
ECOLE POLYTECHNIQUE
PROMOTION X2000
TAROPA Emanuel

RAPPORT DE STAGE D”OPTION SCIENTIFIQUE

Services Continus en Active XML

NON CONFIDENTIEL

Option: Département INFORMATIQUE
Champ de l’option: Majeure d’Informatique
Directeur de l’option: Monsieur Jean-Marc STEYAERT
Directeurs de stage: Monsieur Serge Abiteboul
Adresse de l’organisme : INRIA Futurs
91400 Parc Club Scientifique ORSAY, France

Abstract

During my internship at INRIA I have worked on continuous web services in
the context of Active XML, a language used for peer-to-peer data integration
using web services. I have defined a declarative language that permits to
specify continuous services and I gave an implementation that allows us to
use them in Active XML.

This report is formed by 4 chapters: the first one is an introduction
presenting the context of information exchange and subscription services.
The second chapter describes the technologies that form the Active XML’s
framework. My work on continuous services in Active XML and their related
topics is present in the third chapter. The last chapter is a conclusion.

Pendant mon stage d’option scientifique à l’INRIA j’ai travaillé sur les ser-
vices web continus dans le contexte d’Active XML, un language utilisé pour
l’intégration pair-á-pair des données au moyen de services web. J’ai défini
un language déclaratif permettant de spécifier des services continus et j’ai
réalisé une implementation permettant de les utiliser dans Active XML.

Ce rapport comporte 4 chapitres : le premier est une introduction qui
présente le contexte d’échange d’informations consideré et les services de
souscriptions. Le deuxième décrit le technologies utilisées et le language
Active XML. Ma contribution sur les services continus en Active XML et
sur des sujets liés à eux est présentée dans le troisième chapitre. Le dernier
chapitre contient mes conclusions.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Peer-to-Peer vs. Client-Server 1

1.3 Subscription Services . 2

2 Technical Context 3

2.1 XML . 3

2.1.1 A Simple Example . 3

2.1.2 Main Characteristics 4

2.2 Web Services(WS) . 5

2.2.1 Composability . 6

2.2.2 Technology Stack . 6

2.3 Active XML . 7

2.3.1 Context . 7

2.3.2 Data Integration . 7

2.3.3 Distributed Data . 8

2.3.4 Behavior . 8

2.4 Technical Environment . 9

2.4.1 Programming Language 9

2.4.2 Web Server . 9

2.4.3 SOAP Engine . 9

3 Continuous Services in Active XML 11

3.1 General View of the Architecture 11

3.2 Server Side Behavior . 13

3.2.1 Server Side Post-processing 13

3.2.2 Restrictions . 14

3.2.3 Error Handling . 15

3.3 Client Side Behavior . 17

3.3.1 Client Side Post-processing 18

3.3.2 Server Directives . 19

3.4 Syntax Definition . 21

3.4.1 Server Side Syntax . 21

i

3.4.2 Client Side Syntax . 22
3.5 Caching Service Definition . 25

3.5.1 Client Options . 26
3.5.2 Server Options . 26
3.5.3 Optimizations . 27
3.5.4 Ongoing work . 28

4 Composed Services in Active XML 29
4.1 Implementing our own WF language and WF engine 30

4.1.1 Restricting the General Problem to Our Needs 30
4.1.2 Simple Workflow Example 32

4.2 Using BPEL4WS as WF language and BPWS4J as WF engine 34
4.2.1 Business Process Paradigm 34
4.2.2 Choosing BPEL4WS for Modeling WS’ Composition . 35
4.2.3 Choosing BPWS4J as WF Engine 37
4.2.4 Integrating BPWS4J into Active XML 38

4.3 Conclusions . 42
4.4 Ongoing Work . 43

5 Conclusions 44
5.1 Practical Applications . 44
5.2 Thank You . 45

Chapter 1

Introduction

1.1 Context

We are living in a world which is in continuous motion. Keeping this simple
truth in mind prevents us from being amazed by the rapidity of changes
occurring in our environment and helps us keep an open perspective on all
possible evolutions. The keys for synchronism between us and our surround-
ing universe are the adaptability, expressed by the ability of identifying and
understanding new emerging configurations, and the communication which
allows us to add our results to the general knowledge base and gives us the
possibility to probe the actual limits of our world. As the general tendency
is to move from disparate to integrated, from isolated to interconnected,
our need for effective communication and reliable information management
grows.

1.2 Peer-to-Peer vs. Client-Server

In a centralized system endpoints are divided into servers and clients. This
architecture is good for closed environments with simple relations between
endpoints but it is unfit to express the complex interactions that we have in
today’s web applications. The main limitation comes from having only one
role per endpoint (either client or server), thus the entire system being not
extensible enough to model new relations starting from the existent ones.

In order to be able to proper model these interactions we need a new
scheme, more flexible, where each endpoint has the ability to provide and
consume services in an autonomous manner. This is best modeled by a peer
to peer architecture.

We maintain the concept of service provider and requester but we change
slightly the demarcation between them. By allowing multiple services on the
same endpoint we can better model interactions between the different parts
of a distributed application. Shifting the perspective from the centralized

1

2 CHAPTER 1. INTRODUCTION

universe to a distributed one we enhance the overall functionality of the
entire system while reducing its load.

1.3 Subscription Services

Although necessary, the above change of perspective does not offer us the
entire power of expression we need, because we still find ourselves limited
by the nature of the communication. Frequently a web service is a synonym
with the retrieval of dynamic information. The usual scenario is that a
client connects to a server, makes a request and obtains a response. This
is a scenario of information ”pulling”. Although a pull only architecture is
quite powerful, it turns out to be completely un-practical in some cases, as
for example, in managing information subscriptions (i.e. a client wants to
be updated when data changes).

The pull paradigm is based on synchronicity, relying heavily on request-
response protocols and thus being unable to express asynchronous events.
The usage of web services with unpredictable execution time is possible only
by changing the communication between services.

Asynchronous behavior can be modeled by defining a new class of web
services, called subscription services. These services define a push archi-
tecture, this time the server being the one that initiates the data transfer
between itself and its subscribers.

In the following chapters I will describe the continuous services which
basically are subscription services that periodically send results to their sub-
scribers.

Chapter 2

Technical Context

In the followings we will define the basic notions that will be extensively
used in the next chapters, establishing the framework used for developing
continuous services.

2.1 XML

XML is the acronym for Extensible Markup Language. It is based on the
International Standard for structured information (SGML). Another known
language based on SGML is HTML (Hypertext Markup Language). All
the implementations of SGML are text based languages that use tags to
specify/define their structure. This makes them human readable and easy
understandable. XML could be seen as HTML’s brother in the respect
that they are both applications of SGML but some essential differences
make them complementary. The main difference is in their goal : HTML
is designed to describe how data should look while XML stands for data
structure. While HTML has a fixed set of tags, XML allows you to define
your own description of your data, in such a way that it makes sense to your
application. This gives us the essential difference between the two languages:
HTML is display oriented while XML is a human readable representation of
data, thus better suited for machine processing.

2.1.1 A Simple Example

A quick view of an XML document is:

<address>

<street>Rue de la Pacaterie</street>

<batiment>499</batiment>

<chambre>473</chambre>

<city>Orsay</city>

<region>Ile-de-France</region>

3

4 CHAPTER 2. TECHNICAL CONTEXT

<country>France</country>

<code>91400</code>

</address>

The above document contains structured information about an address. We
can see the elements clearly individualized by their tags which resume their
content.

2.1.2 Main Characteristics

Structure

Before XML, data exchange on the web was done through HTML. The
distant server usually had an HTML page through which it proposed it’s
services. The client’s browser displayed this page and the client was free to
examine the data it contained. For any dialog with the server, the request
was submitted back to the server which did the processing and then send
the results back to the client. A major speed-up to the entire process would
have been possible if the client had the ability to perform simple actions
on the data that it received instead of sending other requests to the service
provider. This couldn’t be done because HTML is inflexible and thus the
client had no possibility of understanding the data’s structure. All what he
was able to do was to display it, conforming to directives encoded in the
server’s HTML response.

For instance, lets consider the following situation: we have a service
provider that offers the telephone numbers of people living in Paris. Lets
take now a client, named Bob, that wishes to call his friend Jean. The first
thing he will do might be typing in Jean for a surname and wait for results.
As expected, the list of phone numbers that are assigned to all Jeans in
Paris will be quite big. When Bob will get this list he will want to refine
his search criteria. So he will fill in his friend’s family name: Valois and
send the request back to the service provider. And so on, until Bob would
have reduced the results list to a reasonable size that he will be able to scan
himself. What is wrong with this scenario is that each refining of the search
requires the service provider to perform an action and causes redundant
data to be sent over the network.

If the client would be able to refine himself the initial list, the exchange of
data between the two machines will be reduced only to the initial one. The
gain is obvious: the server does not have to perform the same operation over
and over again and the network overhead is drastically decreased by sending
only once the results. We will also have a decrease in the server’s usage and
therefore it will be able to service more clients in the same time interval. This
is what XML gives us: data structure. The client receives XML information
that he is able to interpret for himself, with the aid of a simple XML parser.
If Bob does not own a program for filtering the results(ie: a program that

2.2. WEB SERVICES(WS) 5

allows him to specify the family name, the address, etc.) the server could
provide one for him and attached it to the initial message. This program can
be a Java applet that once loaded will help Bob locate his friend’s telephone
number.

Interoperability

The diversity of machines and programming languages that we use is no
longer a problem for data communication. Inter platform and inter lan-
guage data exchanges are possible by the use of XML which is a standard
[12] for information representation. Being text and using unicode as en-
coding, we are sure that it can be parsed and interpreted on any kind of
machine while using any alphabet we want. The only thing that commu-
nicating applications need to know is what data structure to expect, which
can be easily described through two mechanisms : DTD (Document Type
Definition) and most recently, XML Schema. They allow to determine if an
XML document is valid or not and most of the XML parsers support them.
This type system is very useful because it gives us the means of specifying
our own document format.

Transformability

Write once and display in infinite ways could be a short characterization of
XML’s transformability. The idea is that you can display the same content
in multiple ways. This is accomplished through the use of XSL (Extensible
Stylesheet Language), a language that controls how elements from our doc-
ument are displayed. The main gain is that everyone can choose a different
way of displaying the same content only through a simple re-writing of the
XSL file.

Easy Querying

Having a hierarchical structure, XML Documents can easily be represented
as trees. There are multiple ways of traversing these trees and they all rely
on algorithms with strong theoretical background. All the operations that
will be performed on the tree representation will be reflected in the XML
document that describes it.

2.2 Web Services(WS)

The official definition of WSs’ given in [13] states that: a web service is a
software system identified by a URI, whose public interfaces and bindings
are defined and described using XML. Its definition can be discovered by
other software systems. These systems may then interact with the WS in a

6 CHAPTER 2. TECHNICAL CONTEXT

manner prescribed by its definition, using XML based messages conveyed by
internet protocols.

A WS is an abstract notion denoting a specific functionality. A WS can
have multiple implementations in different programming languages, thus
being deployed on different platforms. In the remainders the agent that
offers a concrete implementation of a web service is called service provider
and the service’s requester is called client.

2.2.1 Composability

Seen as concrete objects, web services are build following the component-
based model’s principles. This model expresses the composition of existing
objects into new ones with complex functionality. By reusing available func-
tionalities we can better concentrate on the essence of the new object and
not on its implementation details.

2.2.2 Technology Stack

Web services are not implemented in a monolithic way but they rather rep-
resent a collection of related technologies.

Remote Procedure Call

At the simplest level we can see a WS as an interface that allows two ap-
plications on different endpoints interact. We model this interaction by
performing remote procedure calls (RPCs). A remote procedure call means
invoking one application’s methods from distance. The data is exchanged
in XML format and the transport protocol is HTTP. The main advantages
are

• we do not need to design our own protocol of communication because
it is already provided by HTTP

• exchanging data in XML format over an HTTP connection means little
overhead on both participating endpoints

Simple Object Access Protocol (SOAP)

SOAP is a simple protocol for data transport. We give the definition of
SOAP from [14]:SOAP is a lightweight protocol for exchange of information
in a decentralized, distributed environment. It is an XML based protocol that
consists of three parts: an envelope that defines a framework for describing
what is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined data types, and a convention for
representing remote procedure calls and responses.

2.3. ACTIVE XML 7

Our framework uses SOAP for data exchange between WSs. All data is
converted into SOAP messages before being sent over the HTTP connection.
In case we had errors when sending/receiving the data, we will find them
in the SOAP response message, encoded in special error headers. Thus we
have a reliable communication system with error detection using a simple
HTTP connection.

Web Services Definition Language (WSDL)

WSDL has an XML representation, allowing us to describe a web ser-
vice, specifying its methods’ signatures. Its complete definition is given
in [15]:WSDL is an XML format for describing network services as a set
of endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message for-
mat to define an endpoint. Related concrete endpoints are combined into
abstract endpoints (services). WSDL is extensible to allow description of
endpoints and their messages regardless of what message formats or net-
work protocols are used to communicate.

2.3 Active XML

Active XML is a language used for transparent data integration.

2.3.1 Context

With XML and Web services, seamless access to heterogeneous distributed
information on the Web becomes feasible. This is crucial for many appli-
cations e.g. in the context of B2B, B2C or B2G, in particular those who
perform data integration using Web information. Let us therefore consider
data integration in more detail, and highlight some of the key benefits of
the AXML approach for it.

2.3.2 Data Integration

Typically, the goal is to integrate information provided by a number au-
tonomous, heterogeneous sources and to be able to query it uniformly. One
usually distinguishes between two main alternatives in a data integration
scenario: warehousing vs. mediation. The former consists in replication the
data of interest from the external sources, and working on this data locally,
whereas the latter relies on query rewriting mechanisms to fetch just the
necessary data from the sources at query time.

AXML allows to introduce flexibility in various ways. First, it assumes
a peer-to-peer architecture, so in particular, the integrator needs not be one

8 CHAPTER 2. TECHNICAL CONTEXT

particular server, i.e. many peers may participate to this task. Second, it
allows to follow a hybrid path between mediation and warehousing. More
precisely, it allows to warehouse only part of the information. Finally, it
considers Web services as first class components of the system, hence any
new Web resource that uses Web services standards may be discovered and
integrated. Thus, in some sense, AXML also allows “service integration”.
It should however be observed that AXML is not a technique for data inte-
gration (such as e.g., Information Manifold), but a language and a system
to facilitate data integration.

2.3.3 Distributed Data

Beyond data integration, the ambition of AXML is to facilitate the deploy-
ment of distributed applications based on distributed data sharing at large.
It is thus a relevant technology for a wide range of applications such as
comparative shopping or cooperative editing.

The essence of AXML is very simple. An AXML document is an XML
document with embedded Web service calls. More precisely, it is a valid
XML document (so it may benefit from all existing software tools for XML)
where some particular elements (the ones labeled sc are interpreted as service
calls. The presence of these elements make the document intensional, since
some of the data of is given explicitly, whereas for some of it, a definition
(i.e. the means to acquire it when needed) is given. AXML documents
may also be seen as dynamic. The same service called twice may give a
different answer (e.g., because the external data source changed), so the
same document at different time will have a different semantics, possibly
reflecting world changes.

We name a system responsible for storing and managing AXML docu-
ments an AXML peer.

2.3.4 Behavior

An AXML peer has a double role, acting as a:

• client because activations of the calls inside documents use Web ser-
vices provided by other systems.

• server in the sense that it provides querying facilities on its repository
of documents. These are exposed as Web services.

When a service call is activated, the data it returns is inserted in the docu-
ment. Therefore, documents evolve in time as a result of service calls. This
process of materializing some calls plays a crucial role in our approach.

The above description of Active XML is just an overview of the language.
For better understanding we refer the reader to: [4], [5], [6], [2].

2.4. TECHNICAL ENVIRONMENT 9

2.4 Technical Environment

In the followings we will describe only the relevant parts for continuous
services of the project’s technical environment, avoiding to present all the
products used by Active XML’s framework.

2.4.1 Programming Language

As a programming language we used Sun Microsystem’s Java language. This
is a high-level language that is: simple, architecture neutral, object oriented,
portable, distributed, performant, interpreted, multi-threaded, robust, dy-
namic and secure. We choose to use Java because it modeled very well
our intentions of building a portable, web service oriented application in a
cost-free environment. Besides its high functionality what we used most in
developing continuous services were the packages that offered an implemen-
tation of RPC.

2.4.2 Web Server

As web server we decided to use Apache’s Tomcat Server. As defined in
[17] Tomcat is the servlet container that is used in the official Reference
Implementation for the Java Servlet and JavaServer Pages technologies. The
Java Servlet and JavaServer Pages specifications are developed by Sun under
the Java Community Process.

A servlet container is a runtime shell that manages and invokes servlets
on behalf of users. Being one of the most performant web servers available
and being developed in Java, Tomcat was a natural choice as a web server
in our framework.

2.4.3 SOAP Engine

As SOAP provider we decided to use Apache’s Axis. As defined in [16]
Axis is : essentially a SOAP engine (a framework for constructing SOAP
processors such as clients, servers, gateways, etc).

The current version of Axis being written in Java made it the perfect
choice for our programming environment. Axis’ main features are:

• speed - Axis uses SAX (event-based) parsing to achieve significantly
greater speed than earlier versions of Apache SOAP.

• flexibility - The Axis architecture gives the developer complete free-
dom to insert extensions into the engine for custom header processing,
system management, or anything else you can imagine.

• stability - Axis defines a set of published interfaces which change rel-
atively slowly compared to the rest of Axis.

10 CHAPTER 2. TECHNICAL CONTEXT

• component-oriented deployment - Reusable networks of Handlers per-
mit to implement common patterns of processing for user’s applica-
tions, or to distribute to user’s partners.

• transport framework - Axis has a clean and simple abstraction for
designing transports (i.e. senders and listeners for SOAP over various
protocols such as SMTP, FTP, message-oriented middle-ware, etc),
and the core of the engine is completely transport-independent.

• WSDL support - Axis supports the Web Service Description Language,
version 1.1, which allows an easy building of stubs to access remote ser-
vices, and also to automatically export machine-readable descriptions
of deployed services from Axis.

Chapter 3

Continuous Services in
Active XML

3.1 General View of the Architecture

A subscription is a special service call that is fired only once and that pro-
vokes periodical answers from the invoked continuous service. Keeping a
simplified view of the subject, we can graphically model the interactions
that occur between a subscriber and a continuous service provider as in
Figure 3.1

Continuous services allow servers to push information to their clients that
will integrate it into their applications. By adding support for continuous
services in Active XML we added a push feature its architecture. This means
that at a given moment, the server can open a connection with a client and
send it the expected data. Having a distributed peer-to-peer architecture
in Active XML made modeling this asynchronous behavior easy, in spite of
the synchronous communication protocol between the different peers that
we use. By defining multiple services on the same peer we make the clients
act as servers, thus having multiple roles on the same endpoint. The same
functionality would have been much harder to obtain in a traditional client-
server architecture where the roles played by the endpoints are fixed and
the extensibility of the system is reduced.

The general behavior of continuous services in Active XML is shown
in Figure 3.1 where we have a service running on the client’s peer, called
Callback, that integrates the data received from the server in the client’s
application. Callback defines the aforementioned change in the roles played
by the two peers: the service provider becomes a client of its client’s Callback
service.

The behavior depicted in Figure 3.1 can be expressed by the following
steps:

1. The client sends a subscription request to the service provider which

11

12 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

Continuous Service

Evaluate

Answers

Subscription

Integrate

Peer A Peer B

Callback Service

Figure 3.1: General Architecture View

registers it.

2. Periodically, the service provider will do the following actions:

• Evaluate the subscription.

• Call a possible post-processing service(if it is specified to do so in
the subscription).

• Call back the client sending it the results (perform the callback).

3. The client, in its turn will periodically integrate the results he receives
form the service provider to which he subscribed.

The advantages of this model are obvious if we try to obtain the same
behavior with a pull only architecture. The client would have to ”poll” the
server by firing the same service call over and over again, as often as we
wish to receive our results. This means sending the same information over
and over on the network, generating an overhead at network level. It also
means that we have a good chance of asking a result from the server when
the data is not available for the clients, thus introducing an extra overhead
at peer level by forcing the peer to evaluate calls that it cannot respond to.

An even more important limitation that we overcome using a push ar-
chitecture is the one given by the timeout of our synchronous connections.
This means that if we are not using an open connection for a period of
time greater or equal to the maximum allowed inactivity time interval, the
connection will be automatically closed. It is obvious that this reduces our
capacity of using(or integrating) in our application services that have a non-
determined (or extremely large) execution time or services that give partial
results. While a pull system relies on open connections to retrieve data from

3.2. SERVER SIDE BEHAVIOR 13

the service provider, a push one needs an open connection only for sending
the subscription and every time when the service’s result is available for the
client. The rentability of a push architecture is evident if we consider the
following simple example: lets say that we are stock broker and that we
need monthly forecasts on stocks’ prices. We’re using a service offered by
New York Stock Exchange (NYSE) that takes 20 minutes to calculate the
forecast for a given month. Lets suppose that we’re connecting to it using
our mobile phone. In a pull only architecture this means that we must keep
the connection open for 20 minutes, which is quite costly, while in a push
system we can connect only as long as it takes to send the subscription and
then we can disconnect and the service will send us the result when it will
be available.

Our main goal was to make the entire subscription process transparent
for the client and the definition of a continuous service as intuitive as possible
for the service provider, while maintaining a high configurability.

Further on we will go into detail and analyze how things happen on
server and client side. We will describe their behavior and give concrete
examples.

3.2 Server Side Behavior

One of the major features we introduced in Active XML is the possibility
to take any existing service and make it continuous. We can see the process
of turning a normal service into a continuous one as a ”wrapping” of that
service in a continuous envelope.

The basic behavior on server side can be expressed by the following steps,
which can be repeated several times:

• Call the wrapped service

• Retrieve its result

• Send the result back to the client’s Callback service

This describes the basic process of dealing with a subscription.

3.2.1 Server Side Post-processing

We will denote by the general term of post-processing any computation
performed on by a dedicated service.

Above we have presented the general route that data takes on the server’s
side. Having a modulable architecture allows us to plug-in services that
perform post-processing on data before we send it to the client’s Callback
service. An example of post-processing that we can perform on server side
is a service that returns the differences between a document and its prior

14 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

version. We will name from now on this service ”Diff”, calling the function
that gives us the differences between two versions of the same document
doDiff. A scenario that shows its use could be the following one: lets say that
we are NYSE and we offer a continuous service that sends every 10 minutes
stock quotes. If we could send our clients only the quotes that changed
since the last transmission we would reduce the overhead at network and
peer level by transmitting a significantly smaller amount of data through
the system. To do this, we use the aforementioned doDiff method on the set
of actions, comparing it with the previous one. Then we will do the callback
with this data. The client will then integrate the data as we will explain
later.

3.2.2 Restrictions

Once we offer continuous services on our peer we must be able to control
the load that they will bring to our system.

Response Frequency

The load that a continuous service introduces on the peer where it is defined
is provoked mainly by the frequency of calls towards the wrapped service.
It is therefore a necessity to be able to impose a maximum allowed value
for this frequency, thus making sure that we will not exceed our peer’s
resources and that we will have a reasonable tradeoff between the number
of clients that we will accept and the peer’s performance. Through this
maximum frequency we can express constraints that are linked with the
wrapped service’s functioning (e.g. there is no point in doing multiple calls
to the wrapped service before it has the chance to execute once). Besides a
maximum frequency we should also be able to define a default one, that we
will use in modeling a default behavior of our continuous service at callback
level.

Subscription Control

In some applications we need to perform a finer control of incoming sub-
scriptions. Therefore, we need an optional set of parameters that allow us
to impose subscription related restrictions.

In order to better control the load that a continuous service brings on
the current peer we need to limit the number of subscriptions that we will
accept. Imposing a maximum number gives us an idea about the maximum
load that the respective service will bring to the peer.

Another part of the load introduced by a continuous service on its peer
is given by the saving of missed results for registered subscriptions. In order
to avoid saving results for a client that is almost never present we could
limit the time interval for saving consecutive results.

3.2. SERVER SIDE BEHAVIOR 15

Even if a client is always connected and the callback is always successful,
we might want to limit its subscription validity. The importance of this
feature is well shown by the following example: NYSE offers free access to
the previously mentioned stock quoting service for a period of one week and
after that the clients that would like to continue using the service must pay
for their subscription.

Ongoing Work

Ongoing work is directed towards a dynamic load analysis on the local peer.
The system that we are designing will be able to dynamically configure
the peer (e.g. it will dynamically establish the response frequency for a
continuous service, decrease or increase the number of its subscribers a.s.o.)
using in an efficient manner available resources.

3.2.3 Error Handling

The subscription schema described in Section 3.1 does not consider the errors
that might appear in the system’s run. Because of various problems that we
might encounter in different situations we have to define a fallback sequence
that will make our system reliable. The main challenge that arises is to define
a behavior for the case when the client’s Callback service is not reachable (ie
network error, client is not on line, a.s.o.). This behavior will depend on the
parameters that are specified by the client when it makes the subscription
and on the service’s specific parameters and constraints.

Adding error recovery to the schema presented in Figure 3.1 we can now
express server’s behavior by two distinct actions: callback and fallback, their
sequencing being:

1. Try to perform callback

2. If this fails, do fallback

The callback is performed as it was previously described and as a fallback
strategy we propose the following one:

1. Perform forwarding - The client has the possibility of providing a list
of endpoints where he wishes to have his results sent in case he is not
reachable. The first step in the fallback sequence is to forward the
information to the specified forwarding locations (i.e. we will make a
call for each given endpoint until we have successfully contacted one
of the peers or we have finished the list).

2. If forwarding was successful, then fallback is over.

3. If not, then we save the result locally and we will send it when the
client is reachable again. We have a dedicated service that does the

16 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

Callback

Callback

Callback

CALLBACK

Caching

D
O

 C
A

L
L

B
A

C
K

Post
Processing

Forwarding List

PDA

PC

Phone

2

1

3

4

5

Figure 3.2: Server Side Behavior

saving of missed results. We will call it the ”caching” service and we
will discuss it more extensively in Section 3.5. The client is able to
specify what results he wishes to receive from the cached ones when
he will be reachable again.

This strategy is a tradeoff between the overhead on service provider’s peer
and reliability, other strategies being imaginable under different system re-
quirements. A graphical example of the fallback sequence is offered by Fig-
ure 3.2 The sample behavior illustrated in Figure 3.2 passes through the
following states:

1. First we try to call back the client. This call fails because of an error
that occurred when sending information to the client (e.g. a network
error)

2. We try then to call the endpoints provided by the client in the for-
warding list. We call the Phone Peer and we have no success

3. We call the PDA peer without success

4. We call the PC peer without success

5. The forwarding failed because we didn’t manage to successfully call
any of the provided locations. We move to the next step and we do
the caching of missed result

Our particular fallback strategy can be represented by the automaton
shown in Figure 3.3 Below we give the evolution that models the fallback
example provided in 3.2.

We identify the initial state of the system with the moment of receiving
a subscription. Then we call the wrapped service. If the call to the wrapped

3.3. CLIENT SIDE BEHAVIOR 17

ForwardTransformCallbackCallSubscription Caching

Forward

Callback_OK

Forward_OK

Caching_OK

Figure 3.3: Server Behavior

service goes well we proceed forward and call the post processing service(if
so specified in the subscription) and do the callback. If all goes well, we
try to do the callback. If the callback goes well, we’ll repeat the sequence
again after the specified time interval has elapsed. If the callback does not
go well, we proceed to fallback. We first try to forward the result to the
specified list of endpoints until we succeed or we have no more peers to call.
If forwarding fails, we do caching (if so specified) of the result and we start
all over again.

3.3 Client Side Behavior

After subscribing to the continuous service, the client will start receiving
periodical results from the respective service. The entry point on the client’s
peer for the data sent by the server is the Callback service. It is this service
that will deal with the integration of received data in the client’s application.
We have defined the integration process according to Active XML’s principle
of merging data obtained from a service call next to the node that fired the
respective call. We obtain the respective node using the service call’s id,
received as parameter by the Callback service. The result of the service will
be inserted as service call’s node next sibling and the document will be then
updated by the rules provided in the service call’s definition.

The client side effects of a subscription to a continuous service can be
illustrated by the following example: lets consider that we do a subscrip-
tion call to a continuous service called ”ContinuousInLineGetStockPrice”.
This continuous service returns an element representing quoting information
about a certain company, identified by its NYSE index. The result returned
by the ”ContinuousInLineGetStockPrice” has the following structure:

<?xml version="1.0" encoding="UTF-8"?>

<company>

<openingprice>34.49USD</openingprice>

<closingprice>34.86USD</closingprice>

<index>MSFT</index>

</company>

18 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

Post−processing Service

Integration Service

Subscription’s Document
Result

Pp(Result)

Result from CS

Result

Subscription

Figure 3.4: Client Side Bahavior

After receiving a couple of results from the invoked service, the document
that fired the subscription call looks like:

<?xml version="1.0" encoding="UTF-8"?>

<test_compil_inline_cont...>

<!- Subscription call -->

<company>

<openingprice>34.49USD</openingprice>

<closingprice>34.86USD</closingprice>

<index>MSFT</index>

<date>Mon 29 Jun 2003 05:01:02 PM CEST</date>

</company>

<company>

<openingprice>37.13USD</openingprice>

<closingprice>37.23USD</closingprice>

<index>MSFT</index>

<date>Mon 30 Jun 2003 05:01:12 PM CEST</date>

</company>

</test_compil_inline_cont>

The received results are integrated as siblings of the node that contains the
subscription.

3.3.1 Client Side Post-processing

The steps described above present the general route that information follows
on the client side, from Callback service to the subscription’s document.
Having a modular architecture, we are able to plug-in between the Callback
service and the moment of insertion in the document one or more dedicated
services that perform post-processing on the received data.

3.3. CLIENT SIDE BEHAVIOR 19

To better grasp what client side post-processing is we could consider the
following example: lets say that we use the NYSE stock quoting service
defined in the previous section. This service sends us only the companies
that have changed stock price since its last transmission. A client displaying
the entire list of companies and their quotings subscribes to this service. If
this client were to integrate directly the received results in his application, it
would display information only about a few companies that changed quotes.
It is obvious that we need some kind of received information’s processing on
client side in order to retrieve the entire list of companies, updated by the
last minute changes, needed by the client. In order to perform the desired
processing of data we use a dedicated service (the Diff) that is able to
reconstruct a document starting from a given set of differences between the
document and one of its prior versions and the prior version itself. We will
call the method that does the aforementioned reconstruction applyDelta.
This method will be used by the Callback service once new data is available
and will return to the Callback service the new version of the document that
will be further integrated in the subscription’s document.

3.3.2 Server Directives

A number of directives can be passed by the client to the server in order to
control the server side subscription behavior.

Desired Time Interval

The first thing we saw fit to define was a desired time interval(DTI) for
receiving the results from the continuous service. The use of this parameter
is evident if we consider the following example: lets say we are a financial
site that displays stock quoting information three times a day. We are using
a stock quoting service provided by NYSE which has the default frequency
of response of 10 minutes. It is obvious that we do not need updates on
stock quotes every 10 minutes so we would like to be able to specify to the
service provider that we would like our results sent only three times a day,
thus avoiding an overhead at network level.

Reducing the frequency of receiving results from a service might be the
most straightforward application of the DTI but it is not the only one. A
more subtle utility of this parameter could be to increase a service’s response
frequency. Lets take the reverse of the previous example and assume this
time that we need results every ten minutes and NYSE’s service usually
sends results only three times a day. Then, by specifying a DTI of 10
minutes we inform NYSE’s service that we have a subscription that needs
special treatment. Depending on server provider’s configuration, it can send
us results at the required time interval or it can tell us that it is not able
to do with such high frequency of pushing data. In the first case we will

20 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

receive results with our desired frequency and in the second we can start
looking for another service provider that is able to offer us the same data at
our desired rate.

Server Side Post-processing of the Results

Another usefull option that we made available to the client is the possibility
of defining post-processing of the received results. The client could instruct
the service provider to use a desired processing service (e.g. Diff) and to do
the callback with the processed data (e.g. to send only the differences). For
the moment we are using a default post-processing service, the Diff service
but ongoing work is to dynamically use any post-processing service specified
by the client.

Caching the Missed Results

As the default server side behavior is not to cache the missed results it
might not be convenient for some applications. A simple example is the
following one: lets say that we are a financial web site that does statistics
on stock quotes evolution. For retrieving the stock quotes we use the pre-
viously mentioned NYSE stock quoting service. Lets assume now that for
a reason or other we find ourselves in the impossibility of communicating
for a while with the continuous service. As we need the evolution of stocks’
prices for our statistics, we need to know what happened during the time we
were not able to communicate with the NYSE’s service. Thus, we need to
instruct the service to save the results for us while we are not reachable and
send them when callback resumes. For the moment we are using a default
Caching service that is on the server’s peer but ongoing work is to define
and implement a generic one.

Forwarding List

As the default server side behavior is not to perform the fallback sequence
when the callback cannot be completed this might not be convenient for some
applications. In some cases, the forwarding part of the fallback sequence
might be crucial for the application. A typical example would be the one
of a business man that needs to take decisions rapidly according to stock
price. Lets assume that at some point the network connection between his
laptop and the NYSE’s stock quoting service is broken but his mobile phone
is working. It would be then very usefull to have the information sent to
his phone, as plain text messages. It is now obvious that we need to offer
to the client the possibility of specifying a list of endpoints where he would
like his results forwarded in case of callback error.

3.4. SYNTAX DEFINITION 21

3.4 Syntax Definition

When building web services we have to take a dual perspective, regarding
the system on its two facets: the service provider’s one and its client’s
one. Although it complicates the overall treatment of the problem, doing
this way allows us to design a flexible architecture where the roles are well
defined and the interactions between the endpoints are carefully modeled.
Every time that we add functionality to one side we must also take into
account the impact that this will have on the other side. The process of
building a syntax, of defining continuous services is an iterative one, every
newly discovered aspect being added to the system in order to render it as
complete and reliable as possible.

3.4.1 Server Side Syntax

The syntax we defined for the server side integrates the main parameters
that we have presented in Section 3.2.

As a matter of technical detail, we allow the user to define directly in
the continuous service’s definition the wrapped service that will be made
continuous. This is very useful because we spare the client from the sor-
did details of writing a separate definition for the wrapped service and of
publishing it.

To see how the syntax looks like we can give a straightforward example
of a continuous service definition that wraps an inline defined service:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<serviceDefinition name="ContinuousInLineGetStockPrice"

type="continuous">

<coreServiceDefinition type="query">

<parameters>

<param name="NYSE_Symbol"/>

</parameters>

<query><![CDATA[

select <company>

c/openingprice,

c/closingprice,

c/index</>

from c in NYSE//quotations/company

where c/symbol/ = NYSE_Symbol;]]>

</query>

</coreServiceDefinition>

<!-- Continuous Service Parameters -->

<parameters>

<param name="NYSE_Symbol"/>

</parameters>

22 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

<!-- Post Processing Service SOAP Params -->

<transformService

URL="http://localhost:8080/axml/servlet/AxisServlet"

methodName="doDiff"

nameSpace="SimpleDiffService"/>

<!-- Caching Service SOAP Params -->

<cachingService

URL="http://localhost:8080/axm/servlet/AxisServlet"

methodName="doCaching"

nameSpace="SimpleCachingService"/>

<!-- Frequency Settings -->

<frequency default="60000" max="10000"/>

<!-- Subscription Settings -->

<subscription maxLifeTime="8640000"

maxSuspensionTime="86400"

maxClientsNo="15000"/>

</serviceDefinition>

The correspondence between the tags present in the above definition and the
parameters defined in Server Behavior Section is given by the followings:

• coreServiceDefinition - definition of an inline service that is just a usual
declarative service definition in Active XML

• parameters (exterior to coreServiceDefinition) - parameters received
by the continuous service.

• transformService - SOAP parameters of the Post-processing service

• cachingService - SOAP parameters of the Caching service

• frequency - maximum and default frequency values

• subscription restrictions:

– maxLifeTime - maximum subscription validity time

– maxSuspensionTime - maximum subscription interruption time

– maxClientsNo - maximum number of subscribers

Without changing too much the syntax for defining a normal service we are
now able to declaratively define continuous services, adding expressivity to
Active XML.

3.4.2 Client Side Syntax

On the client side we had to define a way to call a continuous service. We
have established that we will use a subscription paradigm. The scenario is

3.4. SYNTAX DEFINITION 23

that the client subscribes to the desired continuous service which will send
back periodical answers. It is then obvious that we have to define a set of
parameters that allow us to call a service, i.e. to properly invoke it. We will
call them SOAP parameters. The SOAP parameters of a service are:

1. Endpoint URL - the address of the peer where the respective service
is deployed

2. Name Space - the name of the service

3. Method Name - which one of the service’s methods to use

Every time that we make a service call we need these parameters’ values. For
continuous services, following the behaviors depicted in the above sections,
we will use SOAP parameters for calling the:

• Continuous Service

• Post-Processing Service (both client and server side)

• Callback Service

• Caching Service

As the architecture we presented for continuous services is a basic one it is
obvious that in real life applications we will customize it by adding services
required by our application’s logic. These services will also be called using
their SOAP parameters, just as we did for the four services enumerated
above.

After establishing a general frame for continuous services on client side
we had to define a syntax that will allow us to integrate this frame in Active
XML. Our main goal was to make the syntax transparent to the user and to
realize all the functionality we needed while making a minimum number of
changes to Active XML. We tried to offer both a default and an advanced
way of making a subscription. In the default way subscribing requires min-
imum intervention from the client. A bit more complicated, the advanced
way lets the client specify a desired server side behavior for his subscription.

The default behavior for a subscription on server side is to perform the
callback using neither post-processing of the results nor fallback procedure.
This means that if the callback does not succeed, the missed information
will not be kept and the client will start receiving again results from the
service when it will be reachable again. The data that is sent when callback
is performed is directly the answer from the wrapped service without any
processing added on server side.

When using the default way of subscribing to a service the only thing
that needs to be done is to identify the service call as a subscription. The
system will then add the SOAP parameters of the Callback service as well

24 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

as parameters needed by the Callback service to perform data integration.
An example of making a simple subscription could be:

<?xml version="1.0" encoding="UTF-8"?>

<test_compil_inline_cont

xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<axml:sc callable="true" frequency="once"

methodName="doSubscribe" mode="replace"

serviceNameSpace="ContinuousInLineGetStockPrice"

serviceURL="http://xhost:8080/axml/servlet/AxisServlet"

subscription="true">

<axml:params>

<axml:param name="NYSE_Symbol">MSFT</axml:param>

</axml:params>

</axml:sc>

</test_compil_inline_cont>

As you can see, the only thing that differs in the subscription given above
and a standard Active XML service call is the attribute subscription set to
true. The rest of the subscription’s attributes are standard in an Active
XML service call. Their meaning is:

• SOAP parameters of the continuous service we wish to subscribe to

• service call’s frequency set to once (a subscription being a service call
that is fired only once

• way of inserting the result in the document containing the subscription

Although the default behavior for a subscription is used in most of the
applications there are some cases when it might prove totally un-adapted to
application’s needs. We must then define a set of optional parameters that
express the server directives given in the Client Behavior Section.

The following example shows how these parameters integrate into a ser-
vice call:

<?xml version="1.0" encoding="UTF-8"?>

<test_compil_inline_cont

xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<axml:sc

<!-Same parameters as for the default subscribing -->

desiredFrequency="15000" useCaching="true" useDiff="true"

forwardingList="URL1 URL2...URLn">

<!-- Same continuous service parameters as above -->

</axml:sc>

</test_compil_inline_cont>

3.5. CACHING SERVICE DEFINITION 25

Because we use a generic Caching service and a generic post-processing
service on the server, we just need to specify whether we want to use them
or not by setting the values for useCaching and useDiff to true. Ongoing
work is done to restructure the service call element, moving most of its
attributes as interior elements (the same way we are grouping Active XML
parameters of the called service). We are also working on allowing the client
to choose a Caching service and a post-processing one that are defined on the
server. The interest in having multiple post-processing services and multiple
Caching services on the service provider’s peer is that we render the entire
system more flexible, more adapted to client’s needs. Taking into account
all the modifications that are in progress, a future view of the same service
call could be:

<?xml version="1.0" encoding="UTF-8"?>

<test_compil_inline_cont

xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<axml:sc

<!-Same parameters as for the default subscribing --> >

<forwardingList>

<peer>URL1</peer>

<peer>URL2</peer>

.................

<peer>URLn</peer>

<forwardingList>

<serverDirectives>

<defaultFrequency>15000</defaultFrequency>

<useCaching>true</useCaching>

<useDiff>true</useDiff>

</serverDirectives>

<!-- Same continuous service parameters as above -->

</axml:sc>

</test_compil_inline_cont>

3.5 Caching Service Definition

Used in continuous services on the server side, the Caching service allows
saving and later retrieving the results that the clients missed. Because we
have a loose coupling between clients and servers in Active XML we have
no prior possibility of anticipating when a client will become unreachable
and for how long it will stay that way. It is only when we have a successful
callback that we know the client is online. Thus the problem is designing
a result sending system that has a low overhead at network and peer level
and that is configurable by the clients and by the server.

26 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

3.5.1 Client Options

The clients should be able to specify what they want to receive from their
cached results. The first tendency could be to send them the entire set of
results they have missed but this might prove un-practical in some situations.

Time Span of Results (TSR)

A first parameter that seemed appropriate to define was the time span of
desired results. This means that a client can specify to receive only the
results that are within the respective interval from the current date. The
importance of being able to choose the time interval for interesting results
is clearly shown if we consider our previous example with the NYSE stock
quoting service. The frequency for this service is 10 minutes. Lets say that
we have a client that does two-week statistics regarding stock price evolution
and that he missed his results for 3 months. It is obvious that he would be
interested only by the results corresponding to the last two weeks and not
by their whole set.

Caching Mode

The client should be allowed to choose a Caching Mode, depending on his
application. For instance we might have a client that wishes to cache only
the last result or one that wishes to cache a result every N failed callbacks.

3.5.2 Server Options

On server side, the peer’s owner should have the possibility of configuring
the Caching service accordingly with the available resources and the type of
services proposed.

Behavior on Successful Callback

We should let the service provider choose what to do with the cached results
after they were transmitted to the client. Keeping cached results has an
interest if we consider optimizations at peer level.

Maximum Size

A usefull option that the service provider should have is to limit the maxi-
mum size of his caching space, thus managing his total storage space on his
peer.

3.5. CACHING SERVICE DEFINITION 27

Caching Mode

If the client can choose which one of its results to have cached, the service
provider can choose how to do the actual saving of results. The caching mode
on server side specifies whether we want to compress the results before saving
them or to save them directly as we received them. The first alternative
brings an overhead at computational level, by introducing processing of the
data before it is saved, while the latter one brings an overhead at spatial
level by saving uncompressed data.

3.5.3 Optimizations

We wanted to optimize a peer’s behavior through an efficient use of the
caching service. The first idea was to use the Caching service not only to
save missed results but also to share results.

Context Invariance of a Service

We define the context invariance of a service as the time interval where calls
to that service will return the same result. For better understanding of the
concept we extend the example with NYSE stock quoting service and we
assume that quotes change every 10 minutes. It is obvious that calls that
happen in that time interval will return the same result. Thus we can say
that the context invariance of NYSE’s stock quoting service is of 10 minutes.

Grouping Service Calls

The service calls addressed to the same service, that have the same param-
eters and are inside the respective service’s context invariance will obtain
the same result. We say that these equivalent service calls define a group
of likeliness. Having grouped equivalent service calls we observe that it is
efficient to fire only one service call per likeliness group and then use its
result in servicing the rest of service calls in the respective group.

Different Kinds of Sharing

We can assimilate the grouping of service calls defined above with the more
general notion of sharing the same result. Because we use services’ results
either to perform callbacks or to cache them we can do a sharing of:

• already cached results

• wrapped service results

Sharing already cached results has a major impact to the storage space
required by the Caching Service because we can save a result per likeness
group. The second type of sharing is important because it reduces the

28 CHAPTER 3. CONTINUOUS SERVICES IN ACTIVE XML

overhead at peer and network level by performing only once the call per
likeness group. This means that the service will be invoked only once and
thus we will avoid computing multiple times the same thing. It also means
that we avoid sending redundant information over the network (e.g we have
an exterior service that we wrap into a continuous one. Every time that we
execute callback we have to fire a call to the exterior service. If we have a
likeliness group, we will call the wrapped service only once and then use its
result in performing all callbacks for the respective likeness group)

3.5.4 Ongoing work

We are currently focused on implementing a coherent system of optimization
at peer level, integrating the optimization performed at Caching service’s
level with the dynamic analysis of the peer’s load and load balancing between
peers.

Chapter 4

Composed Services in Active
XML

Once we had defined continuous services and implemented them in Active
XML, we realized that we could have done it much more easily if we had a
way, a functionality that would have allowed us to compose existing services.

The interest was high because of the extensibility that we could have
obtained at the language’s level once we were able to take basic bricks that
were already defined and use them to build complex services, better suited
to our needs.

The advantage was that being able to form very easily new services, the
entire system became highly modulable. Imagine that we provide a standard
set of services that we deploy on every peer. The peer’s owner is then able
to define his own desired functionality according to his possibilities and the
role he wishes to play on the web. As an example of a particular workflow
we can consider the automaton defined in Section 3.2 that modeled the
server’s behavior. It is obvious that having a simple declarative language
for workflow can ease the definition of such behaviors.

We can better grasp the importance if we consider the following straight-
forward example: lets say that we have two Active XML peers, a Personal
Digital Assistant (PDA) and a regular desktop PC. Our basic set of services
consists of a service that allows us to query an Active XML document (we’ll
call it from now on ”query ”), a service that gives us the differences between
two XML documents or permits us to reconstruct an XML document start-
ing from its differences with one of its previous versions and the respective
version (the Diff service previously defined) and a service that integrates the
results into an Active XML document (Callback service). What we would
like to define is an application that queries a document on one side and
sends the differences(delta) with previous results to the other side. Because
of obvious limitations in power and space on the PDA peer, we will deploy
our XML documents on the PC peer and send the results to the PDA. If we

29

30 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

are able to compose services, we can quickly form new services that model
the above described behavior, starting from the existing base kit. On the
PC peer we will take the query service and compose it with the Diff service
thus performing queries and sending over the connection only the delta. On
the PDA we will use the Diff service in order to retrieve the new document
starting form the current delta and the previous version and the Callback
service that will integrate this document in the specified document.

There were two major directions that we considered when we added
composed service functionality to Active XML:

• The first one was to define our own language for composing existent
web services and to provide a workflow engine that would realize the
actual composition of services.

• The second one was to reuse an existent language that described the
services’ composition, or eventually a subset of such a language and
to reuse an existent workflow engine that implemented it.

4.1 Implementing our own WF language and WF

engine

The advantages of having our own (restricted) WF language are the follow-
ing:

• We can adapt it better to our needs, being us its architects.

• We are not dependent of a specification that might change overnight,
thus forcing us to re-think our application’s logic.

A first idea could be to realize just the language and to compile from it to
another WF language (ie: BPEL4WS) that already has implementations of
WF engines (ie: BPWS4J). Although this is faster to realize, it does not
offer us total independence from proprietary specifications. It mearly means
that every time the specification changes, we have to change the compiler
that does the translation between the two WF languages.

If total independence from specifications is what we want then we are
forced to provide our own WF engine that will implement the WF language
that we defined.

4.1.1 Restricting the General Problem to Our Needs

There are numerous papers that address the general problem of a workflow
language for composing web services [10], [11], offering its complete descrip-
tion and formalism. We do not wish to implement the entire functionality
presented in the aforementioned papers but only a small set of it that is

4.1. IMPLEMENTING OUR OWN WF LANGUAGE AND WF ENGINE31

SC4

SC2

SC3

SC1 $d
$a

$b $e

$f

$c $result

Figure 4.1: Composed Service Example

usefull for a simple service composition in Active XML. In the followings
the modeling of the problem and the solutions we will provide are restricted
to the service composition in Active XML, that are applicable to continuous
services.

The first thing we wanted to do is to be able to define a new service as
a sequence of existing ones. In order to make the new service accessible we
have to define its interface (ie: what are it’s methods signatures - parameters
and their types, what is the structure of the returned result). When we are
executing a sequence of services we might have dependencies between the
output of one service and the input of another one. We must therefore
accept that not all parameters of a service are known (evaluated) from the
beginning and thus we have to expand the notion of parameter to that of a
variable.

In order to use as much as possible from the existing functionality in
Active XML, we can model our simple workflow by composing service calls.
This way the execution of a service will be represented by an Active XML
call to that service. The only differences with the usual manner of firing
calls from an Active XML document are:

• the invoked service’s result will replace the call that triggered its exe-
cution

• we are able to bind parameters at runtime

We need only to define a new syntax that will give us the order of calls
and their nesting. Lets take a simple example of defining a web service that
is composed by four different other services, situated on different levels (see
Figure 4.1).The inputs for the four services are: S1(a), S2(S1), S3(b) and
S4(S2, S3, c).

A sequence of service calls means that we have a fixed order for evaluating
the respective calls and that implicitly the result from one service call is the
input of the next one. Thus we model the sequential behavior of the system.
It is obvious that we cannot limit only to a sequential treatment of service
calls, because we will loose drastically in terms of performance. In the above

32 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

example it would mean to disregard the fact that S2 and S3 can be treated
in parallel. The order of evaluation is also very important (ie in our example
we need to evaluate first S1, then S2 and S3 in parallel and at last S4). This
order can be inferred by the examination of available parameters and by
following an execution plan that will optimize the firing of calls situated on
the same level and exterior to sequences. Once all parameters for a service
call are known, we are entitled to fire the call.

Another problem that arises is that of cycles in the composed service’s
definition. We should not execute definitions that contain interdependent
service calls because we would find ourselves in the situation of looping
forever inside the cycle. To solve these problems we build a dependency
graph, imposing the condition of aciclicity (we obtain a tree representation
of service calls evaluation). What rests to be specified is the transfer (or
correspondence) of parameters. For this we name the parameters and we’ll
do a name based coupling between outputs and inputs of services.

Although parameters are well coupled according to their names we can
still have mismatches between them. A mismatch occurs when we are trying
to give to a parameter a value with incompatible structure. We will perform
a static detection of the mismatches based on the service’s WSDL. This
detection is done by statically analyzing the service’s WSDL and deciding if
the values that we’ll use as input for the respective service match its input
parameters. If parameters do not match we will add a service that will do
the matching (e.g am XSLT - stylesheet one).

4.1.2 Simple Workflow Example

A straightforward example would be to define the composed service illus-
trated by Figure 4.1:

<serviceDefinition name="ComposedService" type="composed">

<parameters>

<$a,$b,$c>

</parameters>

<SC1>

<axml:sc1...>

<axml:params>

<axml:param name="$a"></axml:param>

</axml:params>

</axml:sc1>

<result name="$d">

</SC1>

<SC2>

<axml:sc2...>

<axml:params>

4.1. IMPLEMENTING OUR OWN WF LANGUAGE AND WF ENGINE33

<axml:param name="$d"></axml:param>

</axml:params>

</axml:sc2>

<result name="$f">

</SC2>

<SC3>

<axml:sc3...>

<axml:params>

<axml:param name="$b"></axml:param>

</axml:params>

</axml:sc3>

<result name="$e">

</SC3>

<SC4>

<axml:sc4...>

<axml:params>

<axml:param name="$f"></axml:param>

<axml:param name="$c"></axml:param>

<axml:param name="$e"></axml:param>

</axml:params>

</axml:sc4>

<result name="result">

</SC4>

<sequence>

<axml:sc1.../>

<axml:sc3.../>

<axml:sc2.../>

<axml:sc4.../>

</sequence>

</serviceDefinition>

As usual we can define the expected input parameters by our composed
service. Sequences are contained in the ”sequence” tags. For all other
calls we specify the inputs, doing a name based parameter binding and we
name the result. Doing this way allows us to infer the evaluation order, as
presented in the previous subsection.

The definition of a composed service is then parsed by our WF engine
that will actually build the process representing the described functionality.
The advantage here resides in the fact that we restricted the general task
of doing WF on web services to one that’s much more simpler and better
adapted to most of our needs in respect to service composition.

The advantage is that we know the exact overhead that the service com-
position will introduce on an Active XML peer and thus we are able to do
a better estimate of the current and future load at peer level. We can also

34 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

change both the WF language and its underlying implementation without
affecting the rest of the Active XML system.

In the followings I will present the other direction that we considered
when we added composed services to Active XML.

4.2 Using BPEL4WS as WF language and BPWS4J
as WF engine

4.2.1 Business Process Paradigm

An accurate description of business process paradigm can be found in [20].

Systems integration requires more than the ability to conduct simple
interactions by using standard protocols. The full potential of Web Ser-
vices as an integration platform will be achieved only when applications
and business processes are able to integrate their complex interactions by
using a standard process integration model. The interaction model that is
directly supported by WSDL is essentially a stateless model of synchronous
or uncorrelated asynchronous interactions. Models for business interactions
typically assume sequences of peer-to-peer message exchanges, both syn-
chronous and asynchronous, within stateful, long-running interactions in-
volving two or more parties. To define such business interactions, a formal
description of the message exchange protocols used by business processes
in their interactions is needed. The definition of such business protocols
involves precisely specifying the mutually visible message exchange behav-
ior of each of the parties involved in the protocol, without revealing their
internal implementation. There are two good reasons to separate the public
aspects of business process behavior from internal or private aspects. One
is that businesses obviously do not want to reveal all their internal decision
making and data management to their business partners. The other is that,
even where this is not the case, separating public from private process pro-
vides the freedom to change private aspects of the process implementation
without affecting the public business protocol.

Business protocols must clearly be described in a platform-independent
manner and must capture all behavioral aspects that have cross-enterprise
business significance. Each participant can then understand and plan for
conformance to the business protocol without engaging in the process of
human agreement that adds so much to the difficulty of establishing cross-
enterprise automated business processes today.

What are the concepts required to describe business protocols? And
what is the relationship of these concepts to those required to describe exe-
cutable processes? To answer these questions, consider the following:

• Business protocols invariably include data-dependent behavior. For
example, a supply-chain protocol depends on data such as the number

4.2. USING BPEL4WS AS WF LANGUAGE AND BPWS4J AS WF ENGINE35

of line items in an order, the total value of an order, or a deliver-by
deadline. Defining business intent in these cases requires the use of
conditional and time-out constructs.

• The ability to specify exceptional conditions and their consequences,
including recovery sequences, is at least as important for business pro-
tocols as the ability to define the behavior in the ”all goes well” case.

• Long-running interactions include multiple, often nested units of work,
each with its own data requirements. Business protocols frequently
require cross-partner coordination of the outcome (success or failure)
of units of work at various levels of granularity.

If we wish to provide precise predictable descriptions of service behavior
for cross-enterprise business protocols, we need a rich process description
notation with many features reminiscent of an executable language. The
key distinction between public message exchange protocols and executable
internal processes is that internal processes handle data in rich private ways
that need not be described in public protocols.

In thinking about the data handling aspects of business protocols it is
instructive to consider the analogy with network communication protocols.
Network protocols define the shape and content of the protocol envelopes
that flow on the wire, and the protocol behavior they describe is driven solely
by the data in these envelopes. In other words, there is a clear physical sep-
aration between protocol-relevant data and ”payload” data. The separation
is far less clear cut in business protocols because the protocol-relevant data
tends to be embedded in other application data.

4.2.2 Choosing BPEL4WS for Modeling WS’ Composition

The best option for a workflow language that models services’ composi-
tion using the concepts of business process was BPEL4WS. It represents an
evolution of Web Services Flow Language (WSFL) [19] which is an XML
language for describing Web Services composition developed at IBM and of
XLANG [18] which is Microsoft’s language for formally specifying business
processes as stateful long-running interactions.

BPEL4WS uses a notion of message properties to identify protocol-
relevant data embedded in messages. Properties can be viewed as ”transpar-
ent” data relevant to public aspects as opposed to the ”opaque” data that
internal/private functions use. Transparent data affects the public business
protocol in a direct way, whereas opaque data is significant primarily to
back-end systems and affects the business protocol only by creating non-
determinism because the way it affects decisions is opaque. We take it as
a principle that any data that is used to affect the behavior of a business
protocol must be transparent and hence viewed as a property.

36 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

The implicit effect of opaque data manifests itself through nondetermin-
ism in the behavior of services involved in business protocols. Consider the
example of a purchasing protocol. The seller has a service that receives a
purchase order and responds with either acceptance or rejection based on
a number of criteria, including availability of the goods and the credit of
the buyer. Obviously, the decision processes are opaque, but the fact of the
decision must be reflected as behavior alternatives in the external business
protocol. In other words, the protocol requires something like a switch ac-
tivity in the behavior of the seller’s service but the selection of the branch
taken is nondeterministic. Such nondeterminism can be modeled by allowing
the assignment of a nondeterministic or opaque value to a message property,
typically from an enumerated set of possibilities. The property can then be
used in defining conditional behavior that captures behavioral alternatives
without revealing actual decision processes. BPEL4WS explicitly allows the
use of nondeterministic data values to make it possible to capture the essence
of public behavior while hiding private aspects.

The basic concepts of BPEL4WS can be applied in one of two ways.
A BPEL4WS process can define a business protocol role, using the notion
of abstract process. For example, in a supply-chain protocol, the buyer
and the seller are two distinct roles, each with its own abstract process.
Their relationship is typically modeled as a partner link. Abstract processes
use all the concepts of BPEL4WS but approach data handling in a way
that reflects the level of abstraction required to describe public aspects of
the business protocol. Specifically, abstract processes handle only protocol-
relevant data. BPEL4WS provides a way to identify protocol-relevant data
as message properties. In addition, abstract processes use nondeterministic
data values to hide private aspects of behavior.

It is also possible to use BPEL4WS to define an executable business pro-
cess. The logic and state of the process determine the nature and sequence
of the Web Service interactions conducted at each business partner, and
thus the interaction protocols. While a BPEL4WS process definition is not
required to be complete from a private implementation point of view, the lan-
guage effectively defines a portable execution format for business processes
that rely exclusively on Web Service resources and XML data. Moreover,
such processes execute and interact with their partners in a consistent way
regardless of the supporting platform or programming model used by the
implementation of the hosting environment.

Even where private implementation aspects use platform-dependent func-
tionality, which is likely in many if not most realistic cases, the continuity
of the basic conceptual model between abstract and executable processes in
BPEL4WS makes it possible to export and import the public aspects em-
bodied in business protocols as process or role templates while maintaining
the intent and structure of the protocols. This is arguably the most attrac-
tive prospect for the use of BPEL4WS from the viewpoint of unlocking the

4.2. USING BPEL4WS AS WF LANGUAGE AND BPWS4J AS WF ENGINE37

potential of Web Services because it allows the development of tools and
other technologies that greatly increase the level of automation and thereby
lower the cost in establishing cross-enterprise automated business processes.

In summary, we believe that the two usage patterns of business protocol
description and executable business process description require a common
core of process description concepts.

BPEL4WS defines a model and a grammar for describing the behav-
ior of a business process based on interactions between the process and its
partners. The interaction with each partner occurs through Web Service
interfaces, and the structure of the relationship at the interface level is en-
capsulated in what we call a partner link. The BPEL4WS process defines
how multiple service interactions with these partners are coordinated to
achieve a business goal, as well as the state and the logic necessary for this
coordination. BPEL4WS also introduces systematic mechanisms for dealing
with business exceptions and processing faults. Finally, BPEL4WS intro-
duces a mechanism to define how individual or composite activities within a
process are to be compensated in cases where exceptions occur or a partner
requests reversal.

BPEL4WS is layered on top of several XML specifications: WSDL 1.1,
XML Schema 1.0, and XPath1.0. WSDL messages and XML Schema type
definitions provide the data model used by BPEL4WS processes. XPath
provides support for data manipulation. All external resources and partners
are represented as WSDL services. BPEL4WS provides extensibility to ac-
commodate future versions of these standards, specifically the XPath and
related standards used in XML computation.

4.2.3 Choosing BPWS4J as WF Engine

Once we had established that BPEL4WS is the WF language that we needed
to use to support service composition in Active XML we had to find a
working implementation of it. We call such an implementation as WF engine
beause it actually ”runs” the processes we defined with BPEL4WS. The
most appropiate implementation we could find was BPWS4J, realized by
AlphaWorks.

BPWS4J’s Definition

The IBM Business Process Execution Language for Web Services JavaTM
Run Time (BPWS4J) includes the following: a platform upon which can be
executed business processes written using the Business Process Execution
Language for Web Services (BPEL4WS); a set of samples demonstrating the
use of BPEL4WS; and a tool that validates BPEL4WS documents.

38 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

BPWS4J’s Functioning

For each process, the BPWS4J engine takes in a BPEL4WS document that
describes the process to be executed, a WSDL document (without binding
information) that describes the interface that the process will present to
clients (partners in BPEL4WS terms), and WSDL documents that describe
the services that the process may or will invoke during its execution.

From this information, the process is made available as a Web service
with a SOAP interface. A WSDL file that describes the process’s interface
may be retrieved from the run-time. The BPWS4J engine supports the
invocation, from within the process, of Web services that have a SOAP
interface, that are EJBs, or that are normal Java classes.

BPWS4J’s Interface

Unfortunatelly the access offered to BPWS4J was at the moment of writting
this paper only through a web interface. This limited the options of using
BPWS4J inside an application. In order to make it transparent to the user
(the Active XML peer’s owner) we had to define a complex wrapper that
simulates invocations to BPWS4J’s web interface from Active XML. We had
to define a sort of a BPWS4J Dialogue API that managed all possible inter-
actions with BPWS4J’s framework. The functions offered by the BPWS4J’s
web interface are:

• List all processes currently deployed - displays the list of active and
inactive processes.

• Deploy a process and its partners - a process might have partners and
when the deployment is made for the respective process we have to
specify also its partners’ WSDLs locations, thus providing the BPWS4J’s
WF engine with all the necessary information for the respective pro-
cess.

• Undeploy an existent process - terminates an instance of an existent
process.

These functions allow us basic process creation, monitoring and termination.

4.2.4 Integrating BPWS4J into Active XML

What we did was to wrap BPWS4J WF engine into Active XML. A simpli-
fied view is represented by Figure 4.2

General View of the Interaction Between Active XML and BPWS4J

What is very important to specify is that there is a clear demarcation be-
tween an Active XML composed service and the BPEL process it wraps. We

4.2. USING BPEL4WS AS WF LANGUAGE AND BPWS4J AS WF ENGINE39

BPWS4J
WF Engine

Business
Process

AXML

Figure 4.2: BPWS4J’s Wrapping in Active XML

Wrapped BPEL ProcessAXML Composed Service

INVOKE

RESPONSE

Figure 4.3: Interaction Between Active XML Composed Service and Its
Wrapped BPEL Process

have one Active XML service per BPEL process and we use it to transmit
to the process, which is running inside BPWS4J, requests made by Active
XML peers and to retreive the results offered by the BPEL process and send
them back to the Active XML clients that requested them. The interaction
between an Active XML composed service and the BPEL process it wraps
is illustrated in Figure 4.3 Because the Active XML composed service acts
as a wrapper, it is natural that the parameters of the BPEL process be a
subset of the Active XML service’s parameters. Having more parameters
for the Active XML composed service allows us to control the things that
are orthogonal to the functioning of the wrapped process (ie: the maximum
number of calls that we want to accept, the lifetime of the composed service).

The Creation of an Active XML Composed Service

The creation of an Active XML composed service starts from its definition
file. This is a regular service definition file, having the type composed and

40 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

specifying service’s parameters’ names and types at the begining. The ser-
vice definition element contains:

• Process’s parameters - a subset of Active XML’s service’s parameters.

• An optional WSDL for the process - if the user does not provide a
WSDL for the process then one will automatically be generated for it.

• Caller identification - because BPWS4J uses an entry point called
soaprpcrouter that routes calls to the deployed processes, we must
provide a client identification for the repective call. The client is
seen as a parnter of the BPEL process. The information needed by
soaprpcrouter for correctly routing the call to the respective process
is:

– the client’s name space.

– the process’s operation used for invoke.

– the above operation’s port type.

– the above port’s URI.

• Partners’ WSDLs locations - if the BPEL process has multiple part-
ners we have to specify their WSDLs locations, in order to be able to
retreive their WSDL files when we will realize the deployment of the
process to the BPWS4J’s WF engine.

• Process’s BPEL code - it contains the BPEL definition of the process.
This code will be interpreted by BPWS4J and transformed into a
composed process.

At Active XML’s peer initialization, this file will be parsed by a dedicated
service factory that will create the Active XML service corresponding to
the respective service definition. The factory will first extract the process’s
BPEL definition. It will then check to see if a WSDL was provided for the
respective process and if not, it will generate one for it. Then it will check to
see if the process has some partners and if so, it will extract their WSDLs’
locations. The composed service factory will then set the information neces-
sary for correctly invoking a BPEL process through the soaprpcrouter. An
Active XML service instance will then be created and the new service will
be published. The operations described above are illustrated by the Figure
4.4.

The Deployment of the Wrapped BPEL Process to BPWS4J

From BPWS4J’s point of view there are two disitinct phases in a process’s
life:

4.2. USING BPEL4WS AS WF LANGUAGE AND BPWS4J AS WF ENGINE41

Definition FIle

Service Factory

Extract BPEL Code

WSDL

Build One

NO

YES

Get Partners’
WSDLs locations

Client Name

Generate One

NO

YES

Set Targent NS

Provided

Provided

Set Invoke Port
Set Invoke Method

Instance
Create a Service

Figure 4.4: Active XML Composed Service Creation

42 CHAPTER 4. COMPOSED SERVICES IN ACTIVE XML

AXML Service
Invoke

WSDLs
Get the Partners’

Was the Process
Previously Deployed

Undeploy the
Porcess

Deploy the Process to
BPWS4J

Is the Process
Correctly Deployed?

Identify Process’
Parameters

Invoke the Process

Is It the First?

Are There
Any Partners?

YES

NO

NO

YES

YESNO
Error at
Deployment

YES

NO

Figure 4.5: Lazy Process Deployment to BPWS4J

1. the creation - the process is deployed to BPWS4J’s WF engine, but
an instance for it does not yet exist.

2. the activation - on the first invoke for the process, an instance for it is
created.

Active XML has a slighltly different philosphy concerning a service’s life-
cycle: once a service is created, an instance for it exists and there is no
difference between the first call to that service and the following ones. In
order to integrate BPWS4J to Active XML, we designed a scheme of lazy
deployment for the wrapped BPEL process. This means that the BPEL
process is deployed to BPWS4J and an instance for it is created only when
a first call for the wrapping Active XML composed service is received. By
doing this, we avoid deploying process’s that aren’t used and thus we reduce
the overhead brought by BPWS4J’s workflow engine to the system. The
lazy deployment of a BPEL process is illustrated by the Figure 4.5.

4.3 Conclusions

We enhanced Active XML’s functionality by supporting service composition.
Basically what we did is to add a service composition workflow engine to
the Active XML peer. Thus, the peer’s owner is now able to define a desired
functionality starting from existent basic units (services). We tried to render
the definition of a composed service transparent to the user. To accomplish

4.4. ONGOING WORK 43

this we choosed BPEL as base language because of its wide aplicability and
soon to come standardization. Thus we are sure that a working implemen-
tation of the language will always exist. For reasons linked to optimization
(ie: an accurate load calculus for an Active XML peer) we considered imple-
menting our own workflow engine. This engine has a restricted functionality,
its main advantage being that knowing its architecture we can easily adapt
it to our needs. Although workflow languages have been studied for more
than 20 years, service composition in Active XML opened a new area of
interesting applications.

4.4 Ongoing Work

We are currently working on our own implementation of a workflow engine,
based on a restricted BPEL language. This engine will provide an alternative
for the users that do not wish or can’t afford to use BPWS4J as a workflow
engine (ie: an Active XML peer that turns on a PDA has limited resources
and a complete WF engine such as BPWS4J can’t run on it). We are also
considering service composition for continuous services and we are trying to
define a system that will allow us to accomplish such a thing.

Chapter 5

Conclusions

By giving Active XML peers the possibility of pushing data to their clients,
continuous services made the language more extensible and better suited for
its users’ needs.

We have added support for continuous services both on client and server
side. On client side we defined a simple way of writing subscription calls.
The client has only to specify that the respective service call is a subscription,
the rest of the parameters needed by our framework being automatically
compiled. On the server side we defined a general mechanism of performing
callbacks and we rendered it reliable by implementing a fallback sequence.

Defining continuous services and adding support for them in Active XML
made us discover new directions for future work:

• generic definition of a Caching Service

• simple composition of existent services

• generic error handling

5.1 Practical Applications

Because the push architecture we added to Active XML allows us to model
asynchronous behavior we can easily integrate asynchronous services.

THESUS [8] is a system that deals with an initial set of web pages,
extracts keywords from all pages’ incoming links, converts them to semantics
by mapping them to a domain’s ontology and applying a clustering algorithm
to discover document clusters. It is used in building a Set of Pages of
Interest(SPIN) [9]. THESUS has an important execution time that does
not allow us to use a synchronous request response architecture to retrieve
its result. Thus, we integrated it into SPIN using asynchronous capability
brought by our continuous services framework.

44

5.2. THANK YOU 45

5.2 Thank You

Thank you Omar Benjelloun for your patience and understanding while
helping me write this report. Your keen observations concerning the articula-
tions of my sentences and logical reasoning brought coherence and structure
into my work.
Thank you Ioana Manolescu and Tova Milo for your advices on writing
a technical paper.
Thank you Serge Abiteboul for your living example.

Bibliography

[1] M. Rossopoulos, M. Baker Practical Load Balancing for Content Re-
quests in Peer-to-Peer Networks, Department of Computer Science -
Stanford University 2002

[2] S. Abiteboul, T. Milo, O. Benjelloun Web Services and Data Integra-
tion, International Conference on Web Information Systems Engineer-
ing 2002

[3] S. Abiteboul, M. Preda, G. Cobena Computing Web Page Importance
Without Storing the Graph of the Web, IEEE-CS DataEngineering Bul-
letin 2002

[4] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R. Weber Active
XML: Peer-to-Peer Data and Web Services Integration (demo), VLDB
2002

[5] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R. Weber Active
XML: A Data-Centric Perspective on Web Services, Confrence sur les
Bases de Donnes Avances 2002

[6] S. Abiteboul, O. Benjelloun, T. Milo Towards a Flexible Model for Data
and Web Services Integration, proc. Internat. Workshop on Foundations
of Models and Languages for Data and Objects 2001

[7] S. Abiteboul, V. Vianu Queries and Computation on the Web, ICDT
1997

[8] M. Halkidi, B. Nguyen, I. Varlamis, M. Vazirgiannis THESUS: Orga-
nizing Web Document Collections Based On Semantics And Clustering,
Gemo Report 2002

[9] S. Abiteboul, G. Cobena, B. Nguyen, A. Poggi Construction and Main-
tenance of a Set of Pages of Interest, BDA 2002

[10] F. Leymann Web Services Flow Language (WSFL 1.0), May 2001

[11] T. Andrews, F. Curbera, F. Leymann et al Business Process Execution
Language for Web Services Version 1.1(BPEL4WS), May 2003

46

BIBLIOGRAPHY 47

[12] World Wide Web Consortium Extensible Markup Language (XML)

[13] World Wide Web Consortium Web Services Architecture, Working
Draft 14 May 2003

[14] World Wide Web Consortium SOAP Version 1.2 Part 1, Working Draft
26 June 2002

[15] World Wide Web Consortium Web Services Description Language
(WSDL) 1.1, W3C Note 15 March 2001

[16] Apache Software Foundation http://ws.apache.org/axis/, 16 June 2003

[17] Apache Jakarta Tomcat Project http://jakarta.apache.org/tomcat/

[18] Satish Thatte XLANG, http://www.gotdotnet.com/team/xmlwsspecs/xlang-
c/default.htm

[19] Frank Leymann Web Services Flow Language, http://www-
3.ibm.com/software/solutions/ webservices/pdf/WSFL.pdf

[20] Business Process Execution Language for Web Services Version 1.1,
http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel

