
Application of Model Checking to AXML

System’s Security: A Case Study
∗

Il-Gon Kim and Debmalya Biswas

IRISA/INRIA, Campus de Beaulieu, 35042 Rennes cedex, France
{ikim, dbiswas}@irisa.fr

Abstract. An Active XML (AXML in short) has been developed to
provide efficient data management and integration by allowing Web ser-
vices calls to be embedded in XML document. AXML documents have
new security issues due to the possibility of malicious documents and
attackers. To solve this security problem, document-level security with
embedded service calls has been proposed to overcome the limitation of
traditional security protocols.

The aim of this paper is to show how existing model checking tech-
nique, with CSP and FDR, used for traditional message-based security
protocols, can be adapted to specify and verify AXML document-based
security. To illustrate our approach, we present the framework for mod-
elling and analyzing AXML document’s security. Then, we demonstrate
how this technique can be applied to analyze electronic patient record
taken from [13]. Finally, we show the possible vulnerabilities due to del-
egated query and malicious service call.

1 Introduction

In the context of Web services and XML, data integration and management have
been an important issue, due to the heterogeneity and autonomy of data sources.
Active XML (AXML in short) has been developed to provide efficient data man-
agement and integration by allowing Web services calls to be embedded in XML
document[1][3]. For example, the possibility of intensional data(embedded ser-
vice calls) in AXML document leads to powerful data management by allowing
dynamic collaboration with distributed systems and discovering new relevant
data sources at run-time.

However, AXML has also brought the following security issues: 1) it is nec-
essary to protect peers from malicious AXML documents, and 2) it is required
to protect AXML documents from malicious peers. To solve the above security
problems, document-level security with embedded service calls as well as XML
Encryption and XML Signature has been studied[6][13].

Over the last decade, great attention has been paid to the question of de-
veloping formal methods for analyzing security protocols over the last decade.
While some methods have been successfully applied to verify security properties
∗

This work is supported by the INRIA projects ARC-ASAX and RNRT-SWAN.

M. Bravetti, M. Nuňes, and G. Zavattaro (Eds.): WS-FM 2006, LNCS 4184, pp. 242–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Application of Model Checking to AXML System’s Security 243

of traditional message-based security protocols, they have not yet been applied
to analyze security problems specific to AXML document-based systems. For
example, AXML documents support query delegation by invoking embedded
service calls, which are not considered in SOAP message security. In addition, it
is worth noting that the formal specification and verification issues related with
AXML documents include new types of security aspects not considered in tradi-
tional message-based protocols. For example, an AXML document is basically an
XML document and service calls. As such, it is necessary to develop an abstract
model by analyzing XML tagging and embedded service calls. AXML document
invokes embedded security-related service calls in order to obtain a key and gen-
erate encrypted or signed document. This means that an abstract model could
be extracted from two viewpoints: 1) before invoking a security service call, and
2) after invoking a security service call. Besides, it also needs to reflect the fact
that there would be more security threats in addition to traditional one such
as overhearing and modifying transmitted messages. For example, an intruder
could embed enormous amount of false data or additional service calls in the re-
turned AXML document to the intended recipient after intercepting the original
document.

In this paper, we show how existing model checking technique, generally used
for analyzing message-based protocols, can be adapted to verify new vulnerabil-
ities of AXML systems. To do this, we have chosen formal analysis techniques
based on Casper/CSP and FDR because it has already been proven to be very
successful for verifying traditional protocols[20] as well as SOAP message-based
protocols[14][16].

The remainder of this paper is organized as follows. Section 2 gives a brief
overview of AXML and its security services. In Section 3, we show how to specify
and analyze AXML documents by invoking security service calls. In Section 4,
we describe how AXML documents encrypted or signed with XML Encryption
and XML Signature could be translated systematically to an abstract security
notation. In Section 5, we demonstrate the case study of analyzing electronic
patient record. Section 6 describes some related works. Finally, we conclude in
Section 7.

2 Overview of AXML Document and Security Service
Calls

AXML documents are basically XML documents where some parts of data are
explicitly denoted and other parts are given intensionally, by embedded service
calls within the documents. The <sc></sc> tags in an AXML document rep-
resents a service call and its children subtrees denote the parameters of the Web
service calls. After invoking an embedded service call on the document, a cor-
responding Web service is executed. Then the results of invoking the embedded
service calls are appended at the location of the service call in the document.
We use the terminology materialization, which means that the associated Web
service is invoked, and its result is returned to the location of the service call.

244 I.-G. Kim and D. Biswas

Thus, an AXML system consists of a set of AXML documents plus the services
in those documents.

The corresponding security services consist of a tuple (p, s), where p ∈ P is
the identity of a peer providing the service, and s ∈ S is the name for a security
service such as encryption. The algebraic expressions for an AXML document(in
short, a document), tree, function node, Web service, and service evaluation on
peers are simply expressed as below[2] :

– d@p : a document d at peer p
– q@p : a query q at peer p
– s@p : a service s provided by peer p
– f(para1,...,paran)@p : a function node f to invoke a corresponding security

service s defined on peer p, with parameters, para1,...,paran

– Result(Z) : evaluation result Z of service s (defined on p) on peer p

In the rest of this paper, the above algebraic expressions will be used to describe
the document exchange between peers and the document d represents all or
some forest of AXML documents. For more details about AXML syntax and
semantics, see [3].

3 Modelling and Analyzing AXML Document Embedded
with Security Service Call

3.1 Framework for Modelling and Analysis

In Fig. 1(a), the framework for modelling and analyzing security services in
AXML system is illustrated. In this framework, Casper[18] (Compiler for the
Analysis of Security Protocols) is a compiler that converts a high level descrip-
tion of a protocol into CSP (Communicating Sequential Processes) code that
can be run in a model checker FDR (Failure-Divergence Refinement). CSP[9] is
a process algebra language to describe systems as a number of processes which
operate independently and communicate with each other over well-defined chan-
nels. FDR[11] is a model checking tool for state machines, with foundations in
the theory of concurrency based on CSP.

Given an AXML system, its model can be considered from two viewpoints: 1)
an AXML document before invoking a service call, and 2) an AXML document
after invoking a service call. We denote the former as ‘d1’ and the latter as
‘d2’. These two models(‘d1’ and ‘d2’) are transformed into a high-level security
notation according to derivation rules of the δ mapping function.

First, the common security notation of Casper input is created(δ(d1) = δ(d2)),
after applying the δ functions to d1 and d2. Next, CSP code is generated au-
tomatically using Casper’s compilation function. Then, the FDR model checker
shows the possible attacker scenarios if the CSP code doesn’t hold any given
security property. Thus, the verification results will be helpful for a designer to
modify an AXML system to be robust against security vulnerabilities.

Application of Model Checking to AXML System’s Security 245

Fig. 1. Model-based verification of security services in an AXML system

Fig. 1(b) shows the process of encryption and decryption in AXML docu-
ments. P1 is an AXML peer and it invokes a local service call, encrypt(denoted
by a square), and d1 refers to a subtree including a service call node and data to
be encrypted. d2 is the materialized result after evaluating the encrypt service
call and it is encoded based on XML Signature and XML Encryption stan-
dards. For example, P1 could obtain the shared key by using the function node
getSharedKey, then it could invoke the encrypt service call, encrypt(Data, En-
cryptedData), to encrypt the data with the shared key. Then encrypted AXML
document is encoded according to the standard format defined in XML Encryp-
tion(see Fig. 1(c)). Similarly, if the function node related with signature(e.g.,

246 I.-G. Kim and D. Biswas

sign(Data, getPrivateKey())) is called, the AXML document would be signed
according to the standard format defined in XML Signature.

The main advantages of using the proposed framework for analyzing secu-
rity and constructing the δ mapping function to generate Casper input can be
summarized as follows:

– Using the δ mapping functions enables us to generate Casper input system-
atically.

– If an attack is found on δ(d1) and δ(d2), then the corresponding attack exists
on a real AXML system as well.

– If an attack is found on a real AXML system, then the corresponding attack
exists on δ(d1) and δ(d2) as well.

– If an attack is found on an AXML document before invoking a service call,
then the corresponding attack still exists in the AXML document after ma-
terialization of the service call.

3.2 Extending CSP Model for AXML Documents

Document Datatype. Analogous to the Message type defined in [17],
AXML document datatype could be based on the Atom set where security
function nodes are such as getSharedKey()@p ⊆ Atom, getPublicKey()@p ⊆
Atom, getPrivateKey()@p ⊆ Atom, Hash(data)@d ⊆ Atom, encrypt(data, get-
SharedKey()@p)@p ⊆ Atom, encrypt(data, getPublicKey()@p)@p ⊆ Atom, and
sign(data, getPrivateKey()@p)@p ⊆ Atom. Simple definition of the Document
datatype by the BNF(Backus-Naur Form) expression could be similar to the
Message type as shown below:

Definition 1. A document d or data value v ∈ Document might be an atom
(Atom), concatenated data(v.v), data encrypted with a key({v}K), or a digested
message with hash function h.

a ∈ Atom ::= P | N | K
f(para1,...,paran)@p ::= a
d ∈ Document ::= v | d.d | {d}K | h(d)
v ∈ Data ::= a | v.v | {v}K | h(v)

where P ranges over the set Agent of agent names, K over the set Key of
keys(e.g., PK(p) : public key of agent p, SK(p) : private key of agent p), and N
over the nonce(random number) set. The concatenation notation ‘.’ is associa-
tive.

AXML document security allows selective encryption which means that it is
possible to encrypt all or a specific part of an AXML document(denoted by
{d}K and {v}K , respectively). Here, the expression f(para1,...,paran)@p could
be considered as all or some parts of an AXML document before or after invoking
a service call(see d1 or d2 in Fig. 1).

Application of Model Checking to AXML System’s Security 247

Intruder Model. In the classical CSP model for an attacker, it is generally
assumed that an intruder has the following abilities to attack honest agents:

– overhear or intercept all messages flowing through the network
– construct and deliver spurious messages disguised as a trusted peer
– forward intercepted messages to another peer
– decrypt messages that are encrypted with his own public key

In addition to the above attack abilities, we assume that an intruder pI could
have the following new abilities : 1) manipulate the XML-based elements and 2)
return falsified document d’ containing other malicious service calls and fabri-
cated data.

Because of the addition of two attack abilities in the CSP model, we also
need to modify the traditional CSP model, based on the five basic deduction
rules[17], that allow an intruder to construct new data or document. In the
classical inference model, B � m represents that the intruder may derive message
m from the set of messages B. For example, if the intruder can produce an
encrypted message and the corresponding decrypting key, then he could decrypt
the message. This sample decryption rule instance for an intruder can be adapted
as follows:

decryption rule : B � {d}k ∧ B � k =⇒B � d
AXML system’s decryption :
B � <EncryptedData>

<EncryptionMethod. . ./ >
<KeyInfo><KeyName> shared key k < /KeyName>< /KeyInfo>
<CipherData><CipherValue>A12D23E< /CipherValue>< /CipherData>

< /EncryptedData>
∧ B � <KeyInfo><KeyName> shared key k < /KeyName>< /KeyInfo>
=⇒ B � <document>. . . < /document>

The intruder CSP process in an AXML system consists of three main channels:
1)send to intercept every document or data sent by the honest peers, 2) receive
to forward intercepted document or data disguised as an honest peer, and 3)
leak to decrypt secret information and create falsified document d’.

Intruder(B) =̂ �
d∈Document

send?P1?P2!d → Intruder(close(B ∪ {d}))
�

�
d∈Document,B�d

receive?P1?P2!d → Intruder(B)
�

�
d∈Document,B�d

leak.d → Intruder(B)

The initial state of the intruder is Intruder(IK) containing initial knowledge
IK which is a member of facts(such as all peer’s identity, all kinds of keys that
peers’ possess). The function close(B) calculates all facts(simply B) that are
deducible or buildable from B under the deduction rules.

The complete AXML system is constructed similarly with a classical CSP
model. For more detail information about CSP model for a traditional security
protocol, see [20].

SYSTEMAXML =̂ (P1 ||| P2 ||| . . . ||| Pn) ‖ INTRUDERP I

248 I.-G. Kim and D. Biswas

Fault-Preserving Simplifying Transformation. Hui et al.[10] have proved
that if one can verify the transformed protocol, then it will have the same effect as
the verification of the original protocol. Based on this fault-preserving technique,
E. Kleiner et al. have [15] proved that even if automatic translation function is
used to generate Casper input from WS-Security SOAP messages, it preserves
the same inference process of intruder and the corresponding attacks in the real
WS-Security application. We can apply this proof to the AXML system model.
Thus, the abstract CSP model(SYSTEMAXML) for AXML systems satisfies the
following two conditions for fault-preserving as shown in [10],[15]:

1. ∀B∈P(Document);d∈Document•B∪IK � d ⇒δ(B)∪IKAXML � δ(d)
2. δ(IK) ⊆ IKAXML

The first condition means that if an intruder can deduce the document or data
in the original SYSTEM, he would be able to deduce the equivalent one d in the
transformed SYSTEMAXML. The second condition represents that all the corre-
sponding facts of an intruder’s initial knowledge IK in the original SYSTEM is
a subset of the transformed SYSTEMAXML.

Therefore, we can say that if an attack is found on the abstract SYSTEMAXML,
then the corresponding attack can also be found on the original SYSTEM and
vice versa.

4 Case Study: Electronic Patient Record

Step 1: Dr. Kim(p1) sends query q1 to Paris hospital(p2) by invoking the
service call “diagnosis@p2” in order to look into the patient record of the
patient Suzzanne before diagnosing her.

PatientRecord

doctor

name department

medical

date sc1 : diagnosis@p2

"Kim" "Spine" "March 20, 2006"
query

 q1

S2@P2 S3@P3

sc2 : diagnosis@p3

query

 q2

patient_document

dsde
des

change change

1 2 3 4

D1@P1

Fig. 2. Service call steps of AXML document in peer p1

Application of Model Checking to AXML System’s Security 249

Step 2: Paris hospital(p2) performs access control by enforcing the relevant
access control rules(denoted “AC”) and the query “q1” gets rewritten into
“q2” . In this example, we assume that a corresponding access control rule
for Dr. Kim is defined in the access control systems of Paris hospital :

AC: Dr. Kim, /PatientRecord/(name ∪ ssn ∪ visit/(medical doctor ∪ di-
agnosis ∪ xray))

Now, suppose the query q1 and the filtered query q2 are :
q1 : /PatientRecord[name=“Suzzanne”, ssn=“123-45-6789”]
q2 : /PatientRecord[name=“Suzzanne”, ssn=“123-45-6789”]/(name ∪
ssn ∪ visit/(medical doctor ∪ diagnosis ∪ xray))

For details of the access control mechanism proposed for AXML systems,
the reader is referred to [5].

Paris hospital filters the query q1 as q2 and it finds that there is no patient
related after evaluating the query q2. Given this, let us assume that the Paris
hospital(p2) finds out that Rennes hospital(p3) has related a patient record.
Paris hospital also subscribes to regular patient record updates from other
hospitals such as Rennes hospital. Then, it returns a query signed by itself
for delegating Dr. Kim to invoke a service provided by Rennes hospital(query
delegation).
Step 3: Dr. Kim invokes the service call “diagnosis@p3” with the parameter
of “q2” signed by Paris hospital so that the query will be evaluated by Rennes
hospital.
Step 4: Rennes hospital verifies the query q2 using its own public key and
assures itself that Dr. Kim has been delegated to invoke the service call
“diagnosis@p3” and use q2. After evaluating the service call, Rennes hospital
returns the diagnosis record for Suzzanne, encrypted with a shared key k and
signed by Rennes hospital (the shared key k itself is encrypted by the public
key of Dr. Kim). It is extremely important that a patient record should be
protected from any unauthorized modification, whether accidental or not.

4.1 Model Construction from d1

As mentioned in Section 4, we show how to construct an AXML system model
from d1 which is the document before invoking a security service call. First, we
describe a model in AXML algebraic expression(see Section 2), then we write it
in Casper notation(see Section 4.3).

AXML Expression

1. p1 → p2 : q1@p1 [p2 computes : q2]
2. p2 → p1 : encrypt(q2@p2, getPrivateKey()@p2)@p2

3. p1 → p3 : Result(Z)
4a. p3 → p1 : encrypt(d@p3, getSharedKey(random()@p3)@p3)@p3,

encrypt(getSharedKey()@p3, getPublicKey()@p1)@p3

4b. p3 → p1 : encrypt(digest(d@p3)@p3, getPrivateKey()@p3)@p3

250 I.-G. Kim and D. Biswas

The message sequences listed above represent exchanges of queries, data, or
documents. p1, p2, and p3 are Dr. Kim, Paris hospital, and Rennes hospital peers,
respectively. In step 3, Result(Z) represents the result document of evaluating
the service call in step 2. The messages 4a and 4b show the nested service calls to
generate encrypted and signed patient records, where d@p3 is the document of
patient diagnosis d on peer p3. The first encrypt call and the second one are used
to transform the d encrypted with a random shared key and generate the shared
key encrypted with the public key of p1, respectively. The two materialized
results are combined into the XML Encryption encoded document, de . Similarly,
the encrypt service in message 4b is used to generate the XML Signature encoded
document, ds . After finishing all the data exchanges, p1 invokes the decrypt local
service calls related to de and ds .

4.2 Model Construction from d2

We demonstrate how to construct an AXML system model from d2(see Section
3) by showing the translation process from the materialization results of the
patient document δ(des) to Casper input. The de and the ds in des are encoded
in XML based on the XML Encryption and XML Signature standards.

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod

Algorithm="http://www.w3.org/2000/09/xmlenc#3des-cbc"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptedMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:KeyName>
Dr. Kim’s Public Key

</ds:KeyName>
</ds:KeyInfo>
<CipherData>

<CipherValue>A23B45C56 ... </CipherValue>
</CipherData>
<CarriedKeyName>

Symmetric Key with Dr. Kim
</CarriedKeyName>

</EncryptedKey>
<ds:KeyName> Symmetric Key with Dr. Kim </ds:KeyName>

</ds:KeyInfo>
<CipherData>

<CipherValue>ErBGCQHKJOOaqbmiibhGk ... </CipherValue>
</CipherData>

</EncryptedData>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

<SignatureMethod
Algorithm="http://www.w3.org/2000/07/xmldsig#rsa-sha1"/>

<Reference URI="">
<DigestMethod

Algorithm="http://www.w3.org/2000/07/xmldsig#sha1"/>
<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>

</Reference>
<SignedInfo>
<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
<KeyInfo>

<KeyName>Rennes Hospital’s Integrity Key</KeyName>
</KeyInfo>

</Signature>

Application of Model Checking to AXML System’s Security 251

We use ‘⇒’ to represent the message derivation process from δ(de) and δ(ds)
to Casper input. The derivation rule for generating a Casper input is similar to
[14], but our approach is different from it because the former is focused towards
SOAP messages based on WS-Security.

δ(des) = δ(de), δ(ds)

δ(de)
⇒ δ(<EncryptedData>.. .</EncryptedData>)
⇒ δ(<CipherData>. . .</CipherData>)
⇒ δ(<KeyInfo>. . .</KeyInfo>), δ(<EncryptedMethod. . ./>)
⇒ δ(<KeyName>. . .</KeyName>, R), δ(<EncryptedKey>.. .</EncryptedKey>),

δ(<EncryptedMethod Algorithm=”http://www.w3.org.2001/04/xmlenc�3des-cbc”/ >)
⇒ {d}k , δ(<CipherData>. . .</CipherData>)
⇒ {d}k , δ(<KeyInfo>. . .</KeyInfo>), δ(<EncryptedMethod. . ./>)
⇒ {d}k , δ(<KeyName>. . .</KeyName>, R),

δ(<EncryptedMethod Algorithm=”http://www.w3.org.2001/04/xmlenc�rsa-1 5”/ >)
⇒ {d}k , {k}PK(p3)

δ(ds)
⇒ δ(<Signature>. . .</Signature>)
⇒ δ(<SignatureValue>.. .</SignatureValue>)
⇒ {δ(<SignedInfo>.. .</SignedInfo>)}δ(<KeyInfo>.. .</KeyInfo>)
⇒ {δ(<SignatureMethod. . .>. . .</SignatureMethod. . .>),δ(<Reference. . .>. . .</Reference. . .>)}
δ(<KeyInfo>. . .</KeyInfo>)
⇒ {δ(<SignatureMethod Algorithm = ”http://www.w3.org/2000/07/xmldsig�rsa-sha1”/>),
δ(<Reference URI=””>)} δ(<KeyInfo>. . .</KeyInfo>)
⇒ {δ(<DigestMethod>. . .<DigestMethod>)} δ(<KeyName>. . .</KeyName>, Sig)
⇒ {δ(<DigestValue>. . .<DigestValue>))} SK(p3)
⇒ {sha(d)}SK(p3)

∴ des = δ(de), δ(ds) = {d}k , {k}PK(p1), {sha(d)}SK(p3)

4.3 Analysis of Security Services

The design of security protocol using document-level security would be error-
prone when considering security requirements in new emerging applications,
complex communication steps with many peers, and a powerful attacker. In this
subsection, we use Casper notation to model sequences of exchanging queries
or documents depicted in Fig. 2. Then we analyze some security requirements
(confidentiality and authentication) using FDR model checker:

security requirements:
– authentication

• Dr. Kim(p1) must be sure that it received a patient record document
from Rennes hospital(p3).

– confidentiality
• A confidential document of patient record d must not be leaked by

an unauthorized peer.

For a security analysis, we assume that all encryption algorithms are secure
and an intruder cannot perform any cryptanalysis. We also assume that an
intruder pI has the following initial knowledge set:

intruder knowledge:
{p1, p2, p3, PK(P), SK(pI), KI } ∈ Intruder(IK) where KI is an intruder’s
share key, and {p1, p2, p3, pI } ∈ P.

252 I.-G. Kim and D. Biswas

Here, we translate a protocol description into Casper syntax based on se-
quences for exchanging documents in Fig. 2. In addition, we generate Casper
input systematically from AXML documents denoted in XML Encryption and
XML Signature in a similar way to [14].

Sequences for exchanging queries or documents:
1. p1 −→ p2 : q1

2. p2 −→ p1 : {q2}SK (p2)

3. p1 −→ p3 : {q2}SK (p2)

4. p3 −→ p1 : {d}k , {k}PK (p1), {sha(d)}SK (p3)

In casper notation, we use the expression {d}k to represent the data or docu-
ment d encrypted with key k. The public key function is represented as PK and
the private key function is expressed as SK. For example, a pair of public key and
private key of peer ‘p1’ is written in PK(p1) and SK(p1), respectively. The hash
function SHA-1 in XML Signature is denoted as sha in protocol description. For
example, the message 4 means that p3 sends the messages of the patient record
d encrypted with shared key k, encrypted shared key with the public key of p1,
and signed message digest with a hash function.

Secret(p3, d, [p1])
Secret(p1, d, [p3])
Secret(p3, k, [p1])
Secret(p1, k, [p3])
Agreement(p3, p1, [d, k])

We verified the confidentiality and authentication properties, which are de-
fined in the above. The lines beginning with Secret represent the confidentiality
property. For example, the statement ‘Secret(p3, d, [p1])’ is interpreted as “p3

believes that the confidential information d is a secret that should be known
only to p1”.

The line starting with Agreement defines the authentication property. The au-
thentication property represents the establishment guarantees when it has com-
pleted, concerning the party it has apparently been running with. For example,
the fourth one means that “p3 is authenticated to p1 with d and k”.

In particular, we assume that the intruder could generate the falsified docu-
ment d’ containing other embedded service calls in the materialization result.
Then, this may lead to DoS(Denial-of-Service) attack in a peer if the following
two properties of secrecy and authentication are not satisfied in CSP trace event
sets tr of SYSTEMAXML.

1. signal.Claim Secret.pa .pb .d in tr ∧ pa ∈ Honest ∧ pb ∈ Honest ⇒ ¬(leak.d
in tr)

2. pb ε Honest ⇒ signal.Running.RESPONDER.pb.pa

precedes signal.Commit.INITIATOR.pa .pb

Application of Model Checking to AXML System’s Security 253

where:

– signal.Claim Secret.pa .pb .d means that pa thinks that the patient document
d is a secret which should be known only to pb .

– signal.Running.RESPONDER.pb.pa represents that the responder pb thinks
he started a protocol run apparently with the initiator pa .

– signal.Commit.INITIATOR.pa .pb represents that the initiator pa thinks
that he has completed a protocol run apparently with the responder pb .

After analyzing the property statements of ‘Secret(p3, d, [p1])’ and ‘Secret(p3,
k, [p1])’, the FDR tool shows no counterexample about them. However, when
the FDR is applied to other property statements, we found that the following
attack scenario could be derived from its counterexample:

Fig. 3. Attack scenarios on the electronic patient record

Security Vulnerabilities. In Fig. 3, an intruder could monitor query q1 and
intercept the filtered query q2 delegated by p2. Then, the intruder could send
the intercepted delegation query to p3 disguised as an honest peer p1. Here we
can consider two different kinds of attack scenarios:

In the first case, p3 might regard an attacker pI as an honest peer because it
has already been authorized and possesses q2 delegated by p2. This disguise is
possible in a real Web service world because p3 may not know who the original
initiator of the service transaction is. Then, the intruder can successfully decrypt
the encrypted patient record d and create the falsified patient record d’. A more
intelligent intruder may return an original patient document without modifica-
tion and instead he can embed other recursive service calls inside the document

254 I.-G. Kim and D. Biswas

itself. Although p1 uses lazy query evaluation1 to filter irrelevant service calls, it
must spend important resources wastefully such as CPU processor and memory
space. Even in the worst case, this result might be linked to denial-of-service
attack.

In the second case, (assumption) p3 exactly knows p1 as the initiator of Web
Service transaction . Through the man-in-the middle attack, the intruder can in-
tercept the encrypted signed documents({d}k , {k}PK (p1), {sha(d)}SK (p3)) from
p3. Even if the intruder can not decrypt the patient’s record due to non posses-
sion of the private key of p1, there might be potential attack that the received
documents could be reused for a different patient next time. Eventually, mis-
matched patient records may has a dangerous effect on the patient’s health.

The main vulnerability in this example is based on the insecure usage of
query delegation, not the vulnerability of the document-level security itself. As
such, the intruder could intercept the delegation query ‘{q2}SK (p2)’ that bypasses
access control in p2 and disguises as an honest p1, even if the intruder has no
proper right to request a patient record document of p2. A simple solution to
this attack scenario is to add the identity p1 and the filtered query q2 signed by
itself in message 3, as p1, {{q2}SK (p2)}SK (p1). This countermeasure prevents the
intruder from generating a modified message and sending it to p3, because p3

checks who would be the intended responder for d through p1’s identity in the
signed message. Another solution is to use a time-stamp with a short validity
period against replay attack. More detailed information related to using a time-
stamp against replay attack can be found in [20].

5 Related Works

Model checking with FDR has proved to be very successful for modelling and
analyzing security aspects in traditional protocols[17],[18]. Relatively, few stud-
ies have been devoted to analyze Web services security with model checking
technology.

Eldar Kleiner et al.[14] showed how the WS-Security specification[12] could
be mapped to Casper and analyzed with FDR. Llanos Tobarra et al.[16] also
used Casper/FDR tools and illustrated how to analyze some security properties
of a Web service application as a licence server, developed by Microsoft Web
Services Enhancement (WSE)[19]. Karthikeyan Bhargavan et al.[4] developed a
tool called TulaFale to specify SOAP-based security protocols in pi-calculus and
analyze its vulnerabilities.

The above approaches analyzed some vulnerabilities in existing XML-based
Web service messages focusing only on the SOAP communication channel con-
structed by WS-Security. They do consider document-level security. To the best
of our knowledge, there is no research to describe how to model AXML docu-
ments combined with embedded security service calls and analyze the vulnera-

1 Lazy query evaluation was proposed to detect which calls may bring relevant data
for query execution and to avoid the materialization of irrelevant information[1].

Application of Model Checking to AXML System’s Security 255

bilities due to delegated query and malicious service calls in the document. In
this regard, we believe our approach to be different from the above related works.

6 Conclusion

Active XML (AXML) has been evolving as one of the new challenging researches
in distributed, autonomous Web Services paradigm, by combining XML data and
embedded Web services calls to allow simple and dynamic data management.
Furthermore, security is one of the most vital topics in Web services development
today and will in the foreseeable future.

In this paper, we have shown how existing model checking techniques with
Casper/CSP and FDR, used for the verification of classical security protocols,
could be applied to analyze vulnerabilities of AXML documents as well. To the
best of our knowledge, this is the first approach to analyze the security of AXML
documents using model checking.

We have explained the framework for adapting a classical CSP model to
AXML systems and have shown how to build a Casper input from two mod-
els: 1) the document before invoking a service call, and 2) the document after
invoking a service call.

Finally, we have demonstrated the usefulness of our approach by modelling
and analyzing an electronic patient record. We found that a careless usage of del-
egated query could lead to security weakness and this vulnerability may induce
falsification of data or DoS attacks by malicious document from an untrusted
peer.

The analysis results also provide a hint that security services based on XML
Encryption and XML Signature between AXML peers do not provide a com-
plete security solution by themselves. The combination of other complementary
security standards such as SAML and XACML would make an AXML system
more robust against powerful, intellectual attacks in distributed networks.

Acknowledgements. We would like to thank Stefan Haar, Loic Helouet, Serge
Abiteboul, Bogdan Cautis, and anonymous referees for their valuable feedback
which helped to improve the work in the previous draft considerably.

References

1. S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and N. Preda. “Lazy
Query Evaluation for Active XML”, Proceedings of ACM SIGMOD Conference,
pp.227-238, 2004.

2. S. Abiteboul, I. Manolescu, and F. Taropa, “A Framework for Distributed XML
Data Management”, Proceedings of EDBT 2006, pp.1049-1058, 2006.

3. Active XML Home Page (AXML), http://activexml.net, 2004.
4. K. Bhargavan, C. Fournet, A. Gordon, and R. Pucellla. “TulaFale: A security tool

for web services”, In Formal Methods for Components and Objects: International
Symposium, FMCO 2003, volume 3188 of Lecture Notes in Computer Science,
pp.197-22. 2003.

256 I.-G. Kim and D. Biswas

5. S. Abiteboul, B. Alexe, O. Benjelloun, B. Cautis, I. Fundulaki, T. Milo, and
A. Sahuguet. “An Electronic Patient Record on Steroids : Distributed, Peer-to-
Peer, Secure and Privacy-conscious”, Proceedings of the 30th VLDB Conference,
pp.1273-1276, 2004.

6. S. Abiteboul, O. Benjelloun, B. Cautis, and T. Milo. “Active XML, Security and
Access Control”, Proceedings of the SBBD Workshop, pp.13-22, 2004.

7. D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, and E. Simon. “XML-Encryption
synatx and Proceeding”, W3C Recommendation, 2001.

8. D. Eastlake, J. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E.
Simon. “XML-Signature Syntax and Processing”, W3C Recommendation, 2002.

9. C.A.R. Hoare,Communicating Sequential Processes, 1985.
10. M.L. Hui and G. Lowe. Fault-preserving Simplifying Transformations for Security

Protocols. Journal of Computer Security, 9(1/2):3-46, 2001.
11. Formal Systems(Europe) Ltd. FDR2 User Manual, Aug. 1999.
12. IBM, Microsoft, and VeriSign, Web Services Security(WS-Security), Version 1.0,

April 2002.
13. I.G. Kim and D. Biswa. Secure Data Management based on AXML Document :

Electronic Patient Record, 2006(submitted).
14. E. Kleiner and A.W. Roscoe. “Web Services Security: a preliminary study us-

ing Casper and FDR”, Proceedings of Automated Reasoning for Security Protocol
Analysis (ARSPA 04), 2004.

15. E. Kleiner and A.W. Roscoe. “On the Relationship between Web Services Security
and Traditional Protocols”, DIMACS Workshop on Security of Web Services and
E-Commerce, 2005.

16. L. Tobarra, D. Cazorla, F. Cuartero, and Gregorio Diaz. “Applicatoin of Formal
Methods to the Analysis of Web Services Security”, 2nd International Workshop
on Web Services and Formal Methods, pp.215-229, 2005.

17. G. Lowe. “Breaking and fixing the Needham-Schroeder public-key protocol using
FDR”, Proceedings of TACAS, number 1055 in LNCS. Springer, pp.147-166, 1996.

18. G. Lowe, “A Compiler for the Analysis of Security Protocols”, Proceedings of the
10th Computer Security Foundations Workshop, 1997.

19. Microsoft, Microsoft Web Services Enhancements (WSE) 2.0, http://msdn. mi-
crosoft.com/webservices/building/wse. Proceedings of ACM SIGMOD, pp.289-300,
2003.

20. P.Y.A. Ryan and S. A, Schneider. Modelling and Analysis of Security Protocols:
the CSP Approach, Addison-Wesley, 2001.

	Introduction
	Overview of AXML Document and Security Service Calls
	Modelling and Analyzing AXML Document Embedded with Security Service Call
	Framework for Modelling and Analysis
	Extending CSP Model for AXML Documents

	Case Study: Electronic Patient Record
	Model Construction from d1
	Model Construction from d2
	Analysis of Security Services

	Related Works
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

