) the
actual update actions. The <location> query evaluation
may involve service call materializations, and as such,
updates to the AXML document. The data (nodes)
required for compensation cannot be predicted in advance
and would need to be read from the log at run-time. For
example, let us consider an AXML delete operation and
its compensation as shown below:

Delete operation:
<action type = "delete">

<location>Select p/citizenship from p in
ATPList//player where p/name/lastname = Federer;
</location>

</action>

Compensating operation:
<action type = "insert">
 <data> <citizenship>Swiss</citizenship> </data>

<location>Select p/points/.. from p in ATPList//player
where p/name/lastname = Federer;</location>

</action>

where the <location> and <data> of the compensating
insert operation are the parent (/..) of the deleted node and
the result of the <location> query of the delete operation,
respectively. Thus, the delete operations as well as the
results of the <location> queries of the delete operations
need to be logged to enable compensation. Note that the
above compensation mechanism does not preserve the
original ordering of the deleted nodes. For ordered
documents, the situation is slightly more complicated and
formulation of the compensating operation would depend
on the actual semantics of the insert operation. For
example, the situation is simplified if the insert operation
allows insertion “before/after” a specific node [15].

For AXML insert operations, we assume that the
operation returns the (unique) ID of the inserted node. As
such, the compensating operation (for the insert operation)
is a delete operation to delete the node having the
corresponding ID. An AXML replace operation is usually
implemented as a combination of a delete and update
operation, i.e., delete the node to be replaced followed by
insertion of a node (having the updated value) at the same
position. Compensation for a replace operation is shown
below:

Replace operation:

<action type = "replace">
<data> <citizenship>USA</citizenship> </data>
<location>Select p/citizenship from p in
ATPList//player where p/name/lastname=Nadal;
</location>

</action>

decomposes to:

<action type = "delete">
<location>Select p/citizenship from p in
ATPList//player where p/name/lastname=Nadal;
</location>

</action>
<action type = "insert">

<data> <citizenship>USA</citizenship> </data>
<location>Select p/citizenship/.. from p in
ATPList//player where p/name/lastname=Nadal;
</location>

</action>

Compensating operation:
<action type = "delete">

<location>Select p/citizenship from p in
ATPList//player where p/name/lastname=Nadal;
</location>

</action>
<action type="insert">

<data><citizenship>Swiss</citizenship></data>
<location>Select p/citizenship/.. from p in
ATPList//player where p/name/lastname=Nadal;
</location>

</action>

Now, let us consider compensation for AXML query
operations. Traditionally, query operations do not need to
be compensated as they do not modify data. However,
AXML query evaluation, due to the possibility of service
call materializations, is capable of modifying the AXML
document, e.g., insertion of the result nodes (and deletion
of the previous result nodes in “replace” mode). There are
two possible modes for AXML query evaluation: lazy and
eager. Of the two, lazy evaluation is the preferred mode
and implies that only those embedded service calls (in an
AXML document) are materialized whose results are
required for evaluating the query. As the actual set of

service calls materialized is determined only at run-time,

the compensating operation for an AXML query cannot

be pre-defined statically (has to be constructed

dynamically). Given that the required insertion (deletion)
of the result nodes are achieved using AXML Insert
(Delete) operations, the compensating operation for an
AXML query operation can be formulated as discussed
for the AXML update operations earlier. The following
couple examples (query operations A and B) illustrate the
above aspect.

Query operation A:

<action type = "query">
<location>Select p/citizenship, p/grandslamswon from
p in ATPList//player where p/name/lastname=Federer:
</location>

</action>

Lazy evaluation of the above query would result in the
materialization of the embedded service call
“getGrandSlamsWonbyYear” (and not “getPoints”)
leading to the following AXML document:

1:<?xml version = "1.0" encoding = "UTF-8"?>
2:<ATPList date = "18042005">
3: <player rank = 1>

 …

25: <grandslamswon year = "2005">A,

F</grandslamswon>
26: </axml:sc>
27: </player>

 …
…</ATPList>

The only change in the above AXML document, with

respect to ATPList.xml, is the addition of line 25 (lines 4-
24 are the same as ATPList.xml). Thus, the compensation
for the above query operation would be a delete operation
to delete the node “<grandslamswon year = "2005">A,
F</grandslamswon>”.

However, if the query were defined as follows:

Query operation B:

<action type = "query">
<location>Select p/citizenship, p/points from p in
ATPList//player where p/name/lastname=Federer;
</location>

</action>

Lazy evaluation of query B would result in the
materialization of the embedded service call “getPoints”

(and not “getGrandSlamsWonbyYear”) leading to the
following AXML document:

9: <axml:sc mode = "replace" serviceNameSpace =
"getPoints" serviceURL = "…" methodName =
"getPoints">
10: <axml:params>
11: <axml:param name = "name">
12: <axml:value>Roger Federer</axml:value>
13: </axml:params>
14: <points>890</points>
15: </axml:sc>

The only change in the above AXML document, with
respect to ATPList.xml, is in line 14 (the value of points
has changed from 475 to 890). Thus, the compensation for
the above query operation would be a replace operation to
change the value of the node “<points>890</points>”
back to 475.

As shown by the above examples, static compensation

definition is not feasible for query operations, and as

such, need to be constructed dynamically at run-time.

3.2. Nested and Peer Independent Recovery

On the lines of Java and Business Process Execution
Language for Web Services (BPEL4WS) [16], we assume
the existence of multiple fault handlers corresponding to
the embedded service calls in an AXML document. For
example, the embedded service call “getGrandSlamsWon”
defined with fault handlers would be as follows:

<axml:sc … methodName="getGrandSlamsWon">

<axml:params>
 <axml:param name="name">
 <axml:value>Rafel Nadal</axml:value>
</axml:params>
<axml:catch faultName="A" faultVariable="…"><!--

handle the fault --></axml:catch>

<axml:catch faultName="B" faultVariable="…"><!--

handle the fault --></axml:catch>

<axml:catchAll><!-- handle the fault --

></axml:catchAll>
</axml:sc>

<!-- handle the fault --> part can be either some Java
code or constructs like <axml:retry times=""
wait=""><axml:sc …></axml:sc></axml:retry> which
allow specifying the number of times a service invocation
can be retried and the duration to wait before retrying.
The optional <axml:sc …> allows retrying the invocation
using a replicated peer (provided replication is supported).

Next, we discuss a nested recovery protocol for AXML
transactions. We need some additional notations before
presenting the protocol. The peer at which a transaction
TA is originally submitted is referred to as its origin peer.
Peers whose services are invoked while processing TA are
referred to as the participant peers of TA. On submission
of a transaction TA at a peer AP1 (its origin peer), the peer
creates a transaction context TCA1. The transaction
context, managed by the transaction manager, is a data
structure which encapsulates the transaction id with all the
information required for concurrency control, commit and
recovery of the corresponding transaction.

We outline the nested recovery protocol with the help
of an example scenario as shown in Fig. 1. Fig. 1 shows a
scenario where the peer AP5 fails while processing the
service S5 as part of transaction TA. Given this, nested
recovery can be achieved as follows:

1. AP5 aborts the transaction TCA5 and sends “Abort

TA” messages to the peers whose services it had invoked
(AP6) and the peer which had invoked the service S5
(AP3).

2. The peer AP6, on receiving the message “Abort TA”,
aborts TCA6.

3. The peer AP3, on receiving the message “Abort TA”,
tries to recover using the (application specific) fault
handlers defined for the embedded service call S5.

4. If there are no matching fault handlers, AP3 follows
the same course of action as AP5, i.e., abort TCA3 and
send “Abort …” messages to the peers whose services it
had invoked as part of processing S3 (AP4) and the peer
which had invoked the service S3 (AP1).

Fig. 1. Nested recovery protocol for AXML Transactions

This backward propagation of the fault continues till it

finally reaches the origin peer (in which case, the whole
transaction is aborted). The above recovery protocol is
nested, i.e., the intermediate peers AP3 and AP1 have the
option of performing forward recovery using the
application specific fault handlers or backward recovery
by propagating the failures to their parents (send “Abort
TX” messages). The preferred option would depend on the
“cost” of forward versus backward recovery. For AXML

systems, the number of XML nodes affected (traversed) is

usually a good measure of the cost of an operation

(forward or compensating). Note that the number of
affected nodes would remain the same even if a different
peer is selected to redo (forward recovery) the operation
(a different peer, in this case, can only be a peer
containing a replicated copy of the affected AXML
document). Given this, we ignore the cost aspect and
consider forward recovery as the preferred solution and
undo only as much as required (as considered in the
protocol above).

A peer independent variation of the above recovery

protocol would be as follows: In the above protocol, the
original peers (peers which had originally executed the
services) are responsible for their compensation as well.
Now, let us assume that a peer APX, processing the
invocation of a service S, also returns the definition of the
compensating service CSSX of S along with the invocation
results. The compensating service CSSX is defined as “a
service capable of compensating the modifications at APX
which occurred as a result of processing the service S”.
The compensating service definitions can also be sent to
the origin peer directly. Given this, a peer trying to
perform recovery (say, the origin peer) can directly invoke
the compensating services (CSSX) on their original peers
(APX). The original peers do not even need to be aware
that the services they are executing are actually

compensating services. The intuition is to free the original
peers form the burden of compensation as much as
possible.

3.3. Peer Disconnection

Peer disconnection is an inherent trait of P2P systems.
Related P2P research relies on ping (or keep-alive)
messages to detect peer disconnection. Resilience is
provided against disconnection via redundancy, e.g., if a
peer, from which a file is being downloaded, gets
disconnected then the download can be resumed from
some other peer sharing the same file. We consider peer
disconnection from a transactional point of view and
illustrate our solution with the help of the scenario in Fig.
2 (a slightly modified version of Fig. 1). The main

objective of the proposed solution is to minimize loss of

effort by detecting the disconnection as soon as possible

and reuse already performed work as much as possible.
The actual steps to be executed to handle peer
disconnection vary based on the peer which got
disconnected and the peer which detected the
disconnection.

The list of active peers is denoted as follows: [APX →
APY] implies an invocation of APY’s service by APX.
Parallel invocation of APY and APZ s’ services by APX is
denoted as [APX → [APY] || [APZ]]. Finally, super peers
(trusted peers which do not disconnect) are highlighted by
an * following their identifiers (APX*).

(a) Leaf node disconnection (peer AP6 gets

disconnected and the disconnection is detected by its
parent AP3): AP3 follows the nested recovery protocol
discussed earlier.

S4 (TA)

S3 (TA)

AP1

AP2

AP3

AP4

AP5 AP6
S5 (TA)

4. Abort TC A3 and send “Abort T A” messages to
AP 4 and AP 1.

1. AP5 fails. Abort TCA5 and send “Abort TA”
messages to AP6 and AP3.

S6 (TA)

Submit transaction
TA

S2 (TA)

Fig. 2. Illustration for the peer disconnection scenario

(b) Parent disconnection detected by child node (peer

AP3 gets disconnected and the disconnection is detected
by its child AP6): Let us assume that AP6 detects the
disconnection of AP3 while trying to return the results of
processing service S6 to AP3. Traditional recovery would
lead to AP6 (aborting) discarding its work and actual
recovery occurring only when the disconnection is
detected by peer AP2. A more efficient solution can be
achieved if AP3 passes the list of active peers [AP1* →
AP2 → [AP3 → AP6] || [AP4 → AP5]] also while invoking
the service S6 of AP6. Given this, as soon as AP6 detects
the disconnection of AP3, it can send the results directly to
AP2 (informing AP2 of the disconnection as well). Once
AP2 becomes aware of the disconnection, it follows the
nested recovery protocol discussed in the previous sub-
section. Further, let us assume that AP2 attempts forward
recovery by invoking the service S3 on a different peer
(say, APX). In a general scenario, it might be very difficult
to reuse the work already performed by AP6. However, if
we assume that S6 was basically an invocation to
materialize an input parameter of S3 (recall that input
parameters can also be defined as service calls) then it
might be possible to reuse AP6’s work by passing the
materialized results directly while invoking S3 on APX.
Finally, it is very likely that even AP2 might have
disconnected. Given this, AP6 can try the next closest peer
(AP1) or the closest super peer (also, AP1 in this case) in
the list.

(c) Child disconnection detected by its parent (peer
AP3 gets disconnected and the disconnection is detected
by its parent AP2): Let us assume that AP2 detects the
disconnection of AP3 via ping (or keep-alive) messages.
As in the previous scenario, a more efficient recovery can
be achieved if AP2 is aware of the list of active peers
[AP1* → AP2 → [AP3 → AP6] || [AP4 → AP5]],
especially, AP6. In addition to attempting recovery using
the nested recovery protocol, AP2 can use the information
about the children peers (of AP3) to see if any part of their
work can be reused. Even if reuse is not possible, AP2 can
at least use the information to inform the descendents (of
AP3) about the disconnection. This would prevent them
from wasting effort (doing work which is ultimately going
to be discarded).

(d) Sibling disconnection (peer AP3 gets disconnected
and the disconnection is detected by sibling AP4): For data
intensive applications, it is often the case that data is
passed directly between siblings (rather than sibling A -
parent - sibling B). In an AXML scenario, this is
particularly relevant for subscription based continuous [1]
services which are responsible for sending updated
(streams of) data at regular intervals. Thus, a sibling
would be aware of another sibling’s disconnection if it
doesn’t receive data at the specified interval. Given such
detection, AP4 can use the list of active peers [AP1* →
AP2 → [AP3 → AP6] || [AP4 → AP5]] to notify the parent
(AP2) and children (AP6) of AP3 about its disconnection.
Following this, AP2 and AP6 follow the protocol as
outlined in steps (b) and (c), respectively.

The steps for the rest of the cases follow analogously.

Another interesting aspect is the effect of peer
disconnection on compensation. Compensation might lead
to peer disconnection having an adverse affect even after
the actual processing has completed. In fact, it might not
be possible to guarantee atomicity as long as peer
disconnection is possible. Here, we can use the notions of
Spheres of Atomicity [17] to check if atomicity is
guaranteed, e.g., atomicity may still be guaranteed for a
transaction if all the involved peers (for that transaction)
are super peers. The notion of peer independent
compensation (discussed earlier) is also very helpful given
the possibility of peer disconnection.

4. Conclusion

In this work, we proposed a transactional framework

for AXML systems. AXML systems integrate XML, Web
Services and P2P platforms, leading to some novel
challenges which are not addressed by transactional
models specific to any of the above. We considered the
recovery aspect and proposed a compensation based
recovery model for AXML systems. We showed in detail
how compensation for AXML transactions can be
constructed dynamically and introduced the notion of peer
independent compensation. We also considered the issue

S4 (TA)

S6 (TA)

S2 (TA)

AP1

AP3 AP6

Submit transaction
TA

S3 (TA)

AP2

S5 (TA)

AP4 AP5

of peer disconnection and outlined a solution based on
chaining the participant peers for a more efficient
recovery.

Currently, the “chaining” mechanism is restricted to
the parent, children and sibling peers. We are exploring
the feasibility of extending the same to uncles, cousins,
etc. Our future work also includes implementation and a
formal study of the proposed protocols. The
implementation part involves integrating the transactional
framework into the AXML implementation [18]. The
objectives of the formal study are two-fold. The first (and
obvious) objective is to prove the correctness of the above
protocols formally. The second objective is to analyze the
interdependence between the protocols. Related research
tends to focus on the A, C, I and D transactional
properties independently with strong assumptions about
each other. As a result, the interplay between the
properties is ignored. Note that a property may have both
a constraining as well as relaxing effect on the other.
However, such relaxation needs to be performed in a
controlled manner so that the overall consistency of the
system is not affected (which leads to the need for a
formal analysis).

Acknowledgements

This work is supported by the INRIA projects ARC-

ASAX and RNRT-SWAN. We would like to thank
Krishnamurthy Vidyasankar and Stefan Haar for their
helpful suggestions which helped to improve the work in
this paper considerably.

References

[1] Active XML (AXML) systems, http://www.activexml.net/.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu and T.
Milo, “Dynamic XML Documents with Distribution and
Replication”, In proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pp. 527
- 538.

[3] H. Garcia-Molina and K. Salem, “Sagas”, In proceedings of
the 1987 ACM SIGMOD International Conference on
Management of Data, pp. 249 - 259.

[4] D. Biswas, “Compensation in the World of Web Services
Composition”, In proceedings of the 1st International
Workshop on Semantic Web Services and Web Process
Composition (SWSWPC), 2004, pp. 69 - 80.

[5] Kuen-Fang Jea, Shih-Ying Chen and Sheng-Hsien Wang,
“Concurrency Control in XML Document Databases:

XPath Locking Protocol”, In proceedings of the 9th
International Conference on Parallel and Distributed
Systems (ICPADS), 2002, pp. 551 - 556.

[6] M. P. Haustein and T. Härder, “Adjustable Transaction
Isolation in XML Database Management Systems”, In
proceedings of the 2nd International XML Database
Symposium (XSym), 2004, pp. 173 - 188.

[7] R. Karlsen and T. Strandenæs, “Trigger-Based
Compensation in Web Service Environments”, In
proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS), 2003, pp. 487 -
490.

[8] F. Tartanoglu, V. Issarny, A. Romanovsky and N. Levy,
“Coordinated Forward Error Recovery for Composite Web
Services”, In proceedings of the 22nd Symposium on
Reliable Distributed Systems (SRDS), 2003, pp. 167-176.

[9] Paulo F. Pires, Marta L.Q. Mattoso, and Mário Roberto F.
Benevides, “Building Reliable Web Services
Compositions”, LNCS 2593, 2003, pp. 59 - 72.

[10] K. Vidyasankar and G. Vossen, “Multi-level Model for
Web Service Composition”, In proceedings of the 2nd
International Conference on Web Services (ICWS), 2004,
pp. 462 - 471.

[11] D. Biswas and K. Vidyasankar, “Spheres of Visibility”, In
proceedings of the 3rd IEEE European Conference on Web
Services (ECOWS), 2005, pp. 2 - 13.

[12] Environment for the development and Distribution of Open
Source software (EDOS), http://www.edos-project.org/.

[13] C. Turker, K. Haller, C. Schuler and H.-J. Schek, “How can
we support Grid Transactions? Towards Peer-to-Peer
Transaction Processing”, In proceedings of the 2nd Biennial
Conference on Innovative Data Systems Research (CIDR),
2005, pp. 174 - 185.

[14] Henry F. Korth, E. Levy and A. Silberschatz, “A Formal
Approach to Recovery by Compensating Transactions”, In
proceedings of the 16th International Conference on Very
Large Databases (VLDB), 1990, pp. 95 - 106.

[15] G. Ghelli, C. Re and J. Simeon, “XQuery!: An XML query
language with side effects”,
http://www.di.unipi.it/~ghelli/papers/XQueryBangTR.pdf.

[16] Specification: Business Process Execution Language for
Web Services (BPEL4WS). http://www-
106.ibm.com/developerworks/library/ws-bpel/.

[17] Gustavo Alonso, and Claus Hagen, “Exception Handling in
Workflow Management Systems”, IEEE Transactions on
Software Engineering, Vol. 26, No. 10, 2000, pp. 943 -
958.

[18] Active XML (AXML) implementation,
http://forge.objectweb.org/projects/activexml/.

