
Active XML Replication and Recovery

Debmalya Biswas
IRISA/INRIA

Campus Universitaire de Beaulieu
Rennes, France 35042

dbiswas@irisa.fr

Abstract

Active XML (AXML) systems provide an elegant plat-
form to integrate the power of XML, Web services and Peer
to Peer (P2P) paradigms by allowing (active) Web service
calls to be embedded within XML documents. In this work,
we focus on the replication aspect of AXML systems, and
study the effect of peer disconnection (an inherent trait of
P2P systems) on replication. To be more precise, given peer
disconnection, for both eager and lazy replication strate-
gies, we discuss the following: (a) the replication guaran-
tees that can be provided, and (b) recovery procedures for
peer disconnection/reconnection.

1 Introduction

Active XML (AXML) [1, 4] systems provide an elegant
way to combine the power of XML, Web services and Peer
to Peer (P2P) paradigms by allowing (active) Web service
calls to be embedded within XML documents. An AXML
system consists of the following main components:

• AXML documents: XML documents with embedded
AXML service calls (defined below). For example, the
AXML snippet in Fig. 1 is an AXML document with
the embedded service call “getGrandSlamsWon”.

• AXML services: Web services defined as queries over
AXML documents. Note that an AXML service is also
exposed as a regular Web service (with a WSDL [17]
description file).

• AXML peers: Peers where the AXML documents and
services are hosted. AXML peers also provide a user
interface to query/update the AXML documents stored
locally.

Replication is an integral part of most large scale systems
including AXML (an AXML document replicated on more

Figure 1. Sample AXML document with em-
bedded service call “getGrandSlamsWon”.

than one AXML peer). Replication leads to high through-
put, low response times, high availability, etc. Till now,
replication oriented research has mostly focused on:

• the storage strategy which specifies “what” and
“where” to replicate, and

• replication strategies to efficiently propagate updates,

such that, the following (or a subset of) objectives are
achieved:

• a particular property holds, e.g., serializability [9, 11],



• the number of exchanged messages is optimized [3],

• the system is resilient against failures, e.g., network
partitioning [14], and

• high availability [13], throughput [10, 4], etc.

However, it is impractical to assume that the stor-
age/replication strategy of a system (especially, a heteroge-
neous one) can always be dictated. Thus, in this work, we
consider the following orthogonal problem: Given a repli-
cated system with a fixed storage/replication strategy and
possibility of failure, study the replication guarantees that
can be provided. More precisely, we consider the replica-
tion guarantees that can be provided for both eager and lazy
replication strategies, given the possibility of peer discon-
nection.

The replication strategies in literature can be broadly
classified into two categories: (a) Eager [12]: With eager
replication, any update on data d, performed as part of trans-
action τ at peer p, is applied at all the replicated peers host-
ing d before τ ’s commit. (b) Lazy [9, 11]: In this scheme,
any update propagation is not performed as part of the up-
date transaction. Rather, updates are propagated “as and
when” convenient after the corresponding update transac-
tion has committed. This leads to lower response times and
higher throughput, however the data at replicated peers may
not always be consistent.

The recovery aspect of replication is particularly rele-
vant for P2P systems given their inherent problem of peer
disconnection. Basically, we would like to provide precise
answers to questions of the type:

• Who maintains the (continuously evolving) list of
replicated peers, and how?

• How does the disconnection of a replicated peer affect
replication? Note that a replicated peer may disconnect
(and possibly never reconnect) during different stages
of the replication process, e.g., before an update propa-
gation has been initiated, during an update propagation
(leading to only a subset of the replicated peers receiv-
ing the update), etc.

• What additional steps does a peer need to perform on
reconnection from a replication perspective?

To summarize, for replicated AXML systems, given the
possibility of arbitrary and frequent peer disconnection, for
both eager and lazy replication strategies, we

• specify recovery procedures for peer disconnec-
tion/reconnection, and

• discuss the replication guarantees that can be provided.

The rest of the paper is organized as follows: In sec-
tion 2, we introduce the basic algebra for (non-replicated)
AXML systems. Section 3 provides a variant of the algebra
with “local” semantics. Section 4 considers recovery for
AXML replication in detail, with sub-sections 4.1 and 4.2
focusing on eager and lazy replication strategies, respec-
tively. Section 5 concludes the paper and provides some
directions for future work.

2 AXML Semantics

In this section, we briefly introduce the semantics of
AXML expression evaluation (slightly modified, but fol-
lows mainly from [6]). We view an XML tree as an un-
ranked, unordered tree, where each leaf node has a label
from L, and each internal node has a label from L and an
identifier from N . Each tree resides on a peer p ∈ P , and
is referred to as t@p. An XML document is a tuple (t, d)
where t is an XML tree and d ∈ D is a document name. We
model a Web service as a tuple (p, s), where p ∈ P is the
peer providing the service, and s ∈ S is the service name.
We use d@p and s@p to refer to a document d and service
s hosted on peer p, respectively.

An AXML document is an XML document containing
some nodes labeled with a specific label sc, standing for ser-
vice calls. An sc node has several children. Two children,
labeled peer and service, contain, respectively, a peer p 1 and
a service s1, where s1@p1 identifies an existing Web ser-
vice. The others are labeled param1, · · · , paramn, where
n is the input arity of s1@p1.

Given this, let us assume that an AXML document
d0@p0 contains a service call to a service s1@p1 as above.
When the call is activated, the following sequence of steps
takes place:

1. p0 sends a copy of the parami-labeled children of the
sc node, to peer p1, asking it to evaluate s1 on those
parameters.

2. p1 eventually evaluates s1 on this input, and sends back
to p0 an XML subtree containing the response.

3. When p0 receives this subtree, it inserts it in d0, as a
child of the sc node.

Next, we introduce a simple algebra for AXML expres-
sions, denoted ξ. Any tree t@p, document d@p or service
s@p is in ξ. Also, let q@p be a query of arity n defined
at p, and let t1@p, t2@p, · · · , tn@p be a set of trees at p.
Then, q@p(t1@p, t2@p, · · · , tn@p) ∈ ξ. Let t@p1 be a
tree. Then, send(p2, t@p1) ∈ ξ, where send(.) is an ex-
pression constructor. This expression denotes the sending
of a piece of data, namely t, from p1 to p2. Similarly, if
d@p1 is a document, send(p2, d@p1) ∈ ξ. ξ also allows to

2



specify the exact location(s) where a tree should arrive. The
expression send(n2@p2, t@p1) says that t should be added
as a child of the node n2@p2. t(n@p) = t@p denotes the
tree t@p containing the node n@p.

We first define eval for tree expressions. Let t@p0 be
a tree, whose root is labeled l �= sc, and let t1, · · · , tn be
children of the root in t. Then,

Rule 1. eval@p0(t@p0) = l(eval@p0(t1), eval@p0(t2),
· · ·, eval@p0(tn))

The evaluation copies t’s root and pushes the evaluation
to the children. On the same lines, the evaluation of query
expression trees can be defined as follows:

Rule 2. eval@p(q(t1@p, · · · , tn@p)) =
q(eval@p(t1@p), · · ·, eval@p(tn@p))

Evaluating a local query expression tree amounts to eval-
uating the query parameters, and then evaluating the query
(in the usual sense) on these trees. Next, we define the eval-
uation of send expressions as follows:

Rule 3. eval@p0(send(p1, t@p0)) = Φ
Rule 4. eval@p0(send(n1@p1, t@p0)) = Φ

Evaluating a send expression tree at p0, hosting t, re-
turns at p0 an empty result. However, as a side effect,
a copy of t@p0 is made, and sent to peer p1. Sending
t@p0 to the location n1@p1 returns an empty result at
p0, and as a side effect, the result of eval@p0(t@p0) is
added as a child of n1@p1. From now on, we use the
short-hand sendp0→p1(e) to denote eval@p0(send(p1, e)).
On the same lines, sendp0→n1@p1(e) is used to denote
eval@p0(send(n1@p1, e)). Next, we define the eval at
some peer p, of a data expression of a remote tree.

Rule 5. eval@p1(t@p2) = sendp2→p1(eval@p2(t@p2))

We assume p1 �= p2, thus p1 initially doesn’t have t.
In order for p1 to get the evaluation result, p2 is asked to
evaluate it, and then send the result to p1.

Given the above rules, we are in a position to define the
evaluation of a tree t@p0, whose root is labeled sc. We
denote by parList = [t1, t2, · · · , tn] the list of parami-
labeled children of the sc.

Rule 6. eval@p0(sc(p1, s1, parList)) = sendp0→sc@p0

(sendp1→p0(q1(sendp0→p1(eval@p0(parList)))))

where eval@p0(parList) stands for [eval@p0(t1), · · ·,
eval@p0(tn)]. The second part of Rule 6 is best read from
the innermost parenthesis to outer. To evaluate sc, p0 first
evaluates the parameters (innermost eval), then sends the

result to p1. Peer p1 evaluates, in the usual sense, the query
q1 (the one which implements its service s1), and sends the
results back to p0. Finally, p0 inserts the results as a child
of sc.

3 Local AXML

Clearly, the AXML semantics in section 2 is distributed
(nested), that is, an AXML expression evaluation may lead
to multiple AXML document updates at different peers. In
this section, we show how the rules can be modified to ac-
quire “local” semantics. The intuition is that with such local
semantics, a distributed protocol for AXML systems (e.g.,
global concurrency control protocol) can be replaced by a
local variant (sufficient if the individual peers implement
locking locally without the need for a central/global con-
currency control manager).

We assume that each tree t is unique, that is, there exists
only one copy of t among all the peers (by extension, each
node n is also unique). However, the location of t, at any
point of time, is not fixed and it may move from one peer
to another. To accommodate this, we replace the location
identifier @p with @any. The above replacement is based
on the assumption that there exists an index IN (preferably
DHT style) which keeps track of the current location of the
trees. Basically, we have added an extra level of indirec-
tion: Given an expression of the form eval@p(t@any), the
current location of t is retrieved by querying IN and substi-
tuted, leading to the expression eval@p(t@p1) (assuming t
is currently hosted by the peer p1). In addition, we need to
modify the evaluation semantics as follows:

Rule 3’. sendp0→p1(t@p0))

Evaluating a send expression tree at p0, hosting t, results
in t being (physically) moved from p0 (deleted from p0) to
p1. Note that this is in contrast to creating a copy of t and
sending it to p1 (by the earlier semantics).

Rule 4’. sendp0→n1@any(t@p0)) =
sendp0→n1@p1(t@p0)) =
sendp1→p0(t1@p1)), sendp0→n1@p0(t@p0))

where t1@p1 is the tree containing the node n1@p1.
Given this, the tree t1 is moved from peer p1 to p0. The
final send is basically a local operation at p0 (as the target
tree t1 is currently hosted by p0).

Rule 5’. eval@p1(t@any) = eval@p1(t@p2) =
eval@p1(sendp2→p1(t@p2))

If the current location of t is p2(�= p1), then t is moved
to p1 and evaluated locally at p1.

3



Rule 6’. eval@p0(sc(p1, s1, parList)) =
sendp0→sc@p0(sendp1→p0(q1), (eval@p0(q1, parList)))

Any changes, required in the semantics for parameter
evaluation, are taken care of by the modified Rules 3’, 4’
and 5’ above. Here, we only discuss the modified seman-
tics for service s1’s evaluation. Peer p1 sends the query q1

(the one which implements its service s1) to p0. This en-
sures that the complete service call evaluation can be pro-
cessed locally at p0. Intuitively, the above leads to a local
semantics by pulling the required document and query trees
from their respective peers and evaluating the expressions
locally, rather than “pushing” them to the peers where the
target document and query trees are located.

4 AXML Replication

Till now, we have studied AXML semantics without
replication. In this section, we provide “recovery” seman-
tics for AXML systems which allow replication, that is,
there may exist more than one copy of a tree t on the peers
p1, p2, · · · , pn (the trees t@p1, t@p2, · · · , t@pn are equiva-
lent). Given this, the peers p1, p2, · · · , pn are also referred
to as the replicated peers of t. While replication leads to
enhanced performance and throughput, the main challenge
is with respect to keeping the replicated copies in sync, that
is, an update on a tree t at any of the the peers hosting t,
needs to be propagated to all the other replicated peers of
t. More precisely, we discuss how replication guarantees
can be provided in the event of a failure (especially, discon-
nection of a replicated peer) during the update propagation
phase.

We consider the primary-secondary configuration for
AXML replication. In this configuration, a peer, among the
replicated peers of a tree t, is designated as the primary of
t (denoted prt), and the remaining are referred to as sec-
ondaries of t. Basically, with this configuration, an update
on a tree t can only occur at prt, while a query based on t
can be answered by any of the replicated peers of t. Thus,
the primary is responsible for propagating any updates to
the secondaries. We assume that a primary prt retains a list
of the secondaries of t, referred to as list − sectt. Further,
each peer p ∈ list − sectt is aware of prt; but is unaware
of the other peers in list − sectt.

We consider the evaluation of an AXML expression e,
eval@p(e), as a transactional unit. We discuss AXML
replication with both eager and lazy semantics in detail in
the sequel.

4.1 Eager

With eager replication, an update on a tree t@p as part of
the transaction τ = eval@p(e), is propagated to the other

replicated peers of t within the same transaction τ . To ac-
commodate the update propagation part within an AXML
expression evaluation (transaction), we modify rules 4 and
6 (section 2) as follows:

Rule 4”. sendp0→n1@p1,n2@p2,···,nk@pk
(t@p0) = Φ

As before, sending t@p0 to the locations ni@pi re-
turns an empty result at p0, and as a side effect, at each
pi, the result of eval@p0(t@p0) is added as a child of
ni@pi. We use the short-hand sendp0→fwList(e) to de-
note eval@p0(send(fwList, e)), where fwList is a list of
nodes.

Rule 4a”. sendwap0→fwList(t@p0) =
sendp0→fwList(t@p0), sendp(fwList)→p0(ack)

where p(fwList) denotes the set of peers hosting (trees
of) the nodes in fwList. Here, the peers in p(fwList), af-
ter having performed the updates, send an acknowledgment
back to p0.

Rule 6”. eval@p0(sc(p1, s1, parList)) =
sendwap0→list−sect(sc@p0)(sendp1→p0

(q1(sendp0→p1(eval@p0(parList)))))

Basically, the modification allows p0 to propagate the in-
vocation results (of sc@p0) to a set of peers (secondaries of
the affected tree t(sc@p0)). Given this, a transaction τ =
eval@p0(e) commits only after p0 has received acknowl-
edgments from all the corresponding secondaries. Note that
p here is also the primary of t, that is, p = prt. Next, we
discuss the possible failures during the update propagation
part, and their recovery semantics to provide the following
replication guarantee:

Eager replication guarantee. At any point of time, eval-
uation of an AXML query expression e based on tree t pro-
duces the same result, irrespective of the (replicated) peer
(of t) where e was evaluated.

Secondary disconnection. We consider a transaction τ
= eval@p(e) which has updated the tree t@p. Now, let us
consider propagation of t@p’s update, and assume that a
secondary p1 ∈ list− sect has disconnected. As a result, p
would not receive the acknowledgment from p1. Given this,
p attempts forward recovery by following a timeout mecha-
nism. If p does not receive an acknowledgment after t secs
(configurable), it retries the send. If p does not receive an
acknowledgment from p1 even after m retries (again, con-
figurable), it deletes p1 from list − sect.

4



Secondary reconnection. A peer p1, on reconnecting,
does the following (before performing any updates or an-
swering queries): For each hosted tree t, if p1 was a sec-
ondary of t before disconnection, then p1 tries to contact
prt. If successful,

1. p1 synchronizes the state of t@p1 with t@prt.

2. prt adds p1 to list− sect.

Otherwise (if p1 was the primary of t before disconnec-
tion, or p1 cannot contact prt), p1 has the following couple
of options: Basically, p1 may not be able to contact prt if
the primary has changed (detailed later while discussing pri-
mary disconnection) during the disconnection-reconnection
period of p1.

• Initiate a flooding of the P2P network to locate prt.
Rather than flooding the whole network, if it is feasible
for each secondary to be aware of the other secondaries
as well, then p1 may try to locate prt via the other
secondaries (before initiating flooding, if required).

• p1 deletes t from its repository and stops being a repli-
cated peer of t.

Primary disconnection. As before, we consider a trans-
action τ = eval@p(e) which updates tree t@p, and p =
prt gets disconnected during the update propagation phase.
Further, let us consider two secondaries p1 �= p2 ∈ list −
sect. Given this, we first analyze the problem scenario.
Note that the receive of messages is not instantaneous. As
a result, p1 may receive the propagated update of t before
p2 (or vice versa). At this stage, a query based on t, would
produce different results depending on whether it was posed
at p1 or p2. An alternative (for p1 and p2) is to wait for a
commit confirmation of τ from p, before answering queries
with the updated state of t. However, this leads to an in-
finite cycle of update and acknowledgment (confirmation)
messages.

As such, we follow another alternative: Given a query
q based on t at a replicated peer p1 of t, we require that
p1 first check if the transaction τ corresponding to the last
propagated update on t has already committed at pr t (or
not), before answering q. Basically, the commit of a trans-
action updating t at prt, implies that the update on t has
been propagated and applied by all the alive secondaries of
t (∈ list−sect). Clearly, p1 does not need to check again if
it already knows that τ has committed at prt (it performed
the check for a previous query, and there haven’t been any
further update propagations with respect to t since then). To
accommodate the above additional check (if required) on
the affected trees of a query q, we extend Rule 2 as follows:

Rule 2”. eval@p(q(t1@p, · · · , tn@p)) =
Check − Status@p(t1@p, · · · , tn@p),
q(eval@p(t1@p), · · · , eval@p(tn@p))

While performing the above check, if p1 detects that prt

has disconnected (that is, it cannot contact prt), then it does
the following:

• Assume the role of a coordinator and initiate flooding
to detect the replicated peers of t. At this stage, another
peer p2 may also have detected the disconnection of
prt, and initiated flooding. Given this, both p1 and
p2 will eventually receive each others’ flood messages.
Here, we assume that p1 and p2 negotiate, and only
one of them continues as the coordinator.

• The state of t on the replicated peers is synchronized
(possibly updated to the latest).

• Execute a leader election algorithm among the repli-
cated peers.

• The elected leader becomes the new primary prt, and
its list − sect is assigned the list of replicated peers
(excluding prt).

Finally, we reiterate the query mechanism. Given a
query q based on t at a replicated peer p1 of t, if there ex-
ists an “unchecked” update on t, then check the status of the
transaction τ at prt corresponding to the last propagated up-
date on t. Then, we have the following possibilities:

• τ has committed, answer q based on the updated state
of t.

• τ hasn’t committed yet, answer q based on the previous
updated state of t.

• prt has disconnected: Perform the recovery steps as
discussed above. In the meantime, answer q based
on the previous updated state of t. Another alterna-
tive would be to wait for the new primary prt to be
resurrected, and then answer based on the latest syn-
chronized state of t. However, this might lead to long
answering periods for queries. Thus, the alternative to
choose is basically a choice between lower response
time or (possibly) more current data.

Primary reconnection. Analogous to the secondary re-
connection scenario, where a secondary p1 is not able to
contact prt.

To summarize, Rules 1, 2”, 3, 4”, 4a”, 5 and 6” pro-
vide the complete (including recovery) semantics of an ea-
ger AXML replication system.

4.2 Lazy

Here also, any update on a tree t at its primary prt, needs
to be propagated to the secondary peers of t. However, the

5



propagation is not performed as part of the expression eval-
uation transaction. Rather, the updates are propagated “as
and when” convenient after the corresponding transaction
has committed at the primary. This allows the primary to
proceed with the next expression evaluation (transaction)
without having to wait for the corresponding secondaries’
acknowledgments, increasing the system throughput. How-
ever, for an update on a tree t, if prt disconnects before the
update has been propagated to any of the peers in list−sec t,
then the update is lost forever. As such, we discuss recovery
semantics for the following replication guarantee:

Lazy replication guarantee. For a pair of propagated up-
dates u1 and u2 on tree t at secondary peers p1 �= p2 ∈
list−sect, if u1(u2) occurs before u2(u1) at p1, then u1(u2)
also occurs before u2(u1) at p2.

Intuitively, updates on a replicated tree t may not occur
at the same time on its secondaries, however they occur in
the same order. This is particularly significant for programs
which rely on a stream of inputs, e.g., AXML continuous
services [2], (user) session guarantees [15, 16], etc.

Secondary disconnection. Here, the secondaries, after
performing a propagated update do not send acknowledg-
ments. As such, the corresponding primary is not in a posi-
tion to detect secondary disconnection, and perform the req-
uisite forward recovery (sub-section 4.1). To overcome this,
in addition to Rule 4, we need the following “extended”
send:

Rule 4b. sendep0→fwList(t@p0, sucList) =
Check − Alive(p(n1@p1)), sendp0→n1@p1(t@p0),
assign(sucList, sucList∪ n1@p1),
sendep1→(fwList−n1@p1)(t@p0), sendplast→p0(sucList),
assign(fwList, sucList)

Initially, fwList = n1@p1, n2@p2, · · · , nk@pk and
sucList = Φ. Then, its semantics are given as follows:

1. Select the first location i = 1, ni@pi ∈ fwList.

2. Check if pi is still connected (e.g., using ping mes-
sages). If pi has disconnected, then fwList =
fwList− ni@pi, and go back to Step 1.

3. Otherwise, sucList = sucList ∪ ni@pi, and re-
cursively invoke sende with the remaining fwList −
ni@pi. On termination (fwList = Φ), the last peer
plast sends the sucList back to p0, upon which p0

can update its fwList for any future send’s. Basically,
sucList denotes the set of (alive) peers, to which the
message could be transmitted successfully.

Further, for a triplet nx@px, ny@py, nz@pz ∈ fwList
with the following sequence ρ of operations: Check −
Alive(py), sendpx→ny@py (t@p0), sucList = sucList ∪
ny@py, Check − Alive(pz), and sendpy→nz@pz (t@p0); ρ
needs to occur as an “atomic” unit, that is, either all of them
succeed or none. Otherwise, we may have a situation where
a secondary py disconnects after receiving a propagated up-
date (from px), but before propagating it further (to the next
secondary pz).

Given this, for each evaluation eval@p0(sc(p1, s1,
parList)) (Rule 6), its results can be propagated to the sec-
ondary peers of sc@p0 (∈ list − secsc@p0) by using the
sende primitive with fwList = list− secsc@p0 . Note that
the update propagation (sende) here is outside the transac-
tion context, that is, a transaction still corresponds to an ex-
pression evaluation given by Rules 1 - 6 (section 2). Thus,
a primary prt queues any pending updates on t, and propa-
gates (sende) the next pending update only after receiving
the sucList corresponding to the previously propagated up-
date on t (if any, and updating list − sect). This implicitly
ensures that, for a tree t, its secondary peers receive any
updates on t in the same order.

Primary disconnection. As mentioned before, if a pri-
mary prt disconnects before a pending update on t could
be propagated, then that update is lost. Here, we consider
the scenario where prt disconnects after initiating the prop-
agation (sende), but before receiving the sucList from the
last secondary plast. Given this, plast detects prt’s discon-
nection, and initiates the recovery procedure as given for
the eager replication strategy (sub-section 4.1). That is, (i)
Initiate flooding to detect the replicated peers of t. (ii) Syn-
chronize t’s state on the replicated peers. (iii) Elect the new
leader prt and assign list− sectt.

Primary/Secondary reconnection. The steps to follow on
reconnection of a primary/secondary are the same, as given
for the eager scenario (sub-section 4.1).

5 Conclusion and Future Work

In this work, we studied replication from a recovery per-
spective. For both eager and lazy replication strategies,
we outlined recovery procedures to handle peer disconnec-
tion/reconnection. We also discussed the replication guar-
antees that can be provided in such a scenario. While the
proposed algebra is with respect to AXML systems, we be-
lieve that it is also applicable to more general XML/P2P
based systems as well.

The AXML implementation is available at
http://forge.objectweb.org/projects/activexml/. The work in
this paper is part of ongoing work to provide a transactional
framework for AXML systems [7, 8]. Our future work

6



includes studying the effect of other transactional aspects,
especially, logging on replication. Logging XML data is
very expensive. As such, we would like to optimize AXML
logging as much as possible. Towards this end, we are
investigating if we can use the concept of “confluence” [5]
in conjunction with replication and recovery.

Acknowledgment. I would like to thank Blaise Gen-
est and Mahantesh Surgihalli for their helpful suggestions
which helped to improve the work in this paper consider-
ably. This work is supported by the ANR DOCFLOW and
CREATE ACTIVEDOC projects.

References

[1] Active XML. http://www.activexml.net

[2] Active XML User Guide.
http://www.activexml.net/AXML%20Guide.pdf

[3] D. Agrawal, A. Abbadi, and I. Stanoi. Using broadcast
primitives in replicated databases. In: proceedings
of the 18th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Amsterdam,
The Netherlands, 1998, pp. 148-155.

[4] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic XML Documents with Dis-
tribution and Replication. In: proceedings of the
22nd ACM International Conference on Management
of Data (SIGMOD), San Diego, CA, USA, 2003, pp.
527-538.

[5] S. Abiteboul, T. Milo, and O. Benjelloun. Positive
Active XML. In: proceedings of the 23rd ACM Sym-
posium on Principles of Database Systems (PODS),
Paris, France, 2004, pp. 35-45.

[6] S. Abiteboul, E. Taropa, and I. Manolescu. A Frame-
work for Distributed XML Data Management. In: pro-
ceedings of the 10th International Conference on Ex-
tending Database Technology (EDBT), Munich, Ger-
many, 2006, pp. 1049-1058.

[7] D. Biswas, and B. Genest. Decomposing Minimal Ob-
servability for Transactional Services. Submitted Sep
2007, http://perso.crans.org/g̃enest/BG07.ps

[8] D. Biswas, and I.-G Kim. Atomicity for P2P based
XML Repositories. In: proceedings of the 2nd
IEEE International Workshop on Services Engineer-
ing (SEIW), Istanbul, Turkey, 2007, pp. 369-376.

[9] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols
for replicated databases. In: proceedings of the 18th

ACM International Conference on Management of
Data (SIGMOD), Philadelphia, PA, USA, 1999, pp.
97-108.

[10] E. Cohen, and S. Shenker. Replication Strategies in
Unstructured Peer to Peer Networks. In: proceedings
of the ACM International Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM), Pittsburgh, PA,
USA, 2002, pp. 177-190.

[11] K. Daudjee, and K. Salem. Lazy Database Replication
with Ordering Guarantees. In: proceedings of the 20th
IEEE International Conference on Data Engineering
(ICDE), Boston, MA, USA, 2004, pp. 424-435.

[12] B. Kemme, R. Jimenez-Peris, M. Patino-Martinez,
and G. Alonso. Improving the scalability of fault tol-
erant database clusters. In: proceedings of the 22nd
IEEE International Conference on Distributed Com-
puting Systems (ICDCS), Vienna, Austria, 2002, pp.
477-484.

[13] G. On, J. Schmitt, and R. Steinmetz. The Effective-
ness of Realistic Replication Strategies on Quality of
Availability for Peer-to-Peer Systems. In: proceedings
of the 3rd IEEE International Conference on Peer-to-
Peer Computing (P2P), Linkping, Sweden, 2003, pp.
57-64.

[14] P. Padmanabhan, and L. Gruenwald. Managing Data
Replication in Mobile Ad-Hoc Network Databases.
In: proceedings of the 2nd International Conference
on Collaborative Computing: Networking, Applica-
tions and Worksharing (CollaborateCom), Atlanta,
GA, USA, 2006, pp. 1-10.

[15] M. Surgihalli. Consistent Access to Replicated Web
Service Registries. M. Sc. Thesis, Memorial Uni-
versity of Newfoundland, NL, Canada, Sep 2006,
http://www.cs.mun.ca/m̃ahan/MScthesis.pdf

[16] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M.
Theimer, and B. Welsh. Session guarantees for weakly
consistent replicated data. In: proceedings of the In-
ternaltional Conference on Parallel and Distributed In-
formation Systems (PDIS), Austin, TX, USA, 1994,
pp. 140-149.

[17] Web Services Description Language (WSDL) Specifi-
cation. http://www.w3.org/TR/wsdl

7


