
“Politehnica” University Bucharest
Faculty of Automatics Control and Computers

Implementation of the Active XML Peer for the J2ME
platform

Undergraduate Scientific Counselors
Cosmin Cremarenco Prof. Dr. Ing. Irina Athanasiu
 Dr. Ing. Ioana Manolescu

2003

1

Abstract...4
1. Introduction ...5

1.1 About the Active XML technology..5
1.1.1 Active XML document model ..6
Example of an Active XML document ..7
1.1.2 The <axml:sc> element...8

2. Similar technologies..11
3. Encountered problems..12
4. General architecture ...14

4.1 Infrastructure ...14
4.2 The Active XML Mobile Peer ...15

4.2.1 The mobile component (proxy is left out) ..16
4.2.1.1 Repository..17
4.2.1.2 Client..18
4.2.1.3 Server ..20
4.2.2 The proxy..21

5. Implementation ...22
5.1 Mobile component. ..22
5.1.1 Client ..22

5.1.1.1 Inspector ..23
5.1.1.2 Web Service Reference Manager..25
Types of services...25
Concrete services ..25
Lazy analysis of document ..26
Algorithm for discovering and calling new services......................................27
5.1.1.3 Active XML Document Manager ..30
Synchronization ...30

5.1.1.4 Mini XPath Engine..32
Location path ...33
Location step ...34
A pseudo-grammar of the accepted xpath syntax..35
Algorithm ...36

5.1.1.5 Presentation engine ..38
Benefits of a presentation engine ..39
5.1.1.5.1 The transformer ..39
Generating text ..40
Repetition ..40
5.1.1.5.2 The renderer ...42
WML syntax implemented ...42

5.1.1.6 User interface ..44
MVC components in Active XML Mobile application45
The controller ..45
The view component architecture..46

Root screen ...47
5.1.2 The XML repository ...55

5.1.2.1 Persistent Memory Manager..55

2

Synchronizing access to repository ...56
5.1.2.2 File Retriever ...57
5.1.2.3 DOM Cache ...58

5.1.3 Server: Querying the axml mobile peer ..60
5.1.3.1 Query algorithm ...61
5.1.3.1.1 Proxy...61
5.1.3.1.2 Actor (mobile component)...62
5.1.3.1.3 Querying client..62
A more in-depth look at the implementation overall63
Synchronization on the proxy...65
External SOAP service ..66
Examples of different xmlrpc envelopes transited between the mobile device
and the proxy ...67

5.2 The proxy ..68
Roles ...68
1. Proxy as an intermediary for SOAP service calls.....................................68
Communication with the proxy...71
Constructing a xml-rpc request for a service call to be addressed to the
proxy..74
2. Second role of proxy : intermediate file transfer.......................................75
3. Proxy as directory of mobile clients (or actors) ..76

Unit tests ...77
Building the project (ant tool)...80

6. Performance and measurements..81
6.1 Target platform performance measurement ..81
6.2 Performance tests regarding various features of AxmlMobile82

Retrieving files through HTTP connection ...82
Parsing a xml into a DOM tree...83
Evaluating XPath expressions of different complexities applied to xml
documents ...84
Parsing a web service..84
Generating and rendering the presentation ...85
Retrieving data from the Record Store ..86

7. Conclusions ..87
7.1 Further development ...87

References ...88

3

Abstract

Embedded systems become more and more sophisticated. Today’s

mobile devices have the necessary hardware to host complex applications

especially designed to speculate advantages of a mobile platform.

Subject of this thesis is the implementation of an Active XML1 peer whose

deployment target is the mobile platform.

A classic Active XML peer used to be implemented as a fix application (as

regard to its physical location) and required a lot of computing resources. What is

the most important benefit that arises from using the Active XML technology?

ease of managing data placed in physically different locations. The Active XML

Mobile Peer amplifies this. It makes the location totally transparent and it ought to

be the next evolutionary step in P2P networks.

1 Patent of Inria France

4

1. Introduction
With the advent of the Internet access to information becomes more and

more easy and cheap. However the Internet is heterogeneous, driven by

software that doesn’t facilitate Intercommunication.

1.1 About the Active XML technology
The heart of the Active XML is represented by Web Services, open

standards (SOAP, WSDL, XML-RPC, and UDDI) that facilitate communication

between peers. This project integrates Active XML document model and web

services onto a wireless platform.

Web Service
provider

Web Service
provider

XML XML

INTERNET

XML
XML Active XML PeerXML Active XML Peer

Active XML Peer
P2P connection

P2P connection

P2P connection

 Figure 1

An important thing to notice in fig. 1 is that communication Active XML

peer – Active XML peer and Active XML peer – Web Service doesn’t use any

proprietary protocols, but plain XML messages.

5

Scenarios of use include:

• electronic biddings; in this particular scenario every peer holds a list of

items it’s interested in. By means of communication between Active

XML peers and other Active XML peers or third party web services

bidding data is exchanged and every peer has its own view over the

auction.

• distributed data warehouses. In this case Active XML can serve both

as repository for data but also as data integration tool. In the latter

case it allows querying over multiple heterogeneous sources.

1.1.1 Active XML document model

The Active XML document model is structured as an XML which contains

references to web services.

References towards web services can be translated to web service

invocation results which are included in the Active XML or can be passed to

another Active XML peer. The latter is also free to call or not the web service

that’s reference it has received. In other words some data is explicitly included in

the source document whilst for other data a definition is included as a reference

to a web service. If the data source that is referenced in the definition changes its

contents, of course the Active XML document will also synchronize.

As opposed to other technologies that imply mixing data with executable

code the Active XML contains seeds of distributed computing. One peer can

translate the web service reference that it evaluates or it can send it to another

peer. Hence one is able to receive tasks in the form of a web service reference to

be executed or it can delegate to another peer a task by passing it a web service

reference.

Center of the Active XML technology is the <sc> element which contains

all the information necessary to instantiate a web service. It is placed in a proper

XML namespace to differentiate it from other elements with the same name

which may appear in the same Active XML document. The xml namespace is

“http://www-rocq.inria.fr/verso/AXML”.

6

Example of an Active XML document

Irrelevant details have been removed.

<airports>

 <airport name=”Otopeni”>

 <weather>

 <sc service=”capeconnect.com/getWeather()”>
 <sc service=”director_indicative.ro/obtineIndicativ(Otopeni)” />
 </sc>

 </weather>

 </airport>

</airports>

In the above xml document fragment the service endpoint at capeconnect.com

accepts as arguments only airport id’s. Unfortunately the airport id is unknown so

a new service is nested in the first. The latter obtains the airport id and offers it as

a parameter to the outer service.

In the next step the nested service is executed:

<airports>

 <airport name=”Otopeni”>

 <weather>

 <sc service=”capeconnect.com/getWeather(‚BOTP’)”>

 <sc service=”director_indicative.ro/obtineIndicativ(Otopeni)” />

 </sc>

 </weather>

 </airport>

</airports>

Now the outer service can be translated into results:

<airports>

 <airport name=”Otopeni”>

 <weather>

 <sc service=”capeconnect.com/getWeather(‚BOTP’)”>

 <sc service=”director_indicative.ro/obtineIndicativ(Otopeni)” />

7

 </sc>

 <location>Otopeni International Airport, Bucharest</location>

 <temperature>100 F</temperature>

 <humidity>9</humidity>

 </weather>

 </airport>

</airports>

Results from materializing the outer web service reference are placed

underneath the <sc> element.

In the above examples important pieces of the <sc> element were not

mentioned.

1.1.2 The <axml:sc> element

 A real-life <sc> element looks like this:

<axml:sc serviceURL="http://staros.inria.fr:8080/axis/servlet/AxisServlet"

serviceNameSpace="Sleep" methodName="sleep" frequency="every 300000">

 <axml:params>

 <axml:param name="millis">

<xpath>../duration/@value</xpath>

 </axml:param>

 </axml:params>

</axml:sc>

Parameters can be split in two main categories:

1. parameters to locate and call a web service;

2. data that the specific web service accepts as parameters;

1. The parameters to locate a SOAP web service are:

• serviceURL – compulsory, identifies the SOAP endpoint as a

URL;

• serviceNameSpace – compulsory, frames the web service

method in a specific namespace;

8

• methodName – compulsory, the method name which we want to

be remotely executed in order for proper results to be returned;

• frequency – optional, states when the web service should be

instantiated, thus also specifies the validity of the returned

results. Has two forms that the Axml Mobile Peer recognizes:

“once” and the service will be instantiated at the first pass of the

inspector thread, “every x”: the service is periodically

instantiated after x mili seconds;

• signature – optional, this attribute’s function is not fully

implemented. It should allow dynamic invocation based on the

WSDL of the target service;

• useWSDLDefinition – optional, specifies if we want to use or not

the “signature” or the WSDL of the service;

• followedBy – optional, specifies an order of execution for the

services. This service will be forced to execute before the one

who’s name is stated in the followedBy attribute;

• id – optional, identifies the service with a unique sequence not

only on the local machine, but also in the P2P network. If it is

not specified, the peer automatically assigns one to the service;

• name – compulsory, a conventional name for this service. It is

only used in the “followedBy” attribute;

• mode – optional, specifies what to do with the previous results.

It only has two possible values: “replace”, clears the previous

results and replaces them with the new ones, “merge”

concatenates the new results with the old ones.

2. Parameters to the web service method.

The parameters section is element <axml:params> and is a child of the

<axml:sc> element. A single parameters is placed inside a <axml:param>

element.

Parameters can be specified in two ways:

• as value, child of the <value> element;

9

• as xpath expression, child of the <xpath> element.

Because when using the xpath mode to specify a parameter, one is able

to specify as parameter the result of another service execution, this introduces a

problem: deciding which service is responsible for the results that are of special

interest to us.

This calls contain can be explicitly inserted in the document as <axml:sc>

elements or can be the result of calling a web service. The results of web service

call are embedded in the original XML.

This document model addresses problems such as distribution of data

(because a document may contain only links to data physically deployed on

another machine) and replication of data (because copies of a document are

available on other computers).

10

2. Similar technologies
Mixing data with executable code is by no means a new idea. Some of the

existing products that support this are:

• SUN’s JSP – Java executable code is mixed with HTML markup data,

everything is translated into a servlet later compiled into bytecode;

• PHP – php interpreted code is mixed with HTML markup;

• Apache Velocity – a replacement for the JSP technology uses an

expression language instead of the well-known java scriptlets. It is

used in the presentation layer of an application and clearly delimitates

presentation and application logic;

• XSLT – XML format that allows special nodes that specify how to

generate elements in the target XML document.

Web service references inside data are not a new idea also. Macromedia

Coldfusion integrates data definition by using references to web services. Hence

the Coldfusion document is client to web service data, but more interesting, it can

play the part of data provider through SOAP. Coldfusion’s purpose of existence is

a rapid development of dynamic web pages that are also sensitive to data

changes in the outside world, because it incorporates hooks to exterior data

sources (web services).

Apache Jelly is a tool that allows translation from XML to executable code. This

makes it a wise choice for inserting web service call references. It resembles JSP

and Velocity, the difference is that Jelly executable code is inserted as XML

nodes and not as scriptlets.

An important observation is that all this products trigger web service

references translation to results or executable code execution the first time the

document is inspected, thus all interpretable code is evaluated.

11

3. Encountered problems
The target of this project is the implementation of the Active XML mobile

peer on the Java 2 Micro Edition platform.

J2ME is the java version meant for devices with limited resources.

Causes for the problems that were encountered when designing and

implementing the mobile peer can be split into three big categories:

1. the sophisticated architecture of a Active XML peer;

2. restrictions due to the limited resources on the J2ME platform;

3. lack of software for XML processing designed for J2ME.

1. Active XML Peer is autonomous in a P2P network thus it has a complex

structure and much functionality built in. The most important and delicate part is

the Web Services management. Problems have been solved by a careful design

and a modularized architecture.

2 . A mobile device has limited capabilities because of its size primarily. It

has a limited amount of working memory, weak CPU performance (due to battery

power conservation considerations). It works mostly offline and when online the

bandwidth is small, thus exchanged messages should be small and should

hardly occur.

3. Implementation of this project enriches the set of J2ME compatible tools

for processing XML files.

It includes an xml repository that is in charge with managing the Active

XML documents that are manipulated by the peer. This is the first implementation

of such a feature for the J2ME platform and modest when comparing to

implementations for other platforms: dbXML, Apache Xindice, eXist.

An XPath processor was implemented. Other products that process Xpath

results (unfortunately not available for the J2ME plathorm) are:

• Jaxen implemented in Java only available for J2SE edtion;

• Pathman available in Java and C++ versions.

At the time this project was implemented there were no XPath processors

for Java 2 Micro Edition.

12

In the same category of XML processing tools a XSL transformer was

implemented that supports a rather limited instruction set of the XSLT language.

Other products that implement XSLT transformations are Xalan, Saxon.

In the presentation module of the project a WML type file renderer

paginates the results and lays them on the user screen. Similar WML renderers

can be found in the mobile devices that support WAP. Because the

implementation is in fact a midlet it is subject to a sum of limitations. One of this

is that one cannot access the device’s micro-browser from the midlet. Hence one

cannot use the micro-browser to render an application generated WML.

13

4. General architecture

A general Active XML peer (and the mobile peer in particular) can

communicate with two classes of targets:

• another Active XML peer by calling the services that the server part of

it implements;

• a SOAP web service that implements a generic web service.

SOAP
Endpoint

Axml Peer

XML
Axml Peer

SOAP
Endpoint

XML Axml Mobile Peer

XML XML

SOAP service provider

Figure 2

Communication between Axml Peers (one of which can be, in particular,

an Axml Mobile Peer) is based on a communication infrastructure.

4.1 Infrastructure

The implementation of Active XML mobile peer uses web services.

However, Active XML is not about web services (although interesting things are

allowed, like web services chaining, nesting...) but it is all about the data in the

document. Web services are just a tool.

It isn’t that important the fact that we use XML-RPC and/or SOAP. Web

services are part of the infrastructure in order to achieve the goal of distributing

14

and/or replicating documents onto multiple peers and ultimately integrating data

from multiple sources into one bigger document.

Since XML-RPC and SOAP are both based on the HTTP protocol for

transport (although SOAP can also use SMTP and others as transport protocols),

this is what is used.

4.2 The Active XML Mobile Peer

It is composed of two main parts:

• the axml mobile peer itself, software deployed on the mobile device;

• a proxy in charge with mediating the communication between the

mobile device and the outside world.

Why was a proxy needed in the project’s architecture? A proxy is usually

used in these situations:

• it serves more than one client and is in charge with storing data

(cache) in order for more than one client to access data already

retrieved, thus minimizing costs;

• hides parts of an internal architecture for security purposes;

• takes the burden of extra processing when dealing with a client. The

client might have limited resources or not. In both cases processing is

distributed among two entities.

The proxy is introduced in the architecture mainly because of the latter

reason. All its functions are:

1. it intermediates service calls, communication between the mobile

device and the proxy conforms to the XML-RPC protocol and

communication between the proxy and the outside world conforms to

the SOAP protocol;

2. it intermediates file transfer; in this case as opposed to the others a

proxy might not have been strictly necessary. However interesting

possibilities like caching the file for use by other clients can be

exploited. Formally correct is that all the communications between the

mobile client and the outside world are mediated by the proxy;

15

3. it acts as a directory for finding out which clients are currently online; of

course the proxy and the clients directory could have been decoupled,

but then overhead would have occurred because of messages

exchanged between the proxy and the directory (possibly implemented

as a web service itself).

4. intermediates queries which are destined to the mobile peer.

4.2.1 The mobile component (proxy is left out)

The mobile component (software physically deployed on the mobile

device) has three main components:

1. an xml repository manages Active XML documents that are

persistently stored on the mobile device;

2. client materialiases web services references into their results and

generally handles web service calling;

3. server sets up a communication way such that a mobile proxy is able

to receive and respond to queries from the outside world.

16

Web Service Reference Manager
Service executor

Service call
parameters

Service Calls

Inspector
Axml Document
management Refresh Daemon

Mini xpath engine

Keep-alive
messages Controller

Presentation
engine

Query processing

Query server

User interface

Figure 3

In fig. 2 client components are connected with each other. The Query

server although part of the server component is included because is provides a

way for the server to interact with the stored documents. It acts like a plugin.

4.2.1.1 Repository

The repository component is in charge with managing the physical data

that makes up, at a logical level, the XML specific structure. It is made of these

parts:

• “Persistent memory manager “ makes public methods for managing a

stored XML in the phone specific Record Store;

17

• “File retriever” tries to obtain an xml file (axml, xsl or wml) by inspecting

different locations;

• “DOM Cache” used to cache XML DOM fragments for later usage. It

automatically adapts to device memory limitations.

Axml proxy
J2ME
Record
Store

bytes

Http files
retrieving
XML-RPC
service

Persistent
memory
manager

DOM
Cache

file

file
reference to a
DOM tree File

retriever

Figure 4

XML Repository’s purposes for existence are:

• Provide a unitary way of retrieving files that are to be processed as

Active XML documents or presentation XSL;

• Facade to the J2ME Record Store System;

• Reduce overhead by using (when possible) a cache of DOM objects

(XML files already parsed).

4.2.1.2 Client

The client part of the Axml Mobile peer is split into a few distinguishable

components:

1. Active XML Document Manager;

2. Web Service Reference Manager;

18

3. Inspector;

4. Presentation Module;

ent Manager

the Active XML documents currently

presen

parameters for calling the actual and

its par

he parameters can reference the results of the materialization of another

web se

esponds to the lazy

instantiation mode;

5. Mini XPath Engine;

6. User interface.

1. Active XML Docum

Table containing references to all

t on the mobile peer. In charge with proper instantiation of an axml

document and serialization into a storage ready string.

2. Web Service Reference Manager

A web service reference consists of

ameters. It is the logical representation of a <axml:sc> element present in

the axml document. The Service Executor takes this reference and assembles a

web service request to be addressed to the proxy.

Figure 5

Axml proxy
Web Service Reference

Service

XML-RPC

Static Analysis

Web Service
Parameters

Executor

T

rvice reference. To determine the service responsible for those results a

“Static Analysis” method was implemented. It provides dependencies services

which should be materialized in order to provide correct parameters to this

service. Information about the web services to be materialized is fed to the

Service Executor which in turn translates them to a XML-RPC style XML

envelope. The Service Executor is triggered in two ways:

• by the Static Analysis module which corr

19

• by the Inspector module which corresponds to the immediate

instantiation mode.

3. Inspector

in charge with triggIs ering the Service Executor for different services

when they expire and their data needs to be refreshed. It is executed at specific

interva

 different web services into a

form user-friendly that can be displayed on the device screen.

to the XPath open standard. It is decoupled from the rest of the modules so that it

can be

 visual components specific to

the J2ME platform to represent application data. Uses MVC design pattern for

easier

4.2.1.3 Server

This component is meant to provide a way for any client to be able to

uery the Axml Mobile peer through a SOAP service.

Figure 6

ls and checks all the web service references.

4. Presentation module

Its purpose is to translate the results of calling

5. Mini XPath Engine

Delivers an easy way of referring fragments of an xml, all this conforming

 used with more than one purpose in mind.

6. User interface

Uses the lcdui midlet package and employs

screens manipulation and maintenance.

q

INTERNET
Active XML
Mobile Peer

SOAP
Endpoint

Querying client

20

The server component of the Axml Mobile Peer is essential for the data

integration feature of the technology. The SOAP endpoint is decoupled from the

mobile component. It is usually installed on the same server that the proxy runs

on. However this is not necessary since the SOAP service that listens for queries

makes an XML-RPC connection to the proxy in order to transmit the message.

4.2.2 The proxy
It runs inside an application container that is in charge of managing its life

cycle and dispatching outside requests to different threads.

Web application container

Controller
servlet

Mobile
device

XML-RPC
SOAP query
endpoint

XML-RPC

Generic
SOAP
service

Query

Handler

server;

• ease of debugging.

Proxy

Figure 7

Mediates transaction component and the outside

world. It is built as a web application and this brings a few advantages:

he stand protocol to receive ML-R

• uses the default HTTP port 80, this way no problem with firewalls can

arise;

• The Web application server is in charge with m eading and

dispatching various requests to different threads;

• it is portable to another operating system and/or other application

 between the mobile

• it can use t

envelopes;

ard HTTP and send X PC

ultithr

21

With a Java technology solution, software applications run locally on the

client d i

Within the framework of J2ME technology, the various types of consumer

device

wireless d h a "profile" for each

catego

consists of a minimum set of APIs and a Java Virtual Machine.

e Device Configuration (CLDC) is composed of the

 Virtual Machine (KVM, described in detail in the next paragraph) and core

class libraries that can be used on a variety of devices such as cell phones,

pagers, PDAs, and retail smart-card readers. The Mobile Information Device

(MID)

essaging specifically for cellular phones and pagers.

The client component depicted in the “General architecture” is made out of

“Inspector”, “Web Service Reference Manager”, “Active XML Document

Manager”, “Mini XPath Engine”, “Presentation module” and the “User interface”.

5. Implementation

ev ce.

s are grouped into basic categories -- set-top boxes, screen phones,

evices (pagers and cell phones), and so on -- wit

ry, specifying a set of category-specific APIs and a configuration that

Th Connected Limited

K

profile includes APIs covering the user interface, persistent storage,

security and m

CLDC refers to a configuration specific for the mobile phone, the user only

has to interact with a known set of classes that don’t change no matter the

specific hardware issues of the mobile device. A device that fits the CLDC

configuration typically has 160Kb-512Kb heap available and more than 8Kb

persistent memory.

The AXML Mobile Peer is built on Java 2 Micro Edition (J2ME), using

CLDC as configuration and MIDP as base profile.

5.1 Mobile component.

The mobile component of the Active XML mobile peer is made of client,

xml repository and server.

5.1.1 Client

22

All these components are linked together and managed by a controller (the name

has nothing to do with the MVC controller) implemented in the MController

object.

ocuments currently available in the system.

ink to the user interface classes; this minimizes

nd provides a simple design. Especially needed because,

unnaturally, many object fields are not provided with accesors (in order

.1.1.1 Inspector

es is necessary, checks if one service is

no long

The or triggering service calls when

necess

The

1.

 the same time;

Every time a service is checked by this daemon a countdown is

decremented. When it reaches 0 the service is executed.

resour

bject.wait(milliseconds)). When the sleep period expires, the timer

The MController’s functions are:

• keeping track of all the d

This table is implemented as a Vector;

• it is the only l

complexity a

to minimize class size) so they must be declared either friendly or

public;

• installs the Inspector and manages its functioning, provides methods

for stopping and restarting it ready to be called from the user interface.

5

Decides when execution of servic

er valid because based on its “frequency” attribute it should be executed.

 RefreshDaemon class is responsible f

ary.

re are two possible approaches here:

using a timer for every service call such that service calls are

independent in the moment of calling. Theoretically all services can be

called in

2. using only a timer, the services are called sequentially. The daemon is

activated periodically and checks the discovered services.

Given the resource requirements of the target platform only one timer is

used. Should more than one timer be created, how does this affect the existent

ces? At each timer creation a thread is created "stopped" on a monitor

condition (O

23

execut rTask). But this takes cpu time

and re

Ano

Only 5 HttpConnections are available (an exception is thrown if we try to

use m

them. Hav

ally and checks the

discov

ed that inspects every service

that ex

 a document is blocked waiting for the

docum

fixed and it is more thoroughly explained in the synchronization

 to execute the timing of

dephased forward. A work-around that I’ve applied

tion counter. The

es the job (the class which extends Time

sources which we don't have.

ther fact should be taken into account.

ore). XmlRpcClient wraps around this connections so we cannot access

ing only one Timer is simpler.

The Timer activates periodically a class (RefreshDaemon.class) which

extends TimerTask. The daemon is activated periodic

ered services. Why I chose this approach rather than scheduling every

service?

• ease of implementation;

• the synchronization mechanisms are not so sophisticated as we would

need if we were to schedule every service;

• ease of debugging.

For every document a new thread is start

ists in a particular axml document. A barrier is installed that waits for all

working threads to end. This has two important consequences:

If one of the threads that inspects

ent’s lock to be unlocked for a long time everything stalls for that thread.

• services are no longer checked in a new cycle because the barrier

expects all threads to end before moving forward. This issue has been

section;

• the inspector is run by a thread every one second. However if one of

the services takes more than one second

service execution is

is to measure how much time it takes for all threads to reach the

barrier. If that time is longer than 1 second, more than a unit is

substracted from every service’s countdown-to-execu

measurement is performed like this:

long startTime = System.currentTimeMillis();

24

perfo Orm perations();
ation = System.currentTimeMillis() – startTime; int
t = duration/1000>0?duration/1000:1;

.1.2 Web Service Ref

long dur
decremen

5.1 erence Manager

MService

MService

mapped to

Types of services

Bec re than one service reference can

 enforce an order of

ecution using the

 needed.

use the concrete type can be executed without checking

for an n be

referen

to be exec er. However in the concrete service case there is

no need for more in-depth analysis of the document.

In order to come up with a scheme for a static analysis of the document

we start with these assumptions:

To every web service which has a reference in an axml document an

object is available which the logical description of that service is. An

object contains both the attributes and parameters of a web service

 object fields and methods to work with them.

ause in an Active XML document mo

coexist at a time it comes natural that some sort of schema to

execution should exist.

Regarding the moment of their execution the services can be split in:

• immediate mode – this are scheduled for ex

frequency attribute;

• lazy mode – this kind of services upon execution return results that are

needed by another service to execute correctly; for example a service

may reference through xpath the results of another service. This kind

of service is executed only when its results are

Concrete services
A concrete service is one that only has value parameters and no xpath

parameters. Why is important to differentiate between concrete services and not

concrete services? Beca

y service that should be executed before it. Its name (not id) ca

ced by other services via the “followedBy” attribute which forces the latter

uted before the form

25

•

• nodes referenced by an xpath expression that is parameter of a web-

 in the xpath expression).

wever there is little we can do about it.

Taking into consideration the assumptions stated above an algorithm was

implemented to detect all dependencies of a particular service.

Definition: a service A is dependent on another service B if parameters of

service A refer results of executing service B.

The dependency relation between services can be of two types:

• explicit – enforced by the axml:sc “followedBy” attribute; for example

<sc name=”A” followedBy=”B”/>

<sc name=”B”/>

In the above example the semantic of the “followedBy” attribute is that service

B is to be executed immediately after A finishes. This explicit relation is

determined the first time the service is executed. Why here and not when the

service is first parsed? Because when the service is parsed there is no

con present in the Active XML document;

• otential results of

orithm used to determine implicit

depen ns’, thus

determ in

results of a web service invocation are placed underneath the

<axml:sc> element;

service might exist or not in the axml document;

• the xml fragment that is result of a web service invocation is yielded by

the closest web service on the horizontal (its node index is lower than

the last referenced existent node in the xpath expression, but the

highest when comparing to other web service nodes on the same

level) and vertical (its node is placed above or on the same tree depth

level than the last referenced existent node

From what is stated above it is obvious that a cycle can occur when

processing service references. Ho

Lazy analysis of document

sistent image of all the services

 implicit – service B refers through its parameters p

service A execution.

Lazy analysis of document is the alg

dencies. Non-concrete parameters are given as xpath expressio

in g dependencies is done by extending the xpath algorithm.

26

Lazy analysis algorithm applies to every xpath parameter of a web

ser

Inp

vice.

ut: xpath parameter
put: Vector of service references on which the current Out

depends.

0. Pa ers the xpath parameter into location paths

 very location path 1. For e
 2. Save previous vector of result objects;
 3. Filter current vector of result objects based on

nt location path;
 4. Search in the vector of result objects saved at 2.
the <axml:sc> element;
 5. If found

curre

 6. Filter the vector of service references
based on the current xpath evaluation result
 7. Current vector of result objects is assigned the
result of step 3.
8. End for.
9. return last vector of valid service references
determined at 4.

In words, while evaluating the xpath expression we are also searching the

ck the latter to

inst the xpath

 the

 a

 parameter when it is not necessary. This condition is

n any

ectly

algorithm. Because the policy is conservatory if the

 explicitly) its

lways evaluated.

current context for matching web service references. Then we che

es of services paragraph agafulfill the conditions stated in the Typ

evaluation.

Because an xpath parameter is already evaluated once when doing

lazy analysis in order to optimize web service execution I have come up with

scheme to not evaluate the

true when, although the service has xpath parameters, it doesn’t depend o

other service. In the latter case the result of xpath evaluation is taken dir

nalysis from the lazy a

analyzed service depends on at least on other service (implicitly or

path parameters are ax

Algorithm for discovering and calling new services

27

1. the source xml (axml) document is parsed for services;

2. every time a new service element <axml:sc> is discovered it is

ervice that was obtained as a result of

2. In this step a logical image of the web service reference is built in

memo

•

ttribute;

•

• serviceNamespace – xml namespace to assign to service reference;

• methodName – operation to be invoked;

• signature – URL to service WSDL;

• doNesting – true or false;

• mode – replace or append;

• id – it is a unique alphanumeric combination (not only on the local

). When the service is parsed if it doesn’t

have an id attribute one is assigned to it. Class ServiceIdGenerator

nique one is generated every

time;

• frequency – two important flags are managed by the code sequence

that parses the execution interval (frequency). If the parsed format is

unrecognizable (due to syntax errors) the isSchedulable flag is set to

analyzed and after all its parameters are parsed a new entry is added

to the document’s service table;

3. the RefreshDaemon inspects periodically the service table. If a new

service has to be executed, it delegates job to the ServiceExecutor

module.

4. Once the ServiceExecutor has done its job the result, of calling the

service is again parsed. As a result a new web service entry might be

added to the service table (a s

calling another web service).

ry.

Following attributes are parsed:

name – a conventional name for the service. It is mostly when referring

a service by using “followedBy” a

• followedBy – used to enforce an explicit dependency relation;

serviceUrl – endpoint location;

peer, but also on the Internet

manages service id’s, taking care that a u

28

false. In all other cases isSchedulable is true. callOnce forces one and

hatever the value of frequency. If

null.

to be executed the following steps are

perform

If this

only one execution of the service w

an error occurs frequency is set to

3. When a service is ready

ed:

is the first time the service is executed and the

ch discovered services for one with
owedBy==this.@name

service is not concrete
 Sear
 foll

 If found
 put this service reference in the nextToExecute

if

tions;

stor

 field of ancestor;
 End

 Perform Lazy analysis to determine implicit dependency
 rela

 If any dependencies are found or current service has
 ance
 Clear xPathStatic field from every xpath parameter

 (reevaluate every time)
 End i

f
End if
Run all dependencies of this service;
Build an xmlrpc envelope to be addressed to th

eceive results.
e proxy;

Invoke xmlrpc service and r

4. In this step results from a previous xmlrpc call are handled. First of all

sly executed service had mode attribute set to replace than two

ts with axml:origin (read below) attribute set to previously

es that resulted from parsing the results of calling the previous

 service has a reference to his father).

the document lock is set.

If previou

things happen:

• all elemen

executed service id are deleted;

• all servic

service are deleted recursively (a tree like structure is maintained,

every

29

The results are included in the Active XML document underneath the

axml:sc> element. From now one the document lock is unlocked.

tter is immediately executed.

ctive XML Document Manager

The t functions:

• ented as a Hashtable in

• implements a layer of abstraction to writing and reading the document

from the persistent memory (uses the facade provided by the “XML

Bec nts and the

service t

lock objec

lock() and

and storeLock(). The former protects the memory image of an axml document

and as r

storage o

which to s device’s volatile memory:

• writing data to persistent memory at specific intervals of time;

<

Finally if this service has a followedBy attribute that has materialized in a

nextToExecute field, the la

5.1.1.3 A

Every Active XML document is stored in an MDocument.

 MDocument has a few importan

• synchronization: concurrent access from different threads to the same

document either in main memory or in persistent memory;

keeps a table of all services. This is implem

which the key is the id of service and the element is the reference to

the service;

• manages inclusion of web service materialization results in the source

document;

repository” component of the client).

Synchronization

ause more than one thread accesses the axml docume

s hat they contain some mechanism for synchronization is in order. A

t implemented using monitors is used. Lock object has two methods

 unlock().

Every MDocument object contains two Lock type objects: memoryLock

su es its consistency, while the latter does the same thing to the persistent

f the axml document. Related to the storeLock there are two ways in

tore the documents currently found in

30

• writing data only when the midlet application is either terminated of

ock is locked whenever some operation is performed on the

axml d

inishes

modify d getter

and a

public void run()

paused.

Because I chose the second method the storeLock is obsolete since no

two threads access the store at the same time.

The memoryL

ocument. Because some operations like modifying the xml are user

dependant they may take quite a while before them end. This is why a flag was

introduced that announces the Inspector that one document is under way to be

locked. If the flag is set, the Inspector gives up and doesn’t try to lock that

document (operation that would block indefinitely, until the user f

ing the xml, for example). To manipulate this flag a synchronize

synchronized setter are provided.

{
 //first check if another thread performs a long
 //operation and we shouldn't block waiting for it
 //to end.
 if(!mDocument.isWillBlock()) {
 //todo: lock interval should be made as

 check(mDocument);
 mDocument.memoryLock.unlock();

 System.out.println("Another thread performs a long
 operation on "+mDocument.name);
 }
}

 mDocument.memoryLock.lock();

 } else {

31

5.1.1.4 Mini XPath Engine
XPath is an open standard. Its desired purpose is to serve as a language

for addressing parts of an XML document, it was designed to be used by XSLT.

The path to an XML node is fully specified by an XPath expression (a

path). This path is very similar to a file system path.

XPath models an XML document as a tree of nodes. In the standard

XPath there are different types of nodes, including element nodes, attribute

nodes and text nodes. However the version built into this project has only support

for elements and text nodes (the attribute node is cast to a text node). The

remaining of this paper "xpath" refers to the version this project implements and

not the XPath standard if not otherwise specified.

Figure 8

XML File

Parsing

DOM Tree

Mini Xpath
Engine

Result: Forest of
Nodes

Xpath expression

Input

Input

32

The basic construct in XPath is the expression.

ld result objects, which may have one of

the following types:

• node (actually an element);

• string (a sequence of characters).

an xpath expression by its own its context is the document's root node.

However an xpath expression can be evaluated as part of an XSL, hence

its context is defined by the xsl transformer and it is made of a set of start nodes.

The current xml namespace is not passed to the xpath processor although

the latter supports xml namespaces.

An expression is evaluated to yie

Every xpath expression has a context within it executes. When evaluating

Location path

One important kind of express tion path.

A location path selects a set of nodes relative to the context node.

The result of evaluating an expression that is a location path is the node-

set containing the nodes selected by the location path. This xpath

implementation specifies that an xpath location path cannot contain recursive

expressions. If this feature were to be inserted in the project, the xpath

expression parsing process would have been more costly.

Every location path can be expressed either straightforward or using an

abbreviations for the most common cases.

There are two kinds of location path:

• relative location paths;

• absolute location paths.

A relative location path consists of a sequence of one or more location

steps separated by /. The steps in a relative location path are composed together

from left to right. Each step in turn selects a set of nodes relative to a context

node. An initial sequence of steps is composed together with a following step as

follows. The initial sequence of st nodes relative to a context

node.

ion is a loca

eps selects a set of

33

Each node in that set is used as a context node for the following step. The

sets of

es identified by the composition of the steps is this union.

 ists of / optionally followed by a relative

locatio

ion step;

hich uses arbitrary expressions to further refine the set of

nodes selected by the location step.

The syntax for a location step is the axis name and node test separated by

a double colon, followed by at most one expression in square brackets.

Axes

The following axes are available:

• the child axis contains the children of the context node;

f the context node; a

ttribute or namespace nodes;

 of the context node, if there is one;

ins the attributes of the context node; the axis

will be empty unless the context node is an element.

 nodes identified by that step are unioned together.

The set of nod

An absolute location path cons

n path.

Location step
A location step has the following parts:

• an axis, which specifies the tree relationship between the nodes

selected by the location step and the context node;

• a node test, which specifies the node type and expanded-name of the

nodes selected by the locat

• a predicate, w

• the descendant axis contains the descendants o

descendant is a child or a child of a child and so on; thus the

descendant axis never contains a

• the parent axis contains the parent

• the attribute axis conta

Node tests

Every axis has a main node type. If an axis can contain elements,

then the principal node type is element; otherwise, it is the type of

the nodes that the axis can contain:

• for the attribute axis, the principal node type is attribute;

34

• for other axes, the principal node type is element. A node test * is true

for any node of the principal node type. Currently this works only for

mple, child::text() will select the text node children of the context

node. A node test node() is true for any node of any type whatsoever.

node-set. PredicateExpr is

evalua

A pseud syntax
xpath_ p

locations :

locatio

 (node_test '[' predicate ']') |

axis ::= t

node_test

predicate

 r_member '=' expr_member) |

node_

expr_m m

 ('"' string '"') ||

 (string)

axes that have as principal node type the element.

The node test text() is true for any text node.

For exa

Predicates

A predicate filters a node-set with respect to an axis to produce a new

For each node in the node-set to be filtered, the

ted with that node as the context node.

o-grammar of the accepted xpath
ex ression ::= locations

:= (locations '/' location) | location

n ::= (axis '::' node_test '[' predicate ']') |

 (axis '::' node_test) |

 (node_test) |

 ('.') | ('..') | ('*')

 'a tribute' | 'descendant' | 'parent' | 'child'

 ::= (element_namespace ':' element_name) |

(element_name) |

 ('node()') | ('text()') |

 ('@' attribute_name)

::= node_index |

 (exp

 (expr_member '>' expr_member) |

 (expr_member '<' expr_member)

index ::= [0..9]+

e ber ::= ('@' attribute_name) ||

35

Given a DOM tree and an xpath expression the mini xpath processor

putes a set of objects. These objects are either kdom Element

tring. Processing instructions and other entities are

com

or S ignored.

roject in the following ways:

sent to the

les the expression as a

. the xpath expression is parsed into location paths;

. the nodes in the DOM tree;

. for every location path contained in the expression start refining the

res e Location path algorithm with parameter the

axis, node test and predicate;

The minixpath engine is used throughout the p

• inside an xsl to select relevant nodes of the axml document;

• it performs a query on the document when such a query is

phone.

This part of the project has evolved into a subproject

and is now hosted on http://minixpath.sourceforge.net.

Algorithm

lit into three units. It handThe used algorithm is sp

hole, the location path and the predicate.

Expression

1

2 result set is assigned all the

3

ult set by calling th

result set from the previous step.

Location Path

Parse the location path into
If the axis is equal to “child” or “descendant”
 o ery node in curre F r ev nt context
 r every childe of Fo the current node
 If node test matches the current child node
 add it to the result set
 endif
 If axis equals “descendant”
 add all matching desc endants to the result
 set
 endif
 endfor
 endfor
endif
i e s is equal f th axi to “parent”
 For every element in context node set
 Add node’s parent to result set

36

 Endfor
Endif
If the axis is equal to “attribute”
 For every element in context node set
 Extract attribute from node test and put its value

 to result set
 E fnd or
Endif

Every location path acts as an additional filter to the already found results.

 found in a previous

iteratio ed with regards to

the current location path. If it is accepted it is put in the result node set.

Evalua

node set is initialized to a set of nodes. In an xslt reference to

an xpa sults of evaluating

previou ngine implies

initializ

The context node set is a collection containing nodes

n (processing of a location path). Every item is process

tion of the next location path will receive as context node set the current

result node set.

The context

th expression, for example, is influenced by the re

s expressions. Standalone functionality of the mini xpath e

ing the context node set the root of the xml document.

37

5.1.1.5 Presentation engine

ed a presentation layer

dering engine.

Figure 9

In order to present the results to the user I develop

which is composed (as you can see in the diagram) of two main components: the

transformer engine and the ren

XML Xsl like
file parsed
into DOM tree

XML with
application

Transformer data

Result: a wml like
file (xml ready for
presentation).

Renderer

Presentation
screen

Graphic
primitives

38

Benefits of a presentation engine

s used. Therefore there isn’t too

uch overhead present.

the formatting vocabulary.

At the first glance these architecture is much too complicated and a bit of

overhead is involved. Presentation modules present in this project

implementation only a subset of the standard

m

The goal is to have results properly extracted and presented on the user

interface (mobile phone or pda screen). The advantages that this approach yields

are noti

• ferences to data to be presen ardcoded in

the program;

• xslt transformer engine is general and its output xmls are not

necessarily for presentation purposes;

• xslt can be used to transform an xml into another one.

When arriving at this is stored in memory contains

relevant data. But its form r presentation on the device

screen.

5.1.1.5.1 The transformer

Its input are a "stylesheet" (a model of how data should be organized) and

the source AXML which contains application data. Its output is another xml (this

time it is called a wml) which contains markup ready to be interpreted in order to

render the results to the device screen.

The input is a stylesheet called XSL (eXtended StyLesheet). Its language

is is a reduced set of the original XSLT language which is generally used at

transforming XML documents into other XML documents.

XSLT is designed for use as part of XSL, which is a stylesheet language

for XML. In addition to XSLT, XSL includes an XML vocabulary for specifying

formatting. XSL specifies the styling of an XML document by using XSLT to

describe how the document is transformed into another XML document that uses

ceable:

 very flexible, re ted are not h

 step the axml which

at is inappropriate fo

39

We use a simplified version of the XSLT language because these are the

needs and because the device lacks resources for additional XSLT processing.

This implementation cuts standard xslt down to two instructions:

generating text and repetition. Although it sounds poor comparing to standard

XSLT it is all we need.

o generate text a special element is inserted that belongs to the

xsl nam s

<xsl:value-of select = string-expression />

tree. The n; this expression is evaluated

and th r all to the string

functio

with any adjacent text nodes.

Example

For thi

<albu

Generating text
In order t

e pace:

The xsl:value-of element is instantiated to create a text node in the result

required select attribute is an expressio

e esulting object is converted to a string as if by a c

n. The string specifies the string-value of the created text node. If the

string is empty, no text node will be created. The created text node will be

merged

s xml:

ms>

 <title>Dark side of the moon</title>
 <author>Pink Floyd</author>

 <album>

 <album>

 </album>

 <title>Greatest hits</name>
 <author>Queen</author>

 </album>
</albums>
the instruction

<xsl:va

would yield: "Dark side of the moon".

 of xml another special element is inserted:

lue-of select = "/albums/album[1]/title"/>

Repetition
In order to repeat fragments

40

<xsl:for-each

 selec

</xsl:fo

attern for selected nodes.

The xsl:for-each instruction contains a pattern, which is instantiated for

each n expression specified by the select attribute.

The select attribute is required. The expression must evaluate to a node-

set. The template is instantiated with the selected node as the current node, and

with a list of all of the selected nodes as the current node list.

Example

For this xml:

t = node-set-expression>

 <!-- Content: (<xsl:value-of>, markup) -->

r-each>

When the result has a known regular structure, it is useful to be able to

specify directly an xml p

ode selected by the

<albums>
 <album>
 <title>Dark side of the moon</title>
 <author>Pink Floyd</author>
 </album>
 <album>
 <title>Greatest hits</name>
 <author>Queen</author>
 </album>
</albums>
the xslt instructions:

<xsl:for-each sele

lu

ct = "/albums/album">

<p>Title: <xsl:va e-of select = "title"/> </p>

 following xml:

<p>Title: Dark side of the moon</p>

<p>Author: Pink Floyd</p>

<p>Title: Greatest hits</p>

ueen</p>

<p>Author: <xsl:value-of select = "author"/> </p>

</xsl:for-each>

would yield the

<p>Author: Q

41

5.1.1.5.2 The renderer

The result of the transformer is another XML, a WML. WML stands for

 Language and it is an open standard. It is a mark-up language

inherite

played in a WAP browser.

er.

 j2me application (midlet) cannot access the device micro-browser,

is built into the phone. Hence this project includes a proprietary

erer for WMLs.

wo available methods of accessing the device screen:

l over the screen at

el, hence more flexibility is available;

onger screens of text that need

er uses the second approach, also a much simplified syntax as

 WML.

onents of the WML syntax are

d b) the cards.

n called "decks". A deck contains a set of cards. A

.

 contain text, markup.

n contain one attribute: "title". This will appearon the

in which the current card is rendered. Every card is

rendered in its own screen. However the renderer takes care to set up a

sequential navigation system between cards.

Wireless Markup

d from HTML, but WML is based on XML, so it is much stricter than

HTML. WML is used to create pages that can be dis

Pages in WML are called DECKS. Decks are constructed as a set of

CARDS. To render a WML you would normally need a wap micro-brows

A Micro Browser is a small piece of software that makes minimal demands

on hardware, memory and CPU. It can display information written in WML, a

restricted mark-up language.

The

even if one

minimal rend

One has t

• low level, which means the programmer has contro

pixel lev

• higher level, appropriate for forms, or l

some fo

nder

rm of navigation.

The re

opposed to the usual

WML syntax implemented
As enumerated above two essential comp

a) the Decks an

a) WML pages are ofte

deck is wrapped by a <wml> element

b) A card element can

The card element ca

first line of the screen

42

Text is rendered on screen by including it either in a <p> element or in a

<table> ed inside <tr> and rows have columns wrapped

inside

<!ELE

. A table has rows wrapp

<td>. Important to note here is that the "columns" attribute to the<table>

element is not needed (otherwise, its presence is compulsory should the

renderer be a usual micro-browser).

DTD of the supported WML is:

MENT card (table | p)>
<!ATTLIST card title CDATA #REQUIRED >
<!ELEMENT p (#PCDATA)>

MENT table (tr+)>
<!ELEMENT td (#PCDATA)>

<!ELEMENT wml (card+)>

<!ELE

<!ELEMENT tr (td+)>

<!ATTLIST wml xmlns:xsl CDATA #REQUIRED>

43

5.1.1.6 User interface

The user interface is based on the MVC design pattern.

The Model-View-Controller (MVC) is a design pattern which links

efficiently the user interface with obje

ct oriented programming. This architecture

is frequently used when programming in Java, C++ or Smalltalk because it allows

ing the development time of application

r architecture is made of three main components:

ss logic of the application

 core of the application.

 application represents.

When significant changes occur in the model, it updates all of its views;

• the View component is a collection of classes which represent the user

interface (every object that the user sees on screen and are

interactive); The user interface which displays information about the

model to the user. Any object that needs information about the model

needs to be a registered view with the model;

• the Controller component which represent the classes which allow

communication between classes in Model and View components.

Application flow is mediated by a central Controller whose role is to pass

the requests to the specific logic classes.

The Model component is made up of classes which store the logic and

system state. After the logic is executed on the Model component layer, control is

passed back to the Controller which transmits it to the View layer.

This way the MVC model makes possible separation between business

logic and results presentation logic. This separation allows every component to

be reused and assures an easier maintenance of the whole application.

reusing the source code, thus reduc

which have a use interface.

The model-view-controlle

• the Model component, which is the busine

and high level classes associated with it; the

This maintains the state and data that the

44

General MVC diagram:

MV

Any is that it implements

UICon l

The of a

display

he controller).

pass the

IDlet as a parameter to the screens that are part of the View component, we

on't want to interfere with the normal MIDlet lifecycle.

Model

View

Controlls Updates

Controller

User

See view

 Uses

Figure 10

C components in Active XML Mobile application

 class can be the controller. The condition

trol er interface from the org.axml.mobile.midlet package.

 view is played by different classes which extend components

 (see UML diagram) and their constructors are passed references towards

the class which implements UIController (t

The model is the class MController which controlls what happens in

background (how and when axml documents are updated, e.t.c.).

The controller
The controller implements the UIController interface.

By implementing the UIController interface, the MainMidlet can expose

certain methods to the individual screens. However we could instead

M

d

45

Within the MainMidlet, the nextScreen() and lastScreen() methods have

The v

Figure 11

been used to maintain the information about the currently visible screen. These

methods use the java.util.Stack object to maintain the display state.

The application will push the currently displayed Displayable object to the

Stack prior to displaying the next screen when nextScreen is called.

When calling lastScreen() the application will pop the previously displayed

Displayable object from the Stack and set the display to show that screen.

currentScreen() returns the current displayed screen

getAxmlController() returns a reference to the MController, instantiated in

MainMidlet. This reference is used to access different components of the

business logic layer. The getListIndex and setListIndex methods are used to

communicate the screens. Here’s how: we use this to share the index of the

element chosen from a list across multiple screens. For instance the xpath

inspector calls getListIndex in order to find out on which document to work. That

index is set in the “list documents screen”.

.

iew component architecture

List documents
screen

List stores
screen

 new
document screen

Browser screen Xpath screen Dump document
screen

Add

Root screen or
main menu.

46

A Stack container is used to store the already visited screens.

This can be done because, as you can see from the above diagram our

user interface architecture is a tree and not a graph. That means that there is

only on

Root screen

List object and implements

the Co

e entry point into each screen.

The first screen that is visible to the user is the RootScreen. The

RootScreen extends from the javax.microedition.lcdui.

mmandListener interface.

Figure 12

The constructor is passed a parameter that contains a reference to the

Controller as an argument, which will be stored as a private variable for future

use.

public RootScreen(UIController controller)

The RootScreen extends the lcdui List object which presents a basic way

of organizing items in a user menu. The RootScreen will listen and handle any

com initia en it is disp Therefore, it calls the

setCommandListener() method with itself as a parameter.

this.setCommandListener(this);

The event-handling infrastructure in the MIDlet architecture, briefly

discussed in the RootScreen example, lets one handle events generated from

the MIDlet Screen objects otScreen example, the user is presented

with a list containing these items:

mands that are ted wh layed.

. For the Ro

47

• “Start axml engine” if the engine wasn’t not started and “Stop axml

• d stores”;

• “Dump document”;

• “Presentation”.

 of the items by using the up/down arrows and

n button, the commandAction() method will be called.

public void commandAction (Command c, Displayable d);

The commandAction() method captures the events generated by an

st step involves retrieving the list from the display, which in

through the UIController interface. The selected item can be

t to allow the application to perform logical operations to

 course of action. In this case, the next display object will be

d and passed to the controller's nextScreen() method.

.

engine” if the engine was started;

• “Add document”;

• “Run xpath on doc”;

 “List recor

When the user selects one

then clicking the actio

PLICIT list. The fir

is example is done

trieved from the lis

etermine the proper

IM

th

re

d

instantiate

AddDocScreen

This screen is reachable from the main menu via the “Add document”

option

The AddDocScreen class (
Figure 13

which is the View in the MVC design pattern)

extends (or inherits) another lcdui component: Form. The label “Enter url” is a

48

StringI

new docu new service calls are added to the

specific tables. After that method lastScreen of the UIController interface is

called. These leads to popping the last screen from the stack, thus, in this case

we retu

bugging purposes because the results of evaluating

an xpath expression will be shown in the system console hence visible only if the

applica

ainst

which the “Run Xpath

on doc

tem. After the correct URL is entered and the Load button is pushed the

ment is loaded and parsed hence

rn to the main menu.

XpathScreen
This screen is for de

tion runs in an emulator. This is one of the screens which are preceded by

the “ListDocsScreen”. This is very natural since we need a document ag

to run our xpath expression. Xpath screen corresponds to

” option from the main screen (RootScreen). Below, a capture of the

ListDocsScreen:

Figure 14

A reminder: a document’s name is its URL. The ListDocsScreen class

extends a List, a very similar method of building an option list to the one used in

RootScreen.

Other screens that also use the ListDocsScreen:

• Dump document screen;

Browser screen;

To facilitate code reusage of the ListDocsScreen, the constructor is:

•

• Modify screen.

49

public ListDocsScreen(UIController uiController, String dataUser);

The first parameter is obviously the reference to the UIController. However

the second parameter is more interesting. We use it in order for the

ListDocsScreen to delegate control (using the controller of course) to a specific

screen of our choosing. The “dataUser” is the name of the screen class. A switch

statem which screen to delegate. To note here that in the switch

statem

ent decides to

ent, the screen names are hardcoded.

Another way of doing this would have been:

try {
 Class.forName(dataUser).newInstance();

//catch (IllegalAccessException iae) {}

BUT we wa

} catch (InstantiationException ie){}

nt to pass the uiController parameter to that instance. The only

way to keep it general would've been to make a new interface with one method

public void setUIController(UIController) but this means wasting precious

resources for a midp device.

Finally the XpathScreen:

Figure 1

The actual XpathScreen only contains one interactive component, a

TextFi means that any characters are valid for

input.

Evaluate” button the desired xpath expression is

evaluated and its results are shown in the system console.

5

eld whose constraint is ANY which

After pushing the “

50

This screen uses as model (the Model component in MVC design pattern)

the xpath evaluator module.

ListStoresScreen
This screen corresponds to the “Run Xpath on doc” option from the main

screen (RootScreen).

Figure 16

This screen provides a way to see which documents are stored in the

Record Store System

DumpDocScreen
Its purpose is to show the contents of an axml document in the system

console, hence is only useful in the emulated environment. This screen is also

based on the ListDocsScreen.

7 Figure 1

After selecting a particular document, the DumpDocScreen is:

51

Figure 18

To dump the contents of a file, one has to push the “Dump to” button.

BrowserScreen
This is the central part of the presentation. Its entry point is the

“Presentation” item in the main menu (RootScreen). As usual the document to

s chosen in the ListDocsScreen. present i

After choosing one document the next screen is:

Figure 19

Once this screen is shown that means that the presentation is ready. After

pushing the “View presentation” button the actual presentation starts as a

sequence of slides.

52

Example:

Figure 20

Figure 21

The presented slides are the first and the last. Every slide (screen) is

actually a form. By taking into account their relative position in the Vector,

buttons are assigned to every form. The key thing is that there is only one

CommandListener for all the frames (in fact a controller).

is means that the MVC pattern is applied even in the presentation layer.

o interact with the existent data. Because we have to deal

with an xml, that is tree-like structured data, a convenient method to access the

node were interested in is in order. The ModifyXmlScreen class fulfills all this

desiderates. However only attributes can be modified because of the way kDOM

stores the elements of the XML.

Th

Modifying the XML screen
The user has to be provided with a way to modify the existing Active XML

document in order t

53

Navigation is “explorer” like. A node (actually an element) that can be

expanded more is prefixed “+“, a leaf is prefixed by “-“.

Every line in the unfolding tree is logically represented by a TreeEntry

inner class. This provides the essential elements for rendering that entry to the

screen.

54

5.1.2 The XML repository
On the implementation level the XML repository’s central part is the

Persistent Memory Manager which also gathers around it the File retriever and

the DOM Cache as depicted in the General architecture section.

5.1.2.1 Persistent Memory Manager

An xml repository is essential in order for the application to work even if

the mobile device is not connected to the Internet.

The Mobile Information Device Profile provides a mechanism for MIDlets

to persistently store data and later retrieve it. This persistent storage mechanism

is modeled after a simple record oriented database and is called the Record

Management System.

The Record Management System is organized into “stores” which are split

into “records”.

Two types of xml files are stored in the Record Store:

• Active XML documents which contains web service references;

• XSL files which drive the presentation and are essential if a

presentation of the stored data is to be made while the device is offline.

A reminder is in order here: every axml document is named by its URL

initial location. However Record store names are case sensitive and may consist

of any combination of up to 32 Unicode characters. This means that we cannot

store every document in a store named with its conventional name because there

are simply too many characters in a URL string.

Another reason for which we need a central place in which to store

document names is that we need a mechanism to open just those stores that we

are interested in.

A “repository” named store is created that contains all the names of the

documents currently stored on the peer. The method “retrieveDocStoreIndex”

from the NamesRepository class returns an index that acts as a pointer to the

record store where the actual document is stored. For example if name

55

"http://localhost:8080/airport.xml" is stored in the "repository" store in record "3",

then th store "3", record 1.

To find a specific record, the Record Management System has a

mechanism named RecordFilter. A filter class must implement the RecordFilter

interface and define the match method.

 record store.

s RecordFilter

e document is available in record

This is used when searching for a specific

Example of a filter:

public static class MyFilter implement
{
 String name;

 {
 this.name = name;

 public MyFilter(String name)

 public boolean matches(byte[] recordData)
 {
 return(name.equals(new String(recordData)));
 }
 }
}

The

hence

Record Store Management API.

Synch

 serialized, so no corruption will occur with multiple accesses.

Howev

to the Record Store operations. Every time operations with the Record Store

 above filter is used to test if a document exists in the repository,

it already has an instance stored in one of the record stores of the

application. Another filter is used to find all the records that end in a user defined

pattern.

Synchronizing access to repository

No locking operations are provided in the

ronization is provided by the Persistent Memory Manager. Record store

implementations ensure that all individual record store operations are atomic,

synchronous, and

er the specification states that if more that one thread tries to access the

same Record Store then it is the programmer’s responsibility to set up proper

synchronization mechanisms.

In every MDocument class a “store” Lock field exists that is directly related

56

Management system are under way the lock is set and it is unset only when all

the operations have ended.

A lock is necessary because the record store is susceptible of being

accessed by more than one thread.

All accesses to the same record store are serialized, although, for

examp

very record store that contains an axml document, the

y class

 which enforces serialization when dealing with the

pository” store that contains the names of all stored documents.

The File Retriever is a facade for the Xml Repository, has public method

t the latter

le, read-read operations could have been parallelized.

Besides protecting e

repository itself is protected by a Lock. That is the NameRepositor

contains a Lock field

“re

5.1.2.2 File Retriever

that facilitate access to an entire file stored in the Xml Repository whils

accesses data at byte level. The entry method is:

public static synchronized String retrieve(String name,
 boolean putInCache);

The locations searched by the file retriever are: record store and http. If

the file is found in the record store, the method returns that file. Else a request is

sent to the proxy for the URL location of the file. The proxy is used as an

intermediary of file transfer. If the file can be found neither in the record store nor

in the U t is null. An option is provided to

indicat

ldDom(InputStream is) throws

RL location the method fails and the resul

e that we would like for the cache manager to try putting the newly

retrieved document in cache.

Because String content (the output of the latter described method) is of no

use to us the file retriever presents us with an additional method that acts as a

wrapper for the Xml parser that might occur and returns the DOM tree of the xml

document:

private static Node bui
 Exception

57

A higher level wrapper for this method is:

public static Node getDom(String xmlString)
which

reference to it such

that th

 generated it

can be cached such that if neither the document nor the xsl don’t

d to be computed again;

ement of presentation xml or

• generically any xml fragment can be cached.

he J2ME platform is already limited hence unused

objects

ver cache when the free memory is less than a quarter of the total

e when the size of the object we want to keep in memory is

larger than a half of the total free memory;

handles all exceptions thrown during parsing time.

5.1.2.3 DOM Cache

This application module stores an already used DOM tree for later usage.

Closer to the truth it doesn’t store the DOM tree but keeps a

e memory if occupies cannot be collected by the Garbage Collector. Hence

a reference to it is still available to whoever is interested in using it.

What are the advantages that result from having a DOM cache?

• once the presentation for a specific axml document was

change, it doesn’t nee

• the DOM tree that is generated from parsing the XSL file can be stored

in cache so that it doesn’t need to be reparsed;

• a single point of entry for all manag

generic xml, BUT not source of Active XML documents;

Important issues come into question when using a cache:

• WHAT to cache?;

• the cache’s policy.

First of all only xml DOM trees are cache although the reference to any

object can be inserted in the Hashtable that holds the references.

The heap memory on t

 should be discarded as quickly as possible. Because we want to avoid

getting the dreaded OutOfMemoryException the proxy’s policy is a conservatory

one. The policy is based on these rules:

• ne

memory;

• never cach

58

There is no quick method to determine exactly the size of the object we

the object’s size is

 size varies between ¾

and 1/ ned by running the profiler

and th

: dirty and

presen onization

with th

as regard

instantiate a write to the record

system v

may switc ppen:

If only the Active XML source document has changed and the XSL is

cached , otherwise the

XSL re re

he generated WML whose reference is stored in

cache

hich the key is

a Strin

intend to cache. The method I use is to assume that

approximately the size of the stringified xml. In reality this

10 of the real tree object size (figures determi

e memory monitor).

Still part of the cache’s policy is the answer to the question: when the

contents of the cache become stale?

Every MDocument has two fields that act as flags

tationDirty and indicate that different resources require synchr

e new document content. “dirty” indicates that the document has changed

 to its stored in the record store system. The first time the document is

d this flag is true because we want to force

 e en though no service has been instantiated yet. “presentationDirty”

h from false to true should any of these things ha

• the Active XML document has changed as result to web service

materialization;

• a new XSL stylesheet was downloaded.

, the same XSL reference is used as the one from cache

fe nce is discarded.

In both above cases t

is discarded and a new presentation is generated.

The data structure that holds the cache is a Hashtable in w

g that contains the axml document name and the element is the reference

to the DOM tree.

59

5.1.3 Server: Querying the axml mobile peer

This proves somewhat difficult since one cannot initiate access to a

particular j2me mobile device. An ordinary j2me mobile device has no ip address

hence doesn’t listen for connection, thus it cannot receive incoming connections.

A work-around is in order here. Basically we let the mobile device initiate

the co

er query.

the query?

 When the axml mobile sends the "query request" it actually sends a keep-

alive message which contains its name. This name is chosen by the user and

should be a descriptive name, will see later why. Whenever such a keep-alive

message reaches the proxy, the device name is put in a table so that we can see

it is online.

nnection and transmit a message. As response to the message it has

already sent, the device gets the prop

I propose the following approach (see diagram).

Send keep alive messages

Receive queries

Axml proxy

Send results

Axml m
Receive results

obile peer
Send query

However more problems occur here. How does the proxy know to which

device to address

Figure 22
Querying client

60

But we want the proxy to be able to intermediate more transactions at

once (

The algorithm is distributed between the mobile client and the proxy. It is

multithreaded on different machines: proxy, actor (the mobile component),

querying client.

There are three threads that execute in the same time on the proxy. Their

many-to-many). We need some sort of session mechanism and a queue of

unresolved messages.

5.1.3.1 Query algorithm

5.1.3.1.1 Proxy

execution is triggered by calls to proxy’s xmlrpc services.

1. ping service 2. nodeRequest service 3. nodeResponse service

remember actor name;

search queries for this
 actor;
send query to actor;
STOP

if a
 initialize request;
 stamp request with unique id
 put request to queue;
 P_timeout(request.se
endif

Receive query response
Match message id to
 a request’s id from queue
if match found
 set this as request’s
 response
 V(request.semaphore)
else dump response,
 requester

ctor is online

maphore);

 is not listening anymor

if timeout send error message
else
 send query results to client;
STOP - SUCCESS

e;
STOP

61

1. ping: When a keep-alive reaches the proxy:

if a query is dest
the proxy checks the internal table of messages in queue

ined to this device
 the query is sent as response to the keep-alive message
else do nothing.

2. nodeRequest: When a query message reaches the proxy.

is online.
the proxy checks to see if the desired server for the query

if it is online (that means it has sent at least one keep-
alive message) then

he message is stamped with a unique sequence;
 then the message is put in a queue;
 t

 the querying service is blocked (with timeout).
 after awakening:

 the client;
 else if a esponse was received it s sent to the r i
 querying client.
 otherwise
 an err ue ying client. or message is sent to q r

3. nodeResponse: When a response to a query reaches the
proxy:
the proxy checks f r match the stamp of mes age (session o s
id) to every messa e in the internal messagg e queue

 age
t ked.
s ts requester

 server

alive. If there is a query for th

he query (in fact an xpath ex

k to the proxy.

 if timeout has occurred an error message is sent to

if a match is found
 the proxy sets the response to the mess
 the thread tha waits for answer is awa
else the message i simply dumped because i
is not listening for an answer anymore.

5.1.3.1.2 Actor (mobile component)

This is the actual of the mobile component.

Only one thread is needed. Periodically a ping is sent announcing the

proxy that the actor is is device it is received as

response to the ping. T pression) is performed and

the results are sent bac

5.1.3.1.3 Querying client
Here also a single thread is involved.

62

The client invokes either the xmlrpc of proxy directly of a SOAP endpoint

eceives a response

A more in-depth look at the implementation overall

re than one

s proxyUrl

roxy controller servlet;

rameter which indicates the name of the server

ing parameter, name of the axml document which is to

lrpc

 takes as

ession. All this

that is able to command more than one proxy.

The process is synchronous. The client blocks until it r

of any nature.

Usually a querying client will call the outside SOAP service in order to

place a query.

The SOAP service receives the following parameters:

• proxyUrl - because our soap service can be used with mo

proxy we need to know to which to relay the query. In fact thi

is the URL to the p

• clientName - string pa

to which the query is addressed;

• docName - str

be queried;

• xpath - string expression, the actual query.

This external SOAP service connects to the proxy through an xm

service which the proxy implements. This xmlrpc service only

parameters the clientName, docName and the xpath expr

parameters are packed on the proxy in a Request class.

public class Request
{
 /**
 * the name of the mobile device which is
 * to be queried
 */

rivate String server = null;
 /**

 */
 private String docName =

 p

 * axml document name that is subject to query

null;
 /**
 * actual query
 */

rivate String xpath = null; p
}

63

A request is packed into a Message:

public class Message

 /** uni
{

que id of this request.
 *

*/
 private String stamp = null;

 /**
 * @see Request
 */
 p vri ate Request request = null;

ate String response = null; priv
 private Semaphore sem = null;
}

On the proxy the pseudo code at 5.1.3.1.1 is applied and, finally, the

bile device receives this: correct mo

• ;

ments are separated by

ose newline '\n').

From now on the phone knows how to parse these parameters, execute

s parameters

e results of the query (the result will be explained

rent threads must synchronize inside the proxy in order for this

ing policy).

es is hardcoded in the proxy. This means that when

SOAP service waits maximum 2

utes for a message (either result to the query or an error report).

• a session id (or message stamp);

the docName

• the xpath expression.

Because these parameters are sent in response to an xmlrpc service call

we have to pack them into a single string to be sent to the client. Of course we

could instantiate a new xml to contain all this parameters, but the optimum

approach is to pack them into a single string whose ele

some distinctive character (I ch

the query and initiate a new xmlrpc call. This call has as it

the session id and th

below).

Diffe

process of exchanging parameters and query results.

Everything happens synchronously (block

A timeout of 2 minut

one queries a mobile device through our

min

64

For a working example on how to call the query soap

service oap.TestSoapRequestNode The

nt whose root node is called either <result>

ult> its children are:

 the xpath evaluation yielded an element it is wrapped in <element>;

 root element was <error> it should have a child text node, error

t threads that execute on the

 from every request a Message is

built. T

hread (that handles the request) performs a

P(time t

reques read that registers the response in the message

perform a emaphore.

:org.axml.proxy.synchronize.outside.s

result is a SOAPBodyEleme

(everything went smoothly) or <error>.If it is <res

• if

• a text node is wrapped in <text>.

If the

description.

Synchronization on the proxy
In order to synchronize the three diffe

xy semaphores are used. As seen above,

ren

pro

his message includes a Semaphore object. On proxy the message is

registered in a collection and the t

ou) operation on the semaphore from the message, blocking until the

t is solved. The th

s V() operation on the s

P(timeout) calls the wait method with argument timeout in milliseconds.

public synchronized void P(long timeout)
{

 if(semValue < 0) {
 while(true) {

 semValue--;

 try {
 wait(timeout);
 break; //notify has occured
 } catch(InterruptedException e) {
 if(semValue >= 0)
 break;
 else continue;
 }
 }
 }
}

if one of the

Although notify() was not received the current thread will stop waiting

after timeout milliseconds. This mechanism is useful, for example,

65

querie

 application

(see section 5.2 for more information) we have access to a common area to all

servlet ntext. All objects placed here can be

retriev

nal SOAP service
at acts like an interface that receives

querie

<depl

d actors is no longer online. If not for timouted P the proxy thread would

block forever waiting on a response.

How do different threads have access to the queue that contains

unresolved Messages? Because the proxy is implemented as a web

s of a specific application: ServletCo

ed by any thread in the same application.

Exter
An external SOAP service exists th

s for the mobile peer and hands back results to those queries.

This service was implemented using Apache Axis. Axis proposes two

ways of publishing a user SOAP service: either through the JWS system which

means that Axis automatically compiles the java classes and installs the service

or through the WSDD descriptor. The service is implemented by using the

second way because it offers more flexibility and the java sources don’t have to

be available. The service’s WSDD is:

oyment name="NodeRequestService"
xmlns="http://xml.apache.org/axis/wsdd/"
lns:java="http://xml.apache.org/axis/wsd

xm d/providers/java"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
 <!-- note that either

th
style="message" OR

provider="java:MSG" bo
odeRe

 work -->
 <service name="N questService" style="message">
 <parameter name="className"
value="org.axml.proxy.synchronize.outside.soap.Handler" />
 <parameter name="allowedMethods" value="nodeRequest" />
 </service>
</deployment>

Installing the service described by this WSDD is done using the

rg.apache.axis.client.AdminClient deploy.wsdd. Also there is

DD that undeploys the service: undeploy.wsdd.

The method

ublic Element[] nodeRequest(Element[] params)

AdminClient: java o

available a WS

p
contacts the proxy and obtains the results that are then sent to the client

that invoked the external soap service in the first place.

66

Examples of different xmlrpc envelopes transited between the
mobile device and the proxy
Ping message sent from mobile device to proxy:

<methodCall>
 <methodName>proxyService.ping</methodName>
 <params>
 <param>
 <value>
 <string>Mary</string>
 </value>
 </param>

</methodCall>
 </params>

It is obvious that the only parameter is the device name.

Response to a query message sent from mobile device to proxy:

<methodCall>
 <methodName>proxyService.nodeResponse</methodName>
 <params>
 <param>
 <value>
 <string>0.8516749219678416</string>
 </value>
 </param>
 <param>
 <value>
 <string>
<result>
 <element>
 <firstname xmlns:axml="http://www-
rocq.inria.fr/verso/AXML">Lleyton</firstname>
 </element>
</result></string>
 </value>
 </param>
 </params>

hodCall> </met

67

5.2 The proxy

rmediates file transfer;

ding out which clients are currently online;

diates queries which are destined to the mobile peer.

y is implemented as a web application. It interfaces with the

gh a servlet.All calls are dispatched to the Controller servlet

y the web application container. Although it is named Controller this servlet only

ceHandler class. This is

e actual controller which integrates code to call the appropriate methods for all

s are available for different messages.

Figure 23

1. Proxy as an intermediary for SOAP service calls

Roles

In this project’s architecture the proxy has four roles:

5. it intermediates SOAP service calls;

6. it inte

7. it acts as a directory for fin

8. interme

The prox

outside world throu

b

delegates handling of the XML-RPC stream to the Servi

th

kinds of requests.

Six method

Main servlet
(Controller)

nodeResponse()

ServiceHandler

callSoap()

getFile()

ping()

nodeRequest()

getActors()

68

One possible approach would be that the mobile device calls itself a

SOAP service. But why do we need a proxy for our SOAP service calls:

et's remember that composing a SOAP envelope requires a lot of

processing; it's not only that we have to use an xml parser, but also the

serialized xml contains a lot more nodes than a xmlrpc requests;

• larger than a xmlrpc one, more data is

more cpu time to use messaging style.

service.

• first l

 because a soap envelope is

required to transient the http connection, hence lower response times

and bigger bills;

• the result of the service call can be additionally processed. For

instance we can validate the returned types;

• results of a web-service call are available for use to more than one

client;

• should the phone call soap services itself it is more difficult and

requires

The client asks the proxy to execute a certain web

The xmlrpc request message has this structure:

<methodCall>
 <methodName>proxyService.callSoap</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>serviceNameSpace</name>
 <value>
<string>capeconnect:AirportWeather:com.capeclear.weathersta
tion.Station</string>
 </value>
 </member>
 <member>
 <name>serviceURL</name>
 <value>

<string>http://live.capescience.com/ccx/AirportWeather</str
ing>
 </value>
 </member>

<member>

69

 <name>methodName</name>
 <value>
 <string>getSummary</string>
 / < value>

ember>
ruct>
ue>

 </m
 </st
 </val
 </p aar m>

ra >
e>
uct>
mber>

 <pa m
 <valu
 <str
 <me
 n < ame>arg0</name>

string>KLAX</string>
 <value>
 <
 / < value>
 </member>
 </struct>
 </ lva ue>

s>
 </param>
 </param
</methodCall>

The proxy supports two ways of calling a SOAP service:

saging style (default);

messaging style

atural to use since we can’t always locate the WSDL. It follows

stantiated with information for

dyElement (which extends a DOM Element) that

envelope for the whole message;

t the service accepts build a

dyElement and add it to the main one that represents the

perform the call and get the resulting SOAPBodyElement as the first

 the returned vector;

a. the mes

b. RPC style, dynamic based on the WSDL of the service.

a. The

It is more n

these steps:

1. a Call object is instantiated and in

locating the SOAP service;

 SOAPBo2. initialize a

will be the

3. for every parameter tha

SOAPBo

whole envelope;

4.

element of

70

5. the SOAPBodyElement is translated into a DOM tree that the mobile

ginal axml document.

more resources than the messaging style because an

is has to be performed. As the parameters received from the

e no types, the application consults the service’s WSDL. Hence,

ument, the <sc> element should contain the “signature” attribute

 (URL) of the WSDL. Usually the WSDL can be obtained

 service’s endpoint URL by adding “?wsdl”.

st of times, the .NET built services don’t

xt steps are performed to compose a valid SOAP request

dl is downloaded locally;

prietary wsdl parser is fed the wsdl document;

ted method is selected from the wsdl file;

are analyzed from the wsdl and correct

xml response message is sent to the mobile device.

One important difference between the two types of SOAP service call is that the

latter p

to generat axis tool.

The

standard, thus it uses the HTTP protocol as its transport protocol. The initial

version

from enhy ell in the J2ME environments. When

testing on the PersonalJava environment, however, an exception is thrown when

device knows how to include in the ori

b. RPC style

It takes up

additional analys

mobile peer hav

in the axml doc

filled with the location

from the concatenation of the

However, this is not a standard and mo

respect this. The ne

envelope:

1. the ws

2. a pro

3. the selec

4. a new service is built based on the wsdl;

5. in, out and in/out parameters

types are established for the given parameters;

6. the service is called;

7. returned parameter types are verified against those that are expected;

8. an

To perform this type of call the wsdl4j.jar is required to be in the classpath.

erforms type verification. This method of performing a SOAP call is similar

ing a stub for that service with the wsdl4java

Communication with the proxy
 communication with the proxy conforms to the XML-RPC open

 used the XmlRpcClient that came together with the kXmlRpc package

dra.org. This version works w

71

trying

closed.

 ways of dealing with this:

s forced to go with the second alternative (should we try to exceed the

maximum number of allowed connections an exception is thrown). I have

modifie use:

ing and connection

lient.execute method, hence

nection is declared as

mlRpcClient.execute method;

 bad because,

ly and the class

there is no way to remove the debug

to open a new HttpConnector after the previous has been successfully

There are two

• every time open a new HttpConnector and never close the previous.

Let the midlet container manage the connections;

• loop until a connection is successfully opened. I have noticed that the

exception is thrown every two connection attempts. Although there is

no formal demonstration of this fact, it is almost certain that some time

a successful connection is established (tests showed that the second

try is every time successful).

Because the J2ME environment limits the number of possible connections

to five I wa

d the XmlRpcClient and included it as a new class beca

• the process of connection setup, connection open

closing is encapsulated in the XmlRpcC

inheritance is not an option to achieving the goal of extending the

XmlRpcClient class; the var that holds the con

local variable in the X

• design of XmlRpcClient is bad; some exceptions are handled whilst

others are thrown to the parent try/catch block. This is

for example, the exception thrown when there is no longer a network

connection available should be handled by the programmer (action:

stop trying to open a connection...). Other example of bad design is the

fact that the "debug" boolean field is declared as friend

lacks getters/setters for it, hence

output in the production version.

Another reason for modifying directly the XmlRpcClient is that I made ita

singleton. The singleton design pattern state that only one instance of an object

is available to all client objects at one time.

72

That is only one instance of the XmlRpcClient exists and a method is

provided that gets the reference. Limitations occur:

ts to the same

. This presents no

•

 executed at the same time moreover a

 be allowed.

More n

protocol a

a resource

•

In

feature. A

been ope

output str

the Http p

critical ex

released.

• all client code of the XmlRpcClient singleton connec

URL (actually there is a way to change the target machine but more

complicated synchronization would be in order)

problem because the mobile client talks to only one host: the proxy;

only one thread can use the XmlRpcClient.execute method at one

method because it is declared synchronized. This means that the

process of calling a service is serialized. There are rare the moments

when two services have to be

lot of processor time is lost when handling the results of calling a web

service. The latter happens multithreaded, every document is handled

by a separate thread. All threads join up at a barrier.

However, the latter limitation is rather important and cannot

tha one thread should be allowed to talk to the proxy using xmlrpc

t one time. Too manage the available connections I have implemented

 pool. Usually resource pools are developed because:

the resources are very costly to instantiate; reusing an old one that is

available is the prefered way;

• the maximum number of available resources is restricted.

our case the pool resembles more a mutex because it lacks the first

n HttpConnector cannot be reused because once an input stream has

ned for obtaining results, we cannot send any more data through the

eam (an exception is thrown that signals the fact that we are violating

rotocol). In fact the pool is a mutex that allows only five threads in the

ecution zone. Other arriving threads must wait for connections to be

To implement this conditional exclusion zone I have used semaphores.

Pseudo code is:

XmlRpcClientSingleton.execute ()
{
 semaphore.acquire();

73

 open connection send and receive data;
 semaphore.release();
}
The se

accessing

initializes t

(5).

Implem

public s

maphore object is declared as final (we don’t have to synchronize for

 it although it is used by more than one thread) and its constructor

he “value” variable to the maximum number of available connections

entation of semaphore’s acquire and release:

ynchronized void acquire()
ws InterruptedException

{
while(value <= 0)

 --value;
ch(InterruptedException ie) {
notify();

 thro
{
 try

 wait();

 }cat

 throw ie;
 }
}

public synchronized void release()
{
 v ual e++;

fy(); noti
}

To note in the above code that in the acquire method the semaphore

would allow us to descend with the P() method below 0. These would lead to

deadlock as more than the maximum number of threads request access to the

conditional exclusion zone.

d to the proxy

Hashtable contains parameters for calling the service. It has as its keys:

value is not decreased if already lower or equal to zero. An ordinary semaphore

Constructing a xml-rpc request for a service call to be
addresse

The request is made up of two Hashtables serialized as <struct>s.The first

• serviceNameSpace;

74

• serviceUrl - soap service endpoint;

• methodName - desired operation to be performed by the soap service;

t.

it

s a response to return to the client. However, the relevant information is

 at the client site there has

resemble a DOM Document. To

 wrapped in a <result> element.

ble response would look like this:

• signature - URL of soap service WSDL (this is optional).

Every key has a value of type "string" serialized into a <string> elemen

Once the proxy has received a response from the called SOAP service,

build

made up of a set of nodes. To make parsing possible

to be a root node in order for this response to

make this possible all the response nodes are

A possi

<result>
 <location>Los Angeles International Airport
(KLAX)</location>

5</temperature> <temperature>1
 <pressure>700</

isibility>5 M
pressure>

 <v
 <sk

iles</visibility>

/r

y>sunny</sky>
< esult>

2. Second role of proxy : intermediate file transfer.

l if one wants to download a certain file from the Internet onto

hers device.

First time the axmlmobile project is started on the mobile device it doesn’t

have any documents to work with so a source document must be retrieved. In

(we assume that the file is set up on a web server).

This approach has, however, some short comings when the target

platfor ilable. But

e to call web services the same time we are trying to

retriev

that by letting the xml-rpc module handle all the

connections some sort of connection pooling can be implemented.

This is usefu

his/

order to accomplish this the file has to be downloaded some way.

A common way would be to open an HttpConnection to the source site

m is j2me. First of all only about five tcp/ip connections are ava

remember that we might hav

e a file. Requesting an additional connection (the sixth in this case) would

cause an exception to be thrown.

The second advantage is

75

The third is that by having a proxy to intermediate this transaction we open

the do t

file tra fe , which is the

URL o

or o many possible optimizations. Caching is the most obvious one. The

ns r service of proxy receives one parameter of type String

f the file to be downloaded.

Example of an xmlrpc envelope to request a file transfer:

<methodCall>
 <methodName>proxyService.getFile</methodName>
 <params>
 <param>
 <value>
 <string>
 http://www.cnn.com/new.xml
 </string>
 </value>
 </param>
 </params>
</methodCall>

is the requested file seResult of calling this service rialized as a string.

3. Proxy as directory of mobile clients (or actors)

This functionality is more thoroughly explained in the “Querying the axml

mobile peer” section of the “Implementation” chapter.

“Actor” is a synonym for a mobile client of the proxy.

It is important to note that a mechanism must exist through which current

clients (actors) must register as active users of proxy services and in the same

time volunteer to answer queries from outside. As such, two xmlrpc services

were implemented to deal with these situations: ping() and getActors(). The

former facilitates registering of a mobile client while the latter is used in order to

obtain the current set of actors.

Current online actors represented as a Vector of String are serialized in

the standard xmlrpc method as an “array”. A soap endpoint is provided which

uses directly the getActors() service of proxy.

76

Unit tests
Unit testing is one of the requirements of Extreme Programming and

states that tests should be written for any piece of code that is susceptible to fail.

Ideally these tests should be written before the application code is actually

written. It ensures all functionality works and enables easy refactoring because

 structure did not

ange in functionality.

 framework for developing unit tests for Java classes.

lass used for testing in this project is TestCase. Classes that

tionally all methods that provide

f code have the prefix “test”. It is due to the fact that unit testing

 reflection.

oxy code is tested.

Following tests are provided:

• HttpFileGrabberTest – method testGrabFile() tries to retrieve an

 of the proxy. It

ses the getActors xmlrpc

It assumes that the

method testServiceCallUsual builds an xmlrpc

in order to test a specific .NET

service;

after each small change the unit tests can verify that a change in

introduce a ch

JUnit is a

The base c

provide unit testing extend TestCase. Conven

testing of pieces o

relies heavily on

Mainly the pr

arbitrary file by using the file grabbing xmlrpc service

tests that the result of the transfer is not null;

• TestGetActors – method testGetActors u

service to discover all online clients of proxy.

returned result is not null;

• TestPing – method testNodeRequest() sends xmlrpc envelope to the

ping service of proxy and tests that the response is valid. The

response indicates whether or not a query was received for the current

device;

• ServiceCallerTest –

envelope used for testing the xmlrpc-to-soap service of proxy. The test

succeeds if the answer is not null. Another test method

testServiceCallDotNet is provided

77

• TestNodeRequestInside – method testNodeRequest() injects a query

l fragment from a mobile device. This is done by invoking

directly the xmlrpc service of proxy. The test is passed if the proxy

returns a result and null is not returned. In order to use this test

following fields should be changed: PROXY_URL, DOC_NAME,

CLIENT_NAME, XPATH;

• TestNodeResponseInside – method testNodeResponse() injects a

query response to the nodeResponse xmlrpc service of proxy. The

message appears as coming from a mobile device. This test purpose

is to be used in conjunction with the other query tests to simulate a

conversation between the mobile device, the proxy and the querying

client. Thus this test never fails;

d testSoapGetActors uses the getActors

ll online clients of proxy. It assumes that the

returned result is not null;

•

ctly installed and that is

service of proxy, the standard echoElements endpoint of Axis. Fails if

no response is received of if the latter is null;

•

an xml fragment from a mobile device. This is done by invoking soap

endpoint of the querying subsystem. The test is passed if the proxy

a result and null is not returned. In order to use this test

following fields should be changed:

NODE_REQUEST_SOAP_HANDLER_ENDPOINT,PROXY_URL,

DOC_NAME, CLIENT_NAME, XPATH;

• TestConvPing, TestConvRequest, TestConvResponse,

TestConvRequestSoap are simple wrappers around test cases in order

to simulate a conversation who’s purpose is to satisfy an exterior

query. These are test suites which are run by a test runner. Example:

for an xm

• TestSoapGetActors – metho

soap service to discover a

TestSoapHandler – method testSoapServiceExists checks if the SOAP

handler of the outside SOAP service is corre

communicates with the proxy. Tries to call, through the xmlrpc-to-soap

 TestSoapRequestNode – method testRequestNode injects a query for

returns

78

publi cc lass TestConvPing
ic static void main (String[] args)
junit.textui.TestRunner.run(suite());

ic static Test suite()
TestSuite suite = n

{
 publ
 {

 }
 publ
 {
 ew TestSuite();
 //tests the ping service deployed on proxy

suite.addTest(TestSuite(TestPing.));
return suite;

tests are gathered in Test Suites. A Test Suite is provided which runs

e above tests. The query conve

 new class

 }
}

All

much of th rsation test can be run only manually.

This te

(which

org.axml.p stNodeResponseInside.

performing

located on

To

First cons le

st is difficult to perform because one has to change the message stamp

should be unique every time) in

roxy.synchronize.inside.Te

This stamp can be obtained by taking a peek at tomcat stdout.log or by

 a second ping (ant testConvPing), the message stamp should be

 the first line.

perform the test two consoles are needed:

ole Second conso

ant tes otC nvPing #register as client

ant testConvRequest #uses xmlrpc
service of proxy

ant testConvRequestSoap #uses soap
service

or
nvRequest #to responde

 or

ant testConvPing #to see query

ant testCo

 #query results start coming unless 2
min timeout has occurred

79

Building the project (ant tool)

t is a Java based build tool. It resembles the “make” tool in many ways.

 the “build.xml”

 to the ./bin directory;

text

iled bytecode to the new context;

test – performs all junit tests by running the main test suite;

• testConvPing – part of querying conversation, pings the proxy;

 context. Uses org.apache.axis.client.AdminClient to

dpoint;

eployNodeRequestService ront SOAP service by

clien dminClient;

• listServices – lists currently inst

An

The proxy is built using ant. All targets for building the proxy are in

file. Targets are:

• compile – compile source code and move output

• deploy – constructs directory tree and builds new tomcat con

“proxy”; moves comp

•

• testConvRequest – part of querying conversation, registers new query;

• testConvRequest – same like above, but talks to the outside soap

endpoint and not directly to the proxy;

• testConvResponse – part of querying conversation, responds to a

query that was received earlier;

• deployNodeRequestService – deploys the front SOAP service used by

regular clients when talking to the proxy. It moves compiled files to the

“axis” tomcat

deploy a wsdd that describes the SOAP en

• und – undeploys the f

using the org.apache.axis. t.A

alled Axis service.

80

6. Performance and measurements

Test platform: Compaq IPAQ CPU StrongArm 233Mhz, 64Mb Ram, Java

Virtual Machine: PersonalJava v1.1, Micro Edition Emulator: ME4SE.

First off all we need to find out the number of bytecodes/ms that are

execute

Firs

int a = 1;

6.1 Target platform performance measurement

d by the target device. In order to accomplish this I prepared two tests.

t test:

long ast rt = System.currentTimeMillis();
for(i nt i = 0; i < 1000000; i++) {

= a+i; a
}
long duration = System.currentTimeMillis()-start;
System.out.println("time: "+duration);

 execution of the first test the SOn un Wireless Toolkit reported 8058338

bytecodes.

The execution of the test on the emulator took about 875 ms.

Results of executions on the Compaq IPAQ platform:

Trial no 1 2 3 4 5 Average

Ms 1001 998 998 1000 1002 999.8

Average b

Second test:

int a = 1;

ytecodes/ms: 8059

long start = System.currentTimeMillis();
for(int i = 0; i < 1000000; i++) {
 a = a+i;
 a = a*10 - a;
}
long duration = System.currentTimeMillis()-start;
System.out.println("time: "+duration);

The second test took 14058379 bytecodes for execution.

On emulator it took about 1312ms to execute this test

81

Execution on Compaq IPAQ

Trial n 5 Average o 1 2 3 4

Ms 1995 1987 1990 2000 1995 2003

Average bytecodes/ms: 7046.

My conclusion is that actual speed is around 7552 bytecodes/ms when

using the PersonalJava platform on Compaq IPAQ.

rmance tests regarding various features of

using a special class:

enchmark.

lizes a new

 closes the measurement.

The P

 this measurement results are written in a special Record Store

named

tiv ML doc ents and resentat styleshe are rec

g the pr lrpc e for f nsfer. sical l e link n

B cable.

 time where two times measured and an average value was

l 1 Trial 2 Average

6.2 Perfo
AxmlMobile

Tests were performed by

org.axml.mobile.B

This class only contains two methods: mark() which initia

timing measurement and measure(String str) which

ersonalJava console is not ergonomic and output is difficult to follow.

Because of

 “bench”.

Retrieving files through HTTP connection
Ac e X um p ion ets eived by

usin oxy xm servic ile tra At phy ayer th betwee

the IPAQ and the proxy is a US

Transfer s

computed.

Id File name Size Tria
1 hello.xsl

hello.xml
997b 1025ms 1002ms 1013.5ms

2 1.5Kb 1040ms 1100ms 1070ms
3 Stock_trade.xml 2Kb 1105ms 1050ms

 1137ms
1077.5ms

4 OrgChart.xml 7Kb 1156ms
5 OrgChartDebug.xml 15Kb 1220ms 1320ms 1270ms

1146.5ms

82

1000
1200

00

997b 1.5Kb 2Kb 7Kb 15Kb

14

400
600

Series1
800

0
200

Figure 24

al effort is comparable for all transferred files. Because files

take a ss the wire this is the

differe

n important and costly operation. Whenever possible it is optimized

y using a cache.

ame S min

Although transferred files become larger and larger (eg.

OrgChartDebug.xml is fifteen times bigger than hello.xsl) the transfer time

doesn’t increase proportionally. The explanation is that most of time is used to

compose the XML envelope, the actual request to be addressed to the proxy.

This computation

 certain amount of time to be transferred acro

nce noticeable in Figure 1. Probably these differences would grow higher if

a small bandwidth connection is used in place.

Parsing a xml into a DOM tree
It is a

b

Filen ize Ti g
transactions.xml 1 0mKb 47 s
hello.xml 1 6m.5kb 53 s
stock_trade.xml 2 0mkb 77 s

83

0
100
200
300
400
500
600
700
800
900

1Kb 1.5Kb 2Kb

Series1

Figure 25

Evaluating XPath expressions of different complexities applied
to xml documents

XPath expression Target xml Timing

The measured time is directly proportional to the size of the parsed xml

and the number of nodes.

“/stock_trade/trade_data” stock_trade.xml 50ms
“/salute_players/tennis/player[@country=”russia
er[@country=”norway”]/atp/rank”

”]/../play hello.xml 68ms

“/salute_players/tennis/player” hello.xml 57ms

omplexity (mostly number of location paths and the presence

f comple s). Howeve g chunk of CPU time is allotted to building

and instan obje rving to run the mini xpath engine.

Par vice
It is important because it is the most costly step (excluding the DOM

parsing) of building a logical image of the axml document. Duration of initializing

a document and the memory footprint is influenced by the number of web service

references in the document.

Timing for evaluating different XPath expressions is directly influenced by

the expression’s c

o x predicate r a bi

tiating necessary cts se

sing a web ser

84

This also supposes parsing the web service parameters.

Active XML
document

Service Method Concrete
paramete
rs

Non-
concrete
paramet
ers

Timing

sayHello 1 0 230ms hello.xml Hello.jws
 sayHello 0 1 205ms

calcExchange 0 1 245ms stock_trade.xml
cheaperThan 0 1 235ms

transactions.xml

StockServ
ice
 getTransactions 0 0 215ms

Hello.jws is an Axis JWS service. Uses RPC style. It only has one method

-> sayHello. This method receives as parameter a String and returns a String.

StockService is an Axis WSDD deployed service. Uses messaging style. It

has three methods:

to us$;

• cheaperThan: receives a parameter and returns an xml envelope

• getTransactions: has no parameters, returns all performed

ons.

d x

 comparable amount of ti se muc

same operations are performed. Non-concrete parameters are not materialized

is executed.

Following steps are performed to generate a presentation:

2. if the xsl file is not present in DOM Cache it is retrieved (either through

http connection or from the RecordStore);

ion.

• calcExchange: receives a parameter (sum of money in local currency)

and translates it in

containing information about all the stocks cheaper than that;

transacti

Concrete parameters are passed by value,

references.

o not contain path

Parsing services takes a me becau h the

when first initiating the web service. They are materialized every time the service

Generating and rendering the presentation

1. check if a presentation is present in cache;

3. generate presentat

85

xml document XSL file XSL file
ze

Generate
o

Render
prese

g

A
si presentati

timing
n

timin
ntation

51 101

Speed of n n depends on the number of XSL

en f

To note tha case o timin f this st of prese

e duced to 0

ry

footpri

art, after all lcdui objects have been put to the screen, the

user is

Retrieving data from the Record Store

presentatio generatio

instructions pres t in the .xsl

t, in

ile.

f a cache hit, g o ep ntation

generation can b re .

hello.xml Hello.xsl 1Kb 0ms 2ms
stock_trade.xml Stock_trade.xsl 7Kb 710ms 1230ms

When rendering the previously generated presentation a WML file is

translated into viewable objects. This operation has a consistent memo

nt, but it runs in reasonable time. Presentation is rendered synchronously,

it happens at the st

 free to browse without further interruptions.

Involves accessing the Record Store Management System.

Axml document Size Timing
transactions.xml 1Kb 854ms
hello.xml 1.5kb 911ms
stock_trade.xml 2kb 1000ms

Operation duration is determined mainly by the file size, no processing is

done.

Above measurements serve as an informal demonstration to the fact that

application speed depends heavily on the XML parser which consumes most of

the memory and CPU time. This includes operations that make use of the

XmlRpcClient. In order to invoke an xmlrpc service an xml envelope must be

built, that is the xml parser is used.

educational, to

show that it can be done. It is meant to also demonstrate practical uses. Hence,

the imp

It ofile MIDPv1.0 (minimum

requirement for any J2ME implementation) on which the performance is

acceptable.

Purpose of the Active XML implementation is not only

lementation should be more production-ready rather than prototype like.

is optimized to be deployed onto pr

86

7. Conclu
This thesis together with the i entatio pan

ossible t source demanding application like a classic Active

kes a step further and starts to pay more

attentio

eday, as a full-fledged commercial application.

tive P2P network.

The implementation level of the Active XML Mobile is 100%. In order to

better ed.

7.1 Fu men
• a better algorithm should be implemented to detect dependencies

am

•

 a better method of interacting with the Active XML document is needed;

• extended testing is needed.

sions
mplem n that accom ies it proves

that it is p o port a re

XML peer to a critically resource limited mobile device.

The Active XML Mobile ta

n to the needs of the individual user. Because of this it is a viable

alternative that may be used, som

Active XML Mobile is more than an educational experiment. It can make a

difference in the world of Embedded applications by extending P2P networks

beyond the boundaries of desktop computers. Embedded systems are resource

limited as individual devices. But their number is huge. Active XML Mobile

provides a way to link them all together in a coopera

test the implementation a demonstration scenario was produc

rther develop t

ongst services;

the user interface should be more friendly;

•

87

Refe

[1] Ser

[2] Ser
Weber: Active XML: Peer-to-Peer Data and Web Services Integration. VLDB

[3] Serge Abiteboul, Angela Bonifati, Gregory Cobena, Ioana Manolescu, Tova
Milo: D

ftp://ftp.inria.fr/INRIA/Projects/verso/gemo/GemoReport-271.ps

[5] Irin
Matrix Rom 2002;

[6] Irina Athanasiu, Bogdan Costinescu, Octavian Andrei Drăgoi, Florentina Irina
Pop ctivă pragmatică – Editura Agora, ediţia a II-
a.

[7] Bru in Java – http://www.mindview.net/Books/TIJ/;
[8] Bruce Eckel: Design patterns in Java - http://www.mindview.net/Books/TIJ/;
[9] u – Design Principles and
Pat r

[10 r ta.apache.org/jelly;

1] Project Apache Velocity: http://jakarta.apache.org/velocity;
2] Apache XML-RPC project: http://xmlrpc.apache.org;

[13] Proiectul PHP: http://www.php.net;
[14] Macromedia: http://www.macromedia.com;
[15] Enhydra: http://www.enhydra.org;
[16] kXml: http://www.kxml.org;
[17] kXmlRpc: http://kxmlrpc.enhydra.org;
[18] Web Services standards: http://www.w3.org/2002/ws;
[19] XPath standard recomendation: http://www.w3.org/TR/xpath;
[20] XSL Transformations (XSLT) standard recomendation:
http://www.w3.org/TR/xslt;
[21] Active XML web site: http://www-rocq.inria.fr/verso/Gemo/Projects/axml/;

rences

ge Abiteboul, Omar Benjelloun, Tova Milo, Ioana Manolescu, Roger
Weber: Active XML: A Data-Centric Perspective on Web Services, BDA 2002,
ftp://ftp.inria.fr/INRIA/Projects/verso/gemo/GemoReport-213.ps.

ge Abiteboul, Omar Benjelloun, Ioana Manolescu, Tova Milo, Roger

2002 (demo) ftp://ftp.inria.fr/INRIA/Projects/verso/gemo/GemoReport-226.ps.

ynamic XML Documents with Distribution and Replication, SIGMOD
2003, ftp://ftp.inria.fr/INRIA/Projects/verso/gemo/GemoReport-272.ps

[4] Tova Milo, Serge Abiteboul, Bernd Amann, Omar Benjelloun, Frederic Dang
Ngoc: Exchanging Intensional XML Data, SIGMOD 2003,

a Athanasiu: Java ca limbaj pentru programarea distribuită – Editura

ovici: Limbajul Java: o perspe

ce Eckel: Thinking

Do g Lea: Concurrent Programming in Java
te ns – Addison Wesley;

] P oject Apache Jelly: http://jakar
[1
[1

88

	Abstract
	1. Introduction
	1.1 About the Active XML technology
	1.1.1 Active XML document model
	Example of an Active XML document
	1.1.2 The <axml:sc> element

	2. Similar technologies
	3. Encountered problems
	4. General architecture
	4.1 Infrastructure
	4.2 The Active XML Mobile Peer
	4.2.1 The mobile component (proxy is left out)
	4.2.1.1 Repository
	4.2.1.2 Client
	4.2.1.3 Server
	4.2.2 The proxy

	5. Implementation
	5.1 Mobile component.
	5.1.1 Client
	5.1.1.1 Inspector
	5.1.1.2 Web Service Reference Manager
	Types of services
	Concrete services
	Lazy analysis of document
	Algorithm for discovering and calling new services
	5.1.1.3 Active XML Document Manager
	Synchronization

	5.1.1.4 Mini XPath Engine
	Location path
	Location step
	Algorithm

	5.1.1.5 Presentation engine
	Benefits of a presentation engine
	5.1.1.5.1 The transformer
	Generating text
	Repetition
	5.1.1.5.2 The renderer
	WML syntax implemented

	5.1.1.6 User interface
	MVC components in Active XML Mobile application
	The controller
	The view component architecture
	Root screen

	5.1.2 The XML repository
	5.1.2.1 Persistent Memory Manager
	Synchronizing access to repository
	5.1.2.2 File Retriever
	5.1.2.3 DOM Cache

	5.1.3 Server: Querying the axml mobile peer
	5.1.3.1 Query algorithm
	5.1.3.1.1 Proxy
	5.1.3.1.2 Actor (mobile component)
	5.1.3.1.3 Querying client
	A more in-depth look at the implementation overall
	Synchronization on the proxy
	External SOAP service
	Examples of different xmlrpc envelopes transited between the mobile device and the proxy

	5.2 The proxy
	Roles
	1. Proxy as an intermediary for SOAP service calls
	Communication with the proxy
	Constructing a xml-rpc request for a service call to be addressed to the proxy
	2. Second role of proxy : intermediate file transfer.
	3. Proxy as directory of mobile clients (or actors)

	Unit tests
	Building the project (ant tool)

	6. Performance and measurements
	6.1 Target platform performance measurement
	6.2 Performance tests regarding various features of AxmlMobile
	Retrieving files through HTTP connection
	Parsing a xml into a DOM tree
	Evaluating XPath expressions of different complexities applied to xml documents
	Parsing a web service
	Generating and rendering the presentation
	Retrieving data from the Record Store

	7. Conclusions
	7.1 Further development

	References

