Active XML Replication and Recovery

Debmalya Biswas
IRISA/INRIA
Campus Universitaire de Beaulieu
Rennes, France 35042
dbiswas@irisa.fr

Abstract

Active XML (AXML) systems provide an elegant plat-
formto integrate the power of XML, Web services and Peer
to Peer (P2P) paradigms by allowing (active) Web service
calls to be embedded within XML documents. In this work,
we focus on the replication aspect of AXML systems, and
study the effect of peer disconnection (an inherent trait of
P2P systems) on replication. To be more precise, given peer
disconnection, for both eager and lazy replication strate-
gies, we discuss the following: (&) the replication guaran-
tees that can be provided, and (b) recovery procedures for
peer disconnection/reconnection.

1 Introduction

Active XML (AXML) [1, 4] systems provide an elegant
way to combine the power of XML, Web services and Peer
to Peer (P2P) paradigms by allowing (active) Web service
calls to be embedded within XML documents. An AXML
system consists of the following main components:

e AXML documents: XML documents with embedded
AXML service calls (defined below). For example, the
AXML snippet in Fig. 1isan AXML document with
the embedded service call “getGrandSlams\Won”.

o AXML services: Web services defined as queries over
AXML documents. Notethat an AXML serviceisalso
exposed as a regular Web service (with aWSDL [17]
descriptionfile).

e AXML peers. Peers where the AXML documentsand
services are hosted. AXML peers aso provide a user
interfaceto query/updatethe AXML documents stored
locally.

Replicationisanintegral part of most large scale systems
including AXML (an AXML document replicated on more

«Puml version ="1.07 encoding = “TUTF-£77>
<ATPList date = “180420057>
=player rank= 1>
“names
<firsthame>Roger<fMirstname=
“lastname=Federer</lastname=
“fmame>
<ritizenship=Hwiss</oitizenships
“pointe=d7 S< point s>
=axml:sc mode = “merge”
servicellamedpace = “getGrand3lamsWon™
serwvicelJRL = .7 methodName = “getGrandSlamsWon™>
<axmlparams=
<axmlparam name = “name” >
<axmlvaluexRoger Federer<faxmlwalue=
“axmlparam name = “yeat” >
<axmlvaluerfyear</axmlvalues
<faxmlparams=
<gratidslamswon year = “20037 =
& W< grandslamewron®
=faxml:sc>
<fplayer

/& TP List>

Figure 1. Sample AXML document with em-
bedded service call “getGrandSlamsWon”.

than one AXML peer). Replication leads to high through-
put, low response times, high availability, etc. Till now,
replication oriented research has mostly focused on:

e the storage strategy which specifies “what” and
“where” to replicate, and

o replication strategies to efficiently propagate updates,

such that, the following (or a subset of) objectives are
achieved:

e aparticular property holds, e.g., serializability [9, 11],

o the number of exchanged messagesis optimized [3],

e the system is resilient against failures, e.g., network
partitioning [14], and

e high availability [13], throughput [10, 4], etc.

However, it is impractical to assume that the stor-
agelreplication strategy of a system (especialy, a heteroge-
neous one) can always be dictated. Thus, in this work, we
consider the following orthogonal problem: Given a repli-
cated system with a fixed storage/replication strategy and
possibility of failure, study the replication guarantees that
can be provided. More precisely, we consider the replica-
tion guaranteesthat can be provided for both eager and lazy
replication strategies, given the possibility of peer discon-
nection.

The replication strategies in literature can be broadly
classified into two categories. (a) Eager [12]: With eager
replication, any updateon datad, performed as part of trans-
action T at peer p, isapplied at al the replicated peers host-
ing d before 's commit. (b) Lazy [9, 11]: In this scheme,
any update propagation is not performed as part of the up-
date transaction. Rather, updates are propagated “as and
when” convenient after the corresponding update transac-
tion has committed. This leads to lower response times and
higher throughput, however the data at replicated peers may
not always be consistent.

The recovery aspect of replication is particularly rele-
vant for P2P systems given their inherent problem of peer
disconnection. Basically, we would like to provide precise
answers to questions of the type:

e Who maintains the (continuously evolving) list of
replicated peers, and how?

e How does the disconnection of a replicated peer affect
replication? Notethat areplicated peer may disconnect
(and possibly never reconnect) during different stages
of thereplication process, e.g., before an update propa-
gation has been initiated, during an update propagation
(leading to only a subset of the replicated peers receiv-
ing the update), etc.

e What additiona steps does a peer need to perform on
reconnection from a replication perspective?

To summarize, for replicated AXML systems, given the
possibility of arbitrary and frequent peer disconnection, for
both eager and lazy replication strategies, we

e specify recovery procedures for peer disconnec-
tion/reconnection, and

e discussthereplication guaranteesthat can be provided.

The rest of the paper is organized as follows: In sec-
tion 2, we introduce the basic algebra for (non-replicated)
AXML systems. Section 3 providesavariant of the algebra
with “local” semantics. Section 4 considers recovery for
AXML replication in detail, with sub-sections 4.1 and 4.2
focusing on eager and lazy replication strategies, respec-
tively. Section 5 concludes the paper and provides some
directionsfor future work.

2 AXML Semantics

In this section, we briefly introduce the semantics of
AXML expression evaluation (sightly modified, but fol-
lows mainly from [6]). We view an XML tree as an un-
ranked, unordered tree, where each leaf node has a label
from £, and each internal node has a label from £ and an
identifier from . Each tree resides on apeer p € P, and
is referred to as t@p. An XML document is a tuple (¢, d)
wheret isan XML treeand d € D isadocument name. We
model a Web service as atuple (p, s), wherep € P isthe
peer providing the service, and s € S isthe service name.
We use d@p and s@p to refer to a document d and service
s hosted on peer p, respectively.

An AXML document is an XML document containing
some hodes |abeled with aspecific label sc, standing for ser-
vice calls. An sc node has several children. Two children,
label ed peer and service, contain, respectively, apeer p; and
a service s, where s1@p; identifies an existing Web ser-
vice. The others are labeled parama, - - -, param.,, where
n istheinput arity of s;@p;.

Given this, let us assume that an AXML document
dp@pq contains a service call to aservice s;@Qp; as above.
When the call is activated, the following sequence of steps
takes place:

1. po sends a copy of the param;-labeled children of the
sc node, to peer p1, asking it to evaluate s; on those
parameters.

2. pp eventually evaluates s; onthisinput, and sends back
to pg an XML subtree containing the response.

3. When p, receives this subtree, it insertsit in dy, asa
child of the sc node.

Next, we introduce a ssimple algebrafor AXML expres-
sions, denoted £. Any tree t@Qp, document d@p or service
s@pisin &, Also, let g@p be a query of arity n defined
a p, and let t1@p, t5,Qp, - - -, ¢,@Qp be a set of trees at p.
Then, ¢@p(t1@p, t2@p, -- -, t,@Qp) € £ Let t@Qp; be a
tree. Then, send(p2,t@py) € &, where send(.) is an ex-
pression constructor. This expression denotes the sending
of a piece of data, namely ¢, from p; to po. Similarly, if
dQ@p, isadocument, send(p2,dQ@p;) € &. £ dso alowsto

specify the exact location(s) where atree should arrive. The
expression send(n2@po, tQp,) saysthat ¢ should be added
as a child of the node n.@p,. t(n@p) = tQ@p denotes the
tree t@p containing the node n@p.

We first define eval for tree expressions. Let t@Qp, be
atree, whose root is labeled [# sc, and let tq,---,t, be
children of therootin ¢t. Then,

Rule 1. eval@py(tQ@pg) = l(eval@py(ty), evalQpy(ts),
-+, eval@po(ty,))

The evaluation copiest’'s root and pushes the evaluation
to the children. On the same lines, the evaluation of query
expression trees can be defined as follows:

Rule 2. eval@p(q(t:Qp, - - -, t,Q@p)) =
q(eval@p(t1Qp), - - -, eval@p(t,,Qp))

Evaluating alocal query expression tree amountsto eval-
uating the query parameters, and then evaluating the query
(inthe usual sense) on these trees. Next, we define the eval -
uation of send expressions as follows:

Rule 3. eval@pg(send(py, t@Qpg)) = @
Rule 4. eval@py(send(ni@p,tQpg)) = ®

Evaluating a send expression tree at po, hosting ¢, re-
turns at pg an empty result. However, as a side effect,
a copy of t@Qpq is made, and sent to peer p;. Sending
t@pqy to the location n,@p; returns an empty result at
po, and as a side effect, the result of cval@py(t@py) is
added as a child of n;@p;. From now on, we use the
short-hand send,,,—p, (¢) to denote eval@pg(send(ps, €)).
On the same lines, sendp,—n,ap, (€) is used to denote
eval@pg(send(n1@pq,e)). Next, we define the eval at
some peer p, of adata expression of aremote tree.

Rule 5. eval@p; (tQpg) = sendy, —p, (evalQps (tQps))

We assume p; # po, thus p; initialy doesn't have ¢.
In order for p; to get the evaluation result, p, is asked to
evaluateit, and then send theresult to p;.

Given the aboverules, we are in a position to define the
evaluation of a tree t@Qpg, whose root is labeled sc. We
denote by parList = [t1,ta,---,t,] the list of param;-
labeled children of the sc.

Rule 6. eval@pq(sc(p1, s1, parList)) = sendp,—scap,
(sendp, —p, (q1 (sendp,—p, (eval@py(parList)))))

where eval@pg(par List) stands for [eval@pg(t1), - - -,
eval@Qpy(t,)]. The second part of Rule 6 is best read from
the innermost parenthesis to outer. To evaluate sc, pg first
evaluates the parameters (innermost eval), then sends the

result to p;. Peer p; evaluates, in the usual sense, the query
q1 (the one which implementsits service s1), and sends the
results back to pg. Finaly, py inserts the results as a child
of sc.

3 Local AXML

Clearly, the AXML semantics in section 2 is distributed
(nested), that is, an AXML expression evaluation may lead
to multiple AXML document updates at different peers. In
this section, we show how the rules can be modified to ac-
quire“local” semantics. Theintuition isthat with suchlocal
semantics, a distributed protocol for AXML systems (e.g.,
global concurrency control protocol) can be replaced by a
local variant (sufficient if the individual peers implement
locking locally without the need for a central/global con-
currency control manager).

We assume that each tree ¢ is unique, that is, there exists
only one copy of ¢ among all the peers (by extension, each
node n is also unique). However, the location of ¢, at any
point of time, is not fixed and it may move from one peer
to another. To accommodate this, we replace the location
identifier @p with Qany. The above replacement is based
on the assumption that there existsanindex IV (preferably
DHT style) which keepstrack of the current location of the
trees. Basicaly, we have added an extra level of indirec-
tion: Given an expression of the form eval@p(tQany), the
current location of ¢ is retrieved by querying I N and substi-
tuted, leading to the expression eval@p(t@p+) (assuming ¢
is currently hosted by the peer p1). In addition, we need to
modify the eval uation semantics as follows:

Rule 3. sendp,—p, (tQpo))

Evaluating a send expression tree at pg, hosting ¢, results
in ¢ being (physically) moved from p (deleted from pg) to
p1. Note that thisisin contrast to creating a copy of ¢+ and
sending it to p; (by the earlier semantics).

Rule4’. sendpy—n,@any (tQpo)) =
Sendp0—>'rL1 @Qp, (t@po)) =
sendplﬂpo (tl @p1)), Sendpoﬁnl @po (t@p()))

where t1@p, is the tree containing the node n,@p;.
Given this, the tree t; is moved from peer p; to pg. The
final send is basically alocal operation at p (as the target
tree t; iscurrently hosted by pg).

Rule 5. eval@pq(tQany) = eval@p;(tQpy) =
eval@p (sendp,—p, (tQp2))

If the current location of ¢ is pa(# p1), then ¢ is moved
to p; and evaluated locally at p;.

Rule6'. eval@pq(sc(p1, s1,parList)) =
sendpy—scap, (sendy, —p, (q1), (eval@py(qq, parList)))

Any changes, required in the semantics for parameter
evaluation, are taken care of by the modified Rules 3', 4’
and 5' above. Here, we only discuss the modified seman-
tics for service s;'s evaluation. Peer p; sends the query ¢;
(the one which implements its service s1) to pg. This en-
sures that the complete service call evaluation can be pro-
cessed locally at pg. Intuitively, the above leads to a local
semantics by pulling the required document and query trees
from their respective peers and evaluating the expressions
locally, rather than “pushing” them to the peers where the
target document and query trees are located.

4 AXML Replication

Till now, we have studied AXML semantics without
replication. In this section, we provide “recovery” seman-
tics for AXML systems which allow replication, that is,
there may exist more than one copy of atree t on the peers
P1,P2, s Pn (the traeSt@pla t@an o at@pn are aqUiva'
lent). Given this, the peerspy, po, - - -, p, are aso referred
to as the replicated peers of t. While replication leads to
enhanced performance and throughput, the main challenge
iswith respect to keeping the replicated copiesin sync, that
is, an update on atree t at any of the the peers hosting ¢,
needs to be propagated to al the other replicated peers of
t. More precisely, we discuss how replication guarantees
can be provided in the event of afailure (especialy, discon-
nection of areplicated peer) during the update propagation
phase.

We consider the primary-secondary configuration for
AXML replication. In this configuration, a peer, among the
replicated peers of atreet, is designated as the primary of
t (denoted pr;), and the remaining are referred to as sec-
ondaries of ¢t. Basically, with this configuration, an update
on atreet can only occur at pr, while a query based on ¢
can be answered by any of the replicated peers of ¢. Thus,
the primary is responsible for propagating any updates to
the secondaries. We assume that a primary pr; retainsalist
of the secondaries of ¢, referred to as list — sect;. Further,
each peer p € list — sect, is aware of pry; but is unaware
of the other peersin list — sect;.

We consider the evaluation of an AXML expression e,
eval@p(e), as a transactional unit. We discuss AXML
replication with both eager and lazy semantics in detail in
the sequel.

4.1 Eager

With eager replication, an update on atree t@Qp as part of
the transaction 7 = eval@p(e), is propagated to the other

replicated peers of ¢ within the same transaction 7. To ac-
commodate the update propagation part within an AXML
expression evaluation (transaction), we modify rules 4 and
6 (section 2) asfollows:

Rule4”. sendpoﬁnl@pl,nz@pzr“,nk@pk (t@po) =9

As before, sending t@Qp, to the locations n;Qp; re-
turns an empty result at po, and as a side effect, at each
pi, the result of eval@pg(tQpy) is added as a child of
n;Qp;. We use the short-hand sendp, . fwrist(e) t0 de-
note eval@pg(send(fwList, e)), where fwList isalist of
nodes.

Rule4a’ . sendwap,— fwrist(tQpo) =
sendpoewaist (t@p0)7 sendp(waist)Hpo (G‘Ck)

where p(fwList) denotes the set of peers hosting (trees
of) thenodesin fwList. Here, the peersin p(fwList), &-
ter having performed the updates, send an acknowledgment
back to pg.

Rule 6" . eval@pq(sc(p1, s1, parList)) =
SeNdWap, —list—sec,(oapy) (sendp, —p,
(¢1(sendpy—p, (eval@pg(parList)))))

Basically, the modification alows pg to propagatethein-
vocation results (of sc@pg) to aset of peers (secondaries of
the affected tree ¢(sc@py)). Given this, a transaction 7 =
eval@pq(e) commits only after po has received acknowl-
edgmentsfrom all the corresponding secondaries. Note that
p hereis aso the primary of ¢, that is, p = pr;. Next, we
discuss the possible failures during the update propagation
part, and their recovery semantics to provide the following
replication guarantee:

Eager replication guarantee. At any point of time, eval-
uation of an AXML query expression e based on tree ¢ pro-
duces the same result, irrespective of the (replicated) peer
(of t) where e was evaluated.

Secondary disconnection. We consider a transaction
= eval@p(e) which has updated the tree t@p. Now, let us
consider propagation of t@Qp’s update, and assume that a
secondary p; € list — sec; has disconnected. Asaresult, p
would not receive the acknowledgment from p ;. Giventhis,
p attempts forward recovery by following atimeout mecha-
nism. If p does not receive an acknowledgment after ¢ secs
(configurable), it retries the send. If p does not receive an
acknowledgment from p, even after m retries (again, con-
figurable), it deletes p; from list — secy.

Secondary reconnection. A peer p;, on reconnecting,
does the following (before performing any updates or an-
swering queries): For each hosted tree ¢, if p; was a sec-
ondary of ¢ before disconnection, then p, tries to contact
pry. |f successful,

1. p; synchronizesthe state of t@Qp, with t@Qpr;.
2. pry addsp; tolist — sec;.

Otherwise (if p; was the primary of ¢ before disconnec-
tion, or p; cannot contact pr,), p1 has the following couple
of options: Basicaly, p; may not be able to contact pr; if
the primary has changed (detailed later while discussing pri-
mary disconnection) during the disconnection-reconnection
period of p;.

e Initiate a flooding of the P2P network to locate pr.
Rather than flooding the whole network; if it isfeasible
for each secondary to be aware of the other secondaries
as well, then p; may try to locate pr; via the other
secondaries (before initiating flooding, if required).

e p, deletest fromits repository and stops being arepli-
cated peer of ¢.

Primary disconnection. As before, we consider a trans-
action 7 = eval@p(e) which updates tree tQp, and p =
pry gets disconnected during the update propagation phase.
Further, let us consider two secondaries p; # po € list —
secy. Given this, we first analyze the problem scenario.
Note that the receive of messages is not instantaneous. As
aresult, p; may receive the propagated update of ¢ before
p2 (or vice versa). At this stage, a query based on ¢, would
produce different results depending on whether it was posed
a p; or po. An dternative (for p; and p2) is to wait for a
commit confirmation of ~ from p, before answering queries
with the updated state of ¢. However, this leads to an in-
finite cycle of update and acknowledgment (confirmation)
messages.

As such, we follow another alternative: Given a query
q based on t at a replicated peer p, of ¢, we require that
p1 first check if the transaction = corresponding to the last
propagated update on ¢ has already committed at pr, (or
not), before answering ¢. Basicaly, the commit of atrans-
action updating ¢ at pr;, implies that the update on ¢ has
been propagated and applied by all the alive secondaries of
t (€ list — secy). Clearly, p; does not need to check again if
it already knows that 7 has committed at pr; (it performed
the check for a previous query, and there haven’t been any
further update propagationswith respect to ¢ since then). To
accommodate the above additional check (if required) on
the affected trees of aquery ¢, we extend Rule 2 asfollows:

Rule2". eval@Qp(q(t1Q@p, - - -, t,@Qp)) =
Check — StatusQp(t1@Qp, - - -, t,Qp),
q(eval@p(t1Qp), - - -, evalQp(t,,Qp))

While performing the above check, if p; detects that pr,
has disconnected (that is, it cannot contact pr,), then it does
the following:

e Assume the role of a coordinator and initiate flooding
to detect thereplicated peersof t. At thisstage, another
peer po may also have detected the disconnection of
pry, and initiated flooding. Given this, both p; and
p2 Will eventually receive each others' flood messages.
Here, we assume that p; and p, negotiate, and only
one of them continues as the coordinator.

e The state of ¢ on the replicated peers is synchronized
(possibly updated to the latest).

e Execute a leader election algorithm among the repli-
cated peers.

e The elected leader becomes the new primary pr,, and
its list — sec; is assigned the list of replicated peers
(excluding pr,).

Finaly, we reiterate the query mechanism. Given a
query ¢ based on ¢ at a replicated peer p; of ¢, if there ex-
istsan “unchecked” update on ¢, then check the status of the
transaction 7 at pr; correspondingto the last propagated up-
date on ¢. Then, we have the following possibilities:

e 7 has committed, answer ¢ based on the updated state
of t.

e 7 hasn’t committed yet, answer ¢ based on the previous
updated state of ¢.

e pr; has disconnected: Perform the recovery steps as
discussed above. In the meantime, answer ¢ based
on the previous updated state of ¢. Another alterna-
tive would be to wait for the new primary pr, to be
resurrected, and then answer based on the latest syn-
chronized state of ¢t. However, this might lead to long
answering periods for queries. Thus, the aternative to
choose is basically a choice between lower response
time or (possibly) more current data.

Primary reconnection. Analogous to the secondary re-
connection scenario, where a secondary p; is not able to
contact pr;.

To summarize, Rules 1, 2", 3, 4", 4a’, 5 and 6" pro-
vide the complete (including recovery) semantics of an ea-
ger AXML replication system.

4.2 Lazy

Here also, any update on atreet at its primary pr,, needs
to be propagated to the secondary peers of t. However, the

propagationis not performed as part of the expression eval-
uation transaction. Rather, the updates are propagated “as
and when” convenient after the corresponding transaction
has committed at the primary. This alows the primary to
proceed with the next expression evaluation (transaction)
without having to wait for the corresponding secondaries

acknowledgments, increasing the system throughput. How-
ever, for an update on atreet, if pr; disconnects before the
update has been propagated to any of the peersinlist—secy,
thenthe updateislost forever. As such, we discussrecovery
semantics for the following replication guarantee:

Lazy replication guarantee. For a pair of propagated up-
dates u; and us On tree ¢ at secondary peers p; # ps €
list—secy, if uy(ug) occursbeforeus(uy) at p1, then uq (us)
also occurs before us(uy) at po.

Intuitively, updates on a replicated tree t may not occur
at the same time on its secondaries, however they occur in
the same order. Thisis particularly significant for programs
which rely on a stream of inputs, e.g., AXML continuous
services|[2], (user) session guarantees[15, 16], etc.

Secondary disconnection. Here, the secondaries, after
performing a propagated update do not send acknowledg-
ments. As such, the corresponding primary is not in a posi-
tion to detect secondary disconnection, and performthe reg-
uisite forward recovery (sub-section 4.1). To overcomethis,
in addition to Rule 4, we need the following “extended”
send:

Rule4b. sendep,— fwrist (tQpo, sucList) =
Check — Alive(p(n1@p1)), sendpy—mn, ap, (tQpo),
assign(sucList, sucList U niQpy),
sendep, . (fwList—n,ap,) (1Qpo), sendy,,,, —p, (sucList),
assign(fwList, sucList)

Initidly, fwlList = ni1Qpi,neQps,---,npQp, and
sucList = ®. Then, its semantics are given as follows:

1. Selectthefirst locationi = 1,n;@p; € fwList.

2. Check if p; is till connected (e.g., using ping mes-
sages). If p; has disconnected, then fwList =
fwList —n;Q@p;, and go back to Step 1.

3. Otherwise, sucList = sucList U n;Qp;, and re-
cursively invoke sende with the remaining fwList —
n;@Qp;. On termination (fwList = ®), the last peer
DPlast Sends the sucList back to pg, upon which pg
can updateits fwList for any future send’s. Basically,
sucList denotes the set of (alive) peers, to which the
message could be transmitted successfully.

Further, for atriplet n,@Qp,,n,@Qp,,n.Qp, € fwlList
with the following sequence p of operations. Check —
Alive(py), sendp, —n,ap, (tQpo), sucList = sucList U
ny,Qp,, Check — Alive(p.), and send,, —.n_ap, (tQpo); p
needsto occur asan “atomic” unit, that is, either al of them
succeed or none. Otherwise, we may have a situation where
asecondary p,, disconnects after receiving a propagated up-
date (from p,), but before propagating it further (to the next
secondary p.).

Given this, for each evauation eval@pg(sc(p1, s1,
parList)) (Rule6), its results can be propagated to the sec-
ondary peers of scQ@Qpq (€ list — secscap,) Dy using the
sende primitivewith fwList = list — secscap,. Note that
the update propagation (sende) here is outside the transac-
tion context, that is, atransaction still correspondsto an ex-
pression evaluation given by Rules 1 - 6 (section 2). Thus,
aprimary pr; queues any pending updates on ¢, and propa-
gates (sende) the next pending update only after receiving
the sucList corresponding to the previously propagated up-
date on ¢ (if any, and updating list — sec;). Thisimplicitly
ensures that, for a tree ¢, its secondary peers receive any
updates on ¢ in the same order.

Primary disconnection. As mentioned before, if a pri-
mary pr; disconnects before a pending update on ¢ could
be propagated, then that update is lost. Here, we consider
the scenario where pr; disconnects after initiating the prop-
agation (sende), but before receiving the sucList from the
last secondary p;qs:. Giventhis, p;,s: detects pr,’s discon-
nection, and initiates the recovery procedure as given for
the eager replication strategy (sub-section 4.1). That is, (i)
Initiate flooding to detect the replicated peersof ¢. (ii) Syn-
chronize t's state on the replicated peers. (iii) Elect the new
leader pr, and assign list — sect;.

Primary/Secondary reconnection. The stepsto follow on
reconnection of a primary/secondary are the same, as given
for the eager scenario (sub-section 4.1).

5 Conclusion and Future Work

In thiswork, we studied replication from arecovery per-
spective. For both eager and lazy replication strategies,
we outlined recovery procedures to handle peer disconnec-
tion/reconnection. We also discussed the replication guar-
antees that can be provided in such a scenario. While the
proposed algebrais with respect to AXML systems, we be-
lieve that it is also applicable to more general XML/P2P
based systems as well.

The AXML implementation is avalable at
http://forge.objectweb.org/projects/activexml/. Thework in
this paper is part of ongoing work to provide atransactional
framework for AXML systems [7, 8]. Our future work

includes studying the effect of other transactional aspects,
especially, logging on replication. Logging XML data is
very expensive. As such, we would like to optimize AXML
logging as much as possible. Towards this end, we are
investigating if we can use the concept of “confluence” [5]
in conjunction with replication and recovery.

Acknowledgment. | would like to thank Blaise Gen-
est and Mahantesh Surgihalli for their helpful suggestions
which helped to improve the work in this paper consider-
ably. Thiswork is supported by the ANR DOCFLOW and
CREATE ACTIVEDOC projects.

References

[1] Active XML. http://www.activexml.net

[2] Active XML User Guide.
http://www.activexml.net/ AX M L %20Gui de.pdf

[3] D.Agrawal, A. Abbadi, and |. Stanoi. Using broadcast
primitives in replicated databases. In: proceedings
of the 18th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Amsterdam,
The Netherlands, 1998, pp. 148-155.

[4] S. Abiteboul, A. Bonifati, G. Cobena, |. Manolescu,
and T. Milo. Dynamic XML Documents with Dis-
tribution and Replication. In: proceedings of the
22nd ACM International Conference on Management
of Data (SIGMOD), San Diego, CA, USA, 2003, pp.
527-538.

[5] S. Abiteboul, T. Milo, and O. Benjelloun. Positive
Active XML. In: proceedings of the 23rd ACM Sym-
posium on Principles of Database Systems (PODS),
Paris, France, 2004, pp. 35-45.

[6] S. Abiteboul, E. Taropa, and |. Manolescu. A Frame-
work for Distributed XML DataManagement. In: pro-
ceedings of the 10th International Conference on Ex-
tending Database Technology (EDBT), Munich, Ger-
many, 2006, pp. 1049-1058.

[7] D.Biswas, and B. Genest. Decomposing Minimal Ob-
servability for Transactional Services. Submitted Sep
2007, http://perso.crans.org/genest/BGO7.ps

[8] D. Biswas, and 1.-G Kim. Atomicity for P2P based
XML Repositories. In: proceedings of the 2nd
IEEE International Workshop on Services Engineer-
ing (SEIW), Istanbul, Turkey, 2007, pp. 369-376.

[9] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz. Update propagation protocols
for replicated databases. In: proceedings of the 18th

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ACM International Conference on Management of
Data (SIGMOD), Philadelphia, PA, USA, 1999, pp.
97-108.

E. Cohen, and S. Shenker. Replication Strategies in
Unstructured Peer to Peer Networks. In: proceedings
of the ACM International Conferenceon Applications,
Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM), Pittsburgh, PA,
USA, 2002, pp. 177-190.

K. Daudjee, and K. Salem. Lazy Database Replication
with Ordering Guarantees. In: proceedingsof the 20th
IEEE International Conference on Data Engineering
(ICDE), Boston, MA, USA, 2004, pp. 424-435.

B. Kemme, R. Jimenez-Peris, M. Patino-Martinez,
and G. Alonso. Improving the scalability of fault tol-
erant database clusters. In: proceedings of the 22nd
IEEE International Conference on Distributed Com-
puting Systems (ICDCS), Vienna, Austria, 2002, pp.
477-484.

G. On, J. Schmitt, and R. Steinmetz. The Effective-
ness of Realistic Replication Strategies on Quality of
Availability for Peer-to-Peer Systems. In: proceedings
of the 3rd IEEE International Conference on Peer-to-
Peer Computing (P2P), Linkping, Sweden, 2003, pp.
57-64.

P. Padmanabhan, and L. Gruenwald. Managing Data
Replication in Mobile Ad-Hoc Network Databases.
In: proceedings of the 2nd International Conference
on Collaborative Computing: Networking, Applica
tions and Worksharing (CollaborateCom), Atlanta,
GA, USA, 2006, pp. 1-10.

M. Surgihalli. Consistent Access to Replicated Web
Service Registries. M. Sc. Thesis, Memoria Uni-
versity of Newfoundland, NL, Canada, Sep 2006,
http://www.cs.mun.ca/fahan/M Scthesi s.pdf

D. Terry, A. Demers, K. Petersen, M. Spreitzer, M.
Theimer, and B. Welsh. Session guaranteesfor weakly
consistent replicated data. In: proceedings of the In-
ternaltional Conference on Parallel and Distributed In-
formation Systems (PDIS), Austin, TX, USA, 1994,
pp. 140-149.

Web Services Description Language (WSDL) Specifi-
cation. http://www.w3.org/TR/wsdl

