
Managing Trust in Active XML

Etienne Canaud, Salima Benbernou, Mohand-Saı̈d Hacid
LIRIS - Lyon Research Center for Images and Intelligent Information Systems

Lyon 1 University
Villeurbanne, FRANCE

{etienne.canaud, salima.benbernou, mohand-said.hacid}@liris.cnrs.fr

Abstract

Active XML [19, 3] combines XML Data and service
calls to allow a simple and powerful Web services imple-
mentation. Security in Active XML is currently handled by
matching the structure of the received data with an XML
Schema representing the allowed data (including service
calls). This solution is not fully satisfactory in case of an
open environment where the services do not often know or
trust each other. Moreover, the strength of Active XML lies
in its simple and dynamic structure, and the modified XML
Schemas used for security matching can quickly limit the al-
lowed services, or give too much freedom to services that
should not be trusted. Given that the result of an Active
XML service call is some Active XML data (that may in-
clude more service calls), Active XML data is recursive,
thus involving more security concerns.
We propose a new framework based on the notion of Trust
(Trusted Active XML) for handling security in Active XML.
In this framework, “trusted” services’answers are not re-
stricted to a specific data schema, while “untrusted” ones
are prevented from performing some unwanted operations.

1. Introduction

The fast development of Web services during the last few
years gave birth to numerous industrial standards amongst
which some are now widely used, like WSDL [25] (ser-
vices description), UDDI [21] (services repository and dis-
covery), and BPEL4WS [10] (services workflow composi-
tion). Some other standards dedicated to Web services have
also been proposed or are still under development, such as
DAML-S [9, 20] (semantic services description) or XL [12]
(services implementation and composition).
Active XML [19, 2] (AXML for short) proposes a simple
framework for Web services execution: service calls are em-
bedded into XML Data, thus making the execution dynamic
and allowing to express intentional data [15] that can be

turned into extensional data if needed. Figure 1 gives an ex-
ample of AXML data, where the syntax is lighten for the
sake of readability. Services calls have been simplified and
are embedded using<sc></sc> tags.

One of the major issues in Active XML is to choose
when to execute or not the service calls: when is it more
appropriate to make the intentional data extensional ? This
topic is discussed in [19, 1], and raises some interesting se-
curity concerns: an Active XML service will usually return
some Active XML data, so the answer can contain some
other service calls. Instantiation of intentional data is then
a recursive process. Malicious services could be embedded
into answers and might induce unwanted actions or return
malevolent data if these services are called. An example of
such a problem is depicted in figure 2, where a unreliable
weather service will return a malicious answer that could
lead to endanger persons or goods if used in a critical con-
text.

Active XML security is based on typing [15]. One can
check whether the structure of the data sent by a service
matches some specific predicates, and then avoid to use
the returned data or call the embedded services. Interest-
ing investigations on the matching issue are still conducted,
mainly when adding the service calls in the data structure.
However, the main drawback with the proposed approaches
resides in the way a service can decide to accept or ignore
calls to other services.
For example, when ordering some books online, Bob might
be reluctant to order on a Web site he doesn’t trust. If Alice
(a good friend of Bob) tells him that he can trust the “Buy-
Books.com” Web site, he may be willing to use it and make
use of his credit card number for the payment. Assume now
that Bob is used to buy books on Amazon.com and trusts
this Web site. If the book Bob wants to buy is not avail-
able on Amazon.com but the Web site proposes to Bob to
buy the book on “BuyBooks.com”, (while most of the oper-
ations will be conducted on the Amazon Web site), there is
a chance that Bob will accept this deal. Bob can choose to
trust or not a service that is proposed to him by another ser-

Initial Active XML Data about a city population.

<cityPop>
<city>

<sc>CountryInfo.com/GetCapital(
<country>"P.R.China"<country>)
</sc>

</city>
<population>

<sc>CityStats.com/GetPopulation(
<city>

<sc>CountryInfo.com/GetCapital(
<country>"P.R.China"<country>)

</sc>
</city>)

</sc>
</population>

</cityPop>

After the call of GetCapital(), we will get:

<cityPop>
<city>

Beijing
</city>
<population>

<sc>CityStats.com/GetPopulation(
<city>Beijing</city>)

</sc>
</population>

</cityPop>

After the call of GetPopulation(), we get:

<cityPop>
<city>

Beijing
</city>
<population>

14.000.000
</population>

</cityPop>

Figure 1. Block of Active XML and its answer

vice that he may already trust (or not). When using a typing
technique, it may be difficult to express these trust relation-
ships. The reason is that Active XML must be able to oper-
ate in an open environment, where peers do not often know
each other, directly or not (i.e. accessed directly or through
the answer of another middle service). Using only typing
could quickly lead to a situation where each peer would
have either a list of services it will always accept to deal
with (white list), or a list of services that it definitely re-
fuses to deal with (black list).

AXML Data that will return the weather on Miami coast
during the afternoon:

<weather>
<sc>MiamiBoatRenting.com/GetWeather(

<day>
Today

</day>
<timeOfTheDay>

Afternoon
</timeOfTheDay>)

</sc>
</weather>

Despite the fact the the service knows that heavy rain is pre-
dicted for the afternoon, the call of GetWeather() returns:

<weather>
<conditions>

Light wind, Cloudy,
Maybe few raindrops

</conditions>
</weather>

Figure 2. Example of a malicious Active XML
service

The book buying example is relatively simple, but one can
think of a more complex scenario where a travel agency
would propose a flight with a night in a hotel instead of
the night train ticket asked by the client: the structure of the
proposed answer may differ considerably from the solution
accepted by the typing method, and the answer could be re-
jected even if the proposed offer is better for the peer invok-
ing the service. Moreover, the very interesting fact that ser-
vices can include other services in their answers (with no
depth limit) can be difficult to represent exhaustively using
the modified XML Schemas proposed in [15]. The typing
and its implementation described in that work emphasize
on the function names, but do not display the importance of
the Web sites they originate from (represented by their end
point URL). This means that a function (“GetNow() ” for
example) will be evaluated in the same way if it is issued by
a trusted provider (Amazon.com) or an untrusted one (Buy-
Books.com).
Our proposition is to handle service providers names and
use them to establish a trust relationship between services
that will give more freedom to trusted services, and then al-
low them to give answers that can differ from the authorized
templates. Both the user and the service provider will take
advantage of this approach, and the untrusted providers will
still be limited in the answers they can provide if they don’t
benefit from the trust of another “trusted” provider.

The rest of the paper is organized as follows: Section 2 gives
an overview of proposed approaches for managing security
and trust in Web Services. Section 3 presents our approach
for improving the flexibility of the security management in
Active XML. Section 4 discusses our approach. We con-
clude in Section 5.

2. Related Works

2.1. Web Services Security

The Industry view on Web services security [18, 23] is
mostly focused on concerns such as data integrity and confi-
dentiality, authentication, and non repudiation of messages.
These issues are considered by adapting general informa-
tion security technologies (such as cryptography or digi-
tal signature) to XML data. The advantage is that these
technologies have been extensively tested and improved for
many years and that they are still a topic of concern in the
research community. Some of the most significant specifi-
cations in XML services security are [16]:

• XML Encryption(XML Enc): it describes how to en-
code an XML document or some parts of it, so that its
confidentiality can be preserved. The document’s en-
coding procedure is usually included in the file, so that
a peer possessing the required secrets can find the way
to decrypt it.

• XML Digital Signature(XML DSig): it describes how
to attach a digital signature to some XML Data. This
will ensure data integrity and non repudiation.

• Web Services Security(WSS): this standard is based on
SOAP, XML Enc and XML DSig and describes a pro-
cedure to exchange XML data between Web services
in a secure way.

• Security Assertion Markup Language(SAML): it
specifies how to exchange (using XML) authenti-
cation and authorization information about users or
entities. Two services can use SAML to share authen-
tication data in order not to ask a client to log again
when it changes from one service to another (Sin-
gle Sign On procedure).

Considering that Active XML is a language that is certi-
fied pure XML, all these recommendations can be used to
ensure its security during the transfer and the storage of in-
formation.

2.2. Typing and Pattern Matching

The problem we are concerned with in this paper occurs
during evaluation of AXML service calls. We need to con-
trol the service calls in order to avoid those that could ex-
ecute malicious actions (for example, to buy a house or to

sell a car on eBay at a tiny price).
As explained previously, Active XML relies on a typing and
function pattern matching algorithm that will compare the
structure of the answer returned by the service with a ”al-
lowed structure” provided by the client. If the structures can
match (using rewriting), then returned calls can be invoked.
Details on the algorithm are given in [15]. This algorithm is
k-depth limited, and its decidability remains an open prob-
lem when ignoring the k-depth limit.
CDuce [5] is an example of language with powerful pattern
matching features. It can easily compare structures and cor-
responding data, and its strong capability to handle types
(and subtyping) allows to define structures precisely. But
CDuce is mostly oriented towards XML transformation,
whereas AXML is definitely more simple and adapted for
Web services.

2.3. Trust in Web Services

There are many approaches to consider the notion of
“trust” in services. The most adopted vision of trust in ser-
vices is based upon progressive requests and disclosures of
credentials between the peers (according to a policy), that
will gradually establish the trust relationship [4, 22]. The
privacy of the peers can be preserved, and credentials do
not have to be shown without a need for them, thus prevent-
ing the user from displaying some information that (s)he
could want to keep away from a non authorized peer [13].
This rather technical representation of trust can be used in
our work, but there are some other ways to consider it. For
example, in [11], the analysis of trust is based upon the ba-
sic beliefs that will lead to the decision of granting trust or
not. This approach is much more sociological and context
dependent from the previous one, but it relies on the way
a human being behaves when trusting or not another per-
son. The conditions required to make the final decision of
trust granting are divided into two major parts:

• internal attribution, representing the conditions that
depend on the trusting agent’s personality and skills,

• external attribution, that represents conditions that are
completely independent from the agent (opportunity,
interferences, ...).

Depending on these factors, a value representing the
“trustfulness” is computed using a fuzzy algorithm. This
value will allow the agent to take the decision and then to
trust or not to trust the peer .
A way of establishing trust between peers with no prior re-
lation between them is presented in [8, 7]. It relies on an or-
dering of trust relationship between the peers and a local
trust server, and peers can exchange messages by following
a path of trust servers where each server sending the mes-
sage has to trust the server that will receive and relay it un-

til it reaches its destination. The notion of trust they use is
not a quantitative one, even if in [7] trust is represented by
a rational number between 0 and 1. The only goal of such
a representation is to define an ordering between trust val-
ues, and such trust levels cannot be added or divided.

3. Handling Trust in Active XML

3.1. Trust Representation

We will first define the way we consider the no-
tion of trust in Web services. Our definition of trust is thus
based on the one given in [24]:
Trust is the characteristic that one entity is willing to
rely upon a second entity to execute a set of actions
and/or to make a set of assertions about a set of sub-
jects and/or scopes.
However, we will enrich that definition by consider-
ing that a relation of trust happens in a specific context, and
that trust is not only a binary characteristic but can have dif-
ferent levels of strength. The possibly subjective nature
of this representation is extensively discussed in sec-
tions 4 and 5 .

The proposed trust representation is based on the “trust
level” of a service. It represents the amount of trust that
one can have in an entity providing this service. A first ap-
proach we choose for expressing the trust consists in assign-
ing a single float numerical valueτ such asτ ∈ [0, 1]. The
value 0 (default value) means that one does not trust the ser-
vice provider at all, while the value 1 means that one has a
complete trust in the service provider.
The way the trust level is computed is out of the scope of
this paper. The reason is that it is highly context-dependent.
For example, a large company can design a process that
will assign a trust level according to a credential disclo-
sure policy with the service provider (the more credentials
disclosed, the higher trust level will be), and a simple citi-
zen could assign trust levels to his favorite online commerce
Web sites according to his personal feeling. Anyone can de-
sign a way to initialize this trust level that will fit his vision
of trust and his needs [14].

3.2. Services Evaluation

An example of service evaluation tree is given in fig-
ure 3. The lines represent service calls, while the nodes
(4x, with x ≥ 0) stand for a service provider. A node
thus defines theentity that the client chooses to trust.
So, even if it is the service that calls the other ser-
vices, the trust is granted to theentity providing the ser-
vice.

In [15], only the name of the function used to call
the service is handled. However, in this work we em-
phasize on the provider, because trust is usually oriented
towards the entity providing the service rather than to-
wards the service itself. In the following, the term“entity”
will refer to a provider. We made a first simplifying assump-
tion which consists in giving trust to service providers only,
but our future work will handle service specific trust set-
tings.

Let’s consider the case where a client invokes a first ser-
vice 40 (namedentry servicein the following). Theen-
try service40 will send back an answer that can contain
calls to other services4i, with i ≥ 0. All these services4i

can themselves include calls to some4i in their answers,
and so on. Even if a function can recursively call itself, we
will consider the evaluation of thisentry serviceas a tree,
and not as a graph, as depicted in figure 3. The main reason
for this choice is that we consider the service calls as be-
ing independent from each other, and then a service can be
called many times in the same tree and be granted a differ-
ent amount of trust every time.

Figure 3. Service Calls Tree for Service Eval-
uation

Typing pattern matching (also calledrewriting) will con-
sist in invoking services needed to let the answer match
the given schema of accepted structures. As pointed out
by the authors of [15], an acknowledgement of the user is
needed during rewriting before calling a service if it might
have side effects or some cost. But there is a security con-
cern, where malicious services could be called without
asking the user, in case the service provider has been com-
promised or the side effects of the service call are not fully
known.

Our approach is to invoke all thetrustedservices except
those that have already been chosen not to be invoked by

the user (more details on the “to call or not to call” issue can
be found in [19]). Our algorithm depends on some settings
that the user will have to choose, depending on the context:

• Trust Threshold(Θ): This is the lower limit of trust
level τ that the service must have in order to be con-
sidered “secured”. All the service calls issued by a ser-
vice4i with τi ≥ Θ will be considered to be secure
and can therefore be invoked without further security
check. We state thatΘ ∈ [0, 1].

• Trust Transmission Function(Ψ(τi)): This function
describes how a service4j will benefit from the trust
given by the user to the service4i. 4i is the parent
service of4j . This means that a call to4j will be in-
serted in the answer to4i. This functionΨ() takes
τi as input and producesτj as output. We state that
τi ≥ τj . The exact specification of this function is to
be done by the user. Additional information about the
theory of trust update functions can be found in [14].

TheseTrust Thresholdand Trust Transmission Func-
tion have to be defined according to thecontextC. A con-
text is defined as a particular set of facts or circumstances
that surround a service call. For example, calling a ser-
vice returning the weather will not require the same trust
settings in the context of a city tourism trip or in the con-
text of a mountain climbing expedition. The user must
then set theTrust ThresholdandTrust Transmission Func-
tion for all the critical contexts (where money is in-
volved for example), but can rely on default values for
service calls where there is no particular context. A sys-
tem must have a default context trust settings, but can have
as many specific context trust settings as needed (possi-
bly none).
As a first approach, we chose to keep the same context dur-
ing all the service calls corresponding to a same entry ser-
vice call.

The algorithm for the evaluation of services is given
figure 4. For the sake of optimization, we will consider a
depth-first approach for traversing the tree.

3.3. Example

Figure 5 gives an example. It represents a scenario where
Bob wants to get some information on a book. To get
the information, he makes use of a service located on
bookInfo.com . His system is set up with the following
parameters, which correspond to the default context:

• Trust Threshold(Θ): 0.5

• Trust Transmission Functionτj = Ψ(τi) = 2/3× τi

• Trust levelτ for web sitebookInfo.com : 0.9

• Trust levelτ for web siteamazon.com : 1

Nota: the rewriting method we refer to in this algo-
rithm is the one described in [15]. Whether to use the
rewriting method, negotiate trust or stop the evaluation pro-
cess depends on the user preferences.4k refers to ser-
vices called by4j . The values ofΨ() and θ are the
ones defined for the contextcl ∈ C of the entry ser-
vice call.

For a service 4j in a context cl

IF ∃τj

THEN IF τj ≥ θ
THEN needed service calls

4k are evaluated
ELSE use rewriting method

or stop here
or negotiate trust

ENDIF
ELSE IF 4j is not the entry service

THEN IF Ψ(τi) ≥ θ
(4i being the service calling4j)
THEN needed service calls

4k are evaluated
ELSE use rewriting method

or stop here
or negotiate trust

ELSE use rewriting method
or stop here
or negotiate trust

Figure 4. Services Evaluation Algorithm

• Trust leveldepends on providers (web sites), not on
services.

• Ignore services whosetrust level is smaller than the
trust thresholdΘ.

Since thetrust level τ of bookInfo.com (0.9) is
greater than thetrust thresholdΘ (0.5), the service calls in-
cluded in its answer will be considered. These calls are in-
serted among some XML data related to the book informa-
tion.
The first of the two calls included in the answer will re-
turn the price of the book if available onAmazon.com . As
Amazon.com has a trust level of 1, this service will be in-
voked and the answer will be retrieved.
The second call from the first answer consists in getting
some offers for buying the book through an auction system
(provided by the Web siteauctions.com). Since this
Web site is not yet registered in our “trusted entities” list, we
will first compute its trust level for this session. The entity
(bookInfo.com) that returned a call to this provider has
a trust level of 0.9, so the trust level forauctions.com
will be 0.6 (2/3 × 0.9). As it is still higher than thetrust

Figure 5. Example of Trust handling in AXML
Service calls

thresholdΘ (0.5), the service will be invoked and the ser-
vice calls it will include in its answer will be considered.
There are 3 service calls in this answer:

• The first one will simply list the available auctions for
the book. As it is still located onauctions.com ,
the computed trust level for this session will be kept
and the service will be invoked.

• The second one lists the user’s reviews from
Amazon.com . The trust level is 1, and then the ser-
vice is called and the list of reviews is returned.

• The last service will try to insert the price of the
book frombuyBooks.com . Since it is not a “trusted
entity”, we will compute its trust level . The entity
(auctions.com) that returned the call made to this
provider has a trust level of 0.6, so the trust level for
buyBooks.com will be 0.4 (2/3 × 0.6). As it is not
enough to reach thetrust thresholdof 0.5, this service
call will be ignored.

4. Discussion

The proposed trust-based solution can handle ser-
vices with a high number of recursive calls, independently

of the depth of the service evaluation tree (as long as the ser-
vices’ trust levels are defined). If no trust level can be com-
puted, we can use the existing matching algorithm. The
trust solution can therefore be considered as a way to opti-
mize the existing algorithm, break the k-depth barrier, and
ignore the freedom limit in the structure of returned an-
swers from trusted services.
Moreover, as we check the trust level of the nodes in the
evaluation tree only once, the complexity of the algorithm
given in figure 4 is polynomial. In this approach, we ne-
glected the search time of entities in the database of trusted
entities.
This trust-based solution is highly flexible and can be
adapted to fit various needs. An industry could for ex-
ample handle all trust level settings by using creden-
tial exchange policies, including trust negotiation pro-
cesses that happen during services evaluation.

On the other hand, this rather subjective definition of
trust could make it difficult to define precisely the trust
level on an entity or the method to compute or nego-
tiate it. This is highly context-dependent, and there-
fore known to be not easily automatized. Since avoiding
heavy human management is one of the most impor-
tant goals of Web services, it could not be the best solution
for quickly changing environments where a fine tun-
ing of parameters is always required.
Another drawback of this solution is that it still relies on
the rewriting method when we have to perform the ser-
vice call and that no trust can be computed or negotiated
(or that the trust level is not high enough to trust the en-
tity).
We can also consider an attack consisting in returning an
answer containing an infinite recursive call, thus bring-
ing our trust evaluation in a loop. This flaw is avoided in
the matching method by setting up a depth limit, but set-
ting one in our trust algorithm would not be a wise ap-
proach to solving the problem. Thus, we plan in a future
work to improve our trust evaluation algorithm to de-
tect such a malicious scheme.

In case of a malicious service call returned by a trusted
Web service, one could blacklist the incriminated entity, but
it can be too late. One could then only grant trust to enti-
ties providing a credential that prove they will carry the re-
sponsibility of all the actions achieved by the services they
include in their answers. Such a behavior is not idealis-
tic and can be currently observed through better business
practices organizations such as BBB (Better Business Bu-
reau) [6].
Concerning spoofing techniques, (when a malicious entity
would steal the identity of a trusted one), we rely on authen-
tication standards such as XML Digital Signature. These

XML standards can be easily integrated in our architec-
ture since Active XML is written in XML and it is therefore
compliant with all XML security standards. An integra-
tion of WS Security standards [17] into Active XML is cur-
rently under development by the AXML Team.

Active XML is handling separately the name of the
called function (what we refer to asservice and the
URL where this function is found [15]). Simple pars-
ing on the URL can provide us with theprovider,
in case we assimilate the provider to the domain of
the URL. For example, in case of the service call
“http://www.myWebSite.com/services/Weather”, the
URL is “http://www.myWebSite.com/services”, the do-
main (provider) is “myWebSite.com” and the service name
is “Weather”. One has to note that the URL of the ser-
vice is actually any kind of URI.
Trusted Services (and their corresponding trust level) will
be stored on the user system. A removal of not used ref-
erences is needed in order not to slow down the system.
One also need a way to decide when to include a poten-
tially trusted service in the list of valid trusted services. A
blacklist of services not to deal with is also required for op-
timization purpose and to improve ease-of-use of the sys-
tem. For the sake of space limitation, all these features
were omitted. They will be investigated in another pa-
per.

5. Conclusions and Future Work

The trust-based approach of Active XML security will
provide a greater flexibility in services’ answers, while en-
suring security purposes. Its parameters can be easily set to
fit the users’ needs, but the design of trust settings (trust ne-
gotiations and trust transmission functions) could be time
consuming and context dependent. It would be however
faster to design and more reusable than schemas used for
answers rewriting: it is quite difficult to represent all the
“authorized answers” structure since it is also a highly con-
text dependent information.
In the approach developed in this paper, trust is represented
in a quantitative way ; this approach has some drawbacks
such as the subjectivity of the trust level, and we will now
focus on designing a framework that handles trust qualita-
tively, based on credentials exchange.
We also plan to improve the services trust evaluation algo-
rithm and give details on its complexity when taking the
trusted sites checking into account.

6. Acknowledgements

The authors would like to thank the reviewers for their
useful comments, as well as the members of the Shanghai

JiaoTong University Cryptography and Security Lab, and
particularly Pr. Zeng GuiHua.

References

[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy Query Evaluation for Active
XML. In ACM SIGMOD / PODS 2004 Conference (SIG-
MOD 2004), Paris, FRANCE, June 2004.

[2] S. Abiteboul, O. Benjelloun, and T. Milo. Active xml
and active query answers. In6th International Conference
On Flexible Query Answering Systems (FQAS 2004), Lyon,
FRANCE, June 2004.

[3] Active XML Home Page (AXML). http://www-
rocq.inria.fr/gemo/gemo/projects/axml/.

[4] T. Barlow, A. Hess, and K. E. Seamons. Trust negotiation in
electronic markets. InProceedings of the Eighth Research
Symposium on Emerging Electronic Markets (RSEEM 01),
2001.

[5] V. Benzaken, G. Castagna, and A. Frisch. Cduce: An xml-
centric general-purpose language. InProceedings of the
ACM International Conference on Functional Programming,
Uppsala, SWEDEN, 2003.

[6] Better Business Bureau (BBB). http://www.bbb.org/.
[7] M. Clifford. Networking in the solar trust model: Deter-

mining optimal trust paths in a decentralized trust network.
In 18th Annual Computer Security Applications Conference,
page 271, December 2002.

[8] M. Clifford, C. Lavine, and M. Bishop. The solar trust
model: Authentication without limitation. In14th Annual
Computer Security Applications Conference, page 300, De-
cember 1998.

[9] DAML-S Home Page. http://www.daml.org/services/.
[10] S. S. et al. Web services : Been there, done that.IEEE Intel-

ligent systems, 18(1):72–85, 2003.
[11] R. Falcone, G. Pezzulo, and C. Castelfranchi. A fuzzy ap-

proach to a belief-based trust computation.Lecture Notes
on Artificial Intelligence, special issue on “Trust, Reputation
and Security: Theories and Practice”, pages 73–86, 2003.

[12] D. Florescu, A. Gr̈unhagen, and D. Kossmann. Xl: A plat-
form for web services. InConference on Innovative Data
Systems Research (CIDR), Asilomar, CA, USA, January
2003.

[13] J. Holt, R. Bradshaw, K. E. Seamons, , and H. Orman. Hid-
den credentials. In2nd ACM Workshop on Privacy in the
Electronic Society (WPES’03), Washington DC, USA, Octo-
ber 2003.

[14] C. Jonker and J. Treur. Formal analysis of models for the dy-
namics of trust based on experiences. InAutonomous Agents
’99 Workshop on “Deception, Fraud and Trust in Agent So-
cieties, pages 81–94, Seattle, USA, May 1999.

[15] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and F. Dang
Ngoc. Exchanging intensional xml data. InIn Proc. of ACM
SIGMOD 2003, San Diego, CA, USA, June 2003.

[16] M. Naedele. Standards for xml and web services security.
IEEE Computer, pages 96–98, April 2003.

[17] OASIS Web Services Security TC. http://www.oasis-
open.org/committees/tchome.php?wgabbrev=wss.

[18] Organization for the Advancement of Structured Information
Standards (OASIS). http://www.oasis-open.org/.

[19] The Active XML Team. Active XML primer. Technical re-
port, INRIA, France, 2003.

[20] The DAML Services Coalition. DAML-S: Web Service
Description for the Semantic Web. InThe First Interna-
tional Semantic Web Conference (ISWC), pages 348–363,
June 2002.

[21] UDDI. The UDDI Technical White Paper.
http://www.uddi.org/.

[22] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu. Negotiating trust on the web.
IEEE Internet Computing, November/December.

[23] World Wide Web Consortium (W3C). http://www.w3.org/.
[24] WS-Trust working group. Web Services Trust Language

Specification (WS-Trust) 1.1.
[25] WSDL Home Page. http://www.w3.org/tr/wsdl/.

