
Ecole Polytechnique,
PROMOTION X2001
MARINOIU Bogdan-Eugen

RAPPORT DE STAGE D'OPTION SCIENTIFIQUE

Development environment for
dynamical Web data

                                      Non - confidentiel

             Option         :      Informatique
Champ de l’option        :      Bases de données
Directeur d’option         :     Monsieur Gilles Dowek
Directeur du stage         :      Monsieur Serge Abiteboul
Dates du stage               :      12 Avril – 12 Juillet 2004
Adresse de l’organisme :      INRIA Futurs

                   Parc Club Universitaire Orsay,
                   91400, France



1

      Abstract

                                English

During my internship in the “GEMO” Team at INRIA Futurs Research Unit in
Saclay, I worked in the context of the ActiveXML, a declarative framework for data
management and integration. The goal of my internship was to develop a powerful tool for
interacting with ActiveXML Peers and handling ActiveXML documents.

The first result of my internship is the existence of the AXML Browser  – a Mozilla
based application which permits the interaction with an AXML document in the local
space: instant activation of the service calls in the document and some modifications of the
attributes and the parameters of the service calls.

The second result is the AXML Commander  – a client which permits opening
connections on several peers at the same time, searching for documents on the peer and
importing them. After being handled locally, they can be moved to other peers or saved on
the peer of origin. The local handling of documents includes editing them and opening
them with the AXML Browser  described above.

The report consists in 5 chapters. The first one is an introduction, the second one
presents  the various technologies and standards with which I interacted during my
internship, the third one is a presentation of the Active XML Project, the fourth  is about
the AXML Browser  and  AXML Commander . The fifth opens the way to new possible
developments of the subject.

                                    Français

Pendant mon stage dans le projet “GEMO” de l’Unité de Recherche INRIA Futurs
de Saclay, j’ai travaillé avec le Active XML, une structure déclarative pour la gestion et
l’ intégration des données. Le but de mon stage a été le développement d’un outil
performant pour interagir avec les Active XML Peers et pour la gestion des documents
Active XML.

Le premier résultat de mon stage c’est l’existence de l’  AXML Browser  – une
application Mozilla qui permet l’ interaction avec un document AXML dans l’espace local :
l’activation des appels de services dans le document et quelques modifications des attributs
et des paramètres des appels de services web.

Le deuxième résultat est le AXML Commander  – un client qui permet l’ouverture
des connections sur plusieurs peers au même temps, la recherche des documents sur le peer
et de les importer. Après la manipulation locale, ils peuvent être transférés sur les autres
peers ou sauvés sur le peer d’origine. La manipulation locale des documents inclue leur
édition et leur ouverture avec le AXML Browser  décrit plus haut.

Le rapport a 5 chapitres. Le premier est une introduction, le second présent les
différents technologies et standards que j’ai rencontrés pendant mon stage, le troisième est
une présentation du projet Active XML  mon travail pendant le stage en étant une partie, le
quatrième portent sur AXML Browser et AXML Commander . Le cinquième chapitre est
une ouverture sur les possibles développements du sujet.



2

Contents
1. Introduction……………………………………………………...............................................3
1.1Context……………………………………………………………………………………….3
          1.2 Environment…………………………………………………………………………..3
                 1.2.1 The GEMO Project……………………………….............................................3
                 1.2.2  People…………………………………………….............................................3
                 1.2.3 Active  XML…………………………………………………...........................3
2. Technologies and Standards…………………………………….............................................4
2.1 P2P vs. Client/Server architecture…………………………………......................................4
          2.2 XML and data…………………………………………………………………...........4
                 2.2.1 A little history…………………………………….............................................4
                 2.2.2 XML Properties………………………………………………..........................5
                2.2.3 XML Basics……………………………………….............................................5
          2.3 Queries on XML: the XPath language………………………………………………..7
          2.4 XML Parsers: DOM & SAX………………………………………………………….7
          2.5 Transform XML documents : the XSL language…………………………….............9
          2.6 The Web Services……………………………………………………………...........10
                2.6.1 The Web Services Architecture………………….............................................12
          2.7 Simple Object Access Protocol (SOAP)……………….............................................13
          2.8 The Mozilla Framework……………………………….............................................14
                2.8.1 Mozilla is more than a browser……………………………………………….14
                2.8.2 Web Services Calls in Mozilla………………………………..........................15
                          2.8.2.1 Mozilla SOAP API……………………………………………...........15
                          2.8.2.2 XML HTTP Request  Object……… ………………...........................17
                2.8.3 The XUL Language……………………………………………………...........18
                2.8.4 XPCOM/ XPCONNECT………………………………………………...........19
                2.8.5 XPInstall………………………………………………………………………21
3. The Active XML Project……………………………………………………………………22
           3.1 The Concept Presentation…………………………………………………………..22
           3.2 The Active XML Documents……………………………………………………….23
                 3.2.1  The Service Call Parameters…………………………………………............25
                           3.2.1.1 The Value Parameter ………………………………...........................25
                            3.2.1.2 The XPath Parameter………………………………………………..25
                 3.2.2 The Service Call Result Handling…………………………………………….26
          3.3  The Active XML Services………………………………………………………….27
4. A light-weight Active XML Client ………………………………………………………….28
           4.1 The Active XML Browser…………………………………………...........................28
                 4.1.1 Interface and functionalities description……………………...........................29
                 4.1.2 Technical Issues………………………………………………………............30
                 4.1.3 Conclusion……………………………………………………………………32
           4.2 The Active XML Commander………………………………………………………33
                  4.2.1 The global architecture………………………………………………………33
                  4.2.2 The Peer Access Point (PAP)Module……………………..............................34
                            4.2.2.1 The AXIS context…………………………………………………...34
                            4.2.2.2 The Module………………………………………………………….35
                  4.2.3 The GUI  Description………………………………………...........................36
                   4.2.4 A new version of Active XML Browser……………………..........................37
                  4.2.4 Technical Issues……………………………………………...........................38
                   4.2.5 The Active XML Commander’s functionality……………...........................38
5. Future extensions…………………………………………………………............................40



3

       Chapter 1  Introduction

1.1 Context

I am an Ecole Polytechnique student in the 3rd year. From April until July 2004 I was an
intern at INRIA Futurs, in the Gemo Project Team and I worked on developing instruments for
human-Active XML  interaction.

1.2   Environment

1.2.1 The Gemo Project
          Distributed Web Data and Knowledge Integration

Gemo  follows the Verso project of INRIA Rocquencourt and its team is made of ex-
members of the team of that project and of members of the IASI Team of the  Laboratoire de
Recherche en Informatique (UMR 8623 CNRS) of Paris South University.

The objective of the group is to study the fundamental problems of the modern Data and
Knowledge Management Systems and to develop suitable new solutions to them. The goal is to
obtain systems more open towards richer and more network oriented information, more precisely
discover pertinent information or services, understand their semantics, integrate them and study
their evolution  The Gemo central theme is the integration of those data. By combining approaches
such as mediation and warehousing the project investigates how to integrate web services
exchanging XML data. One main theme of research is focused on Active XML , a model in which
XML documents incorporate web service calls.

 1.2.2 People

The director of my internship was Serge Abiteboul. Tova Milo, Serge Abiteboul,  Omar
Bengelloun and  Jerome Baumgarten provided me with priceless guidance in my researches. I am
most grateful towards them.

1.2.3 Active XML

The Active XML  was the framework with which I interacted. It was developed in Java
because this programming language is portable and provides many instruments for XML parsing,
XSLT transformations and XPath evaluations. This project uses third party modules that came
under free license and are all part of the Apache project: Tomcat servlet engine, Axis SOAP
engine, and Xerces Java XML parser.



4

Chapter 2 Technologies and Standards

    In the first section we compare Peer-to-Peer versus Client/Server architectures while in the
second  we describe some technologies that form the context of our work.

2.1 Peer-To-Peer vs. Client/Server Architectures

P2P computing is actually not a new concept. The name is new but the model of computing
underneath exists since the beginning of the Internet. The Internet started as a network of
computers (peer nodes) which were communicating directly to one another. Computing models,
software and network architectures evolved and most of them embraced the major notions of client
and server, roles which were performed by different machines.

Presently, the old fashion seems to turn back, encouraged by the important technological
gains in the past years resulting in cheap computers, cheap bandwidth, cheap storage and idle
processor cycles.  P2P computing can be defined as direct collaboration between nodes which no
longer rely on a network server. The fundamental concept is sharing: data, processing cycles,
resources such as storage and printers. Inside an organizational network this increases overall
performance by relieving some of the burden off the servers.

 Having one single role is quite restrictive for a machine. Thus, the system is rigid,
incapable to evolve and to adapt itself to the changing needs. In P2P architecture, a node can be, at
the same time, server and client for various services on the network.

 2.2  XML and data

2.2.1 A little history

W3C (Wor ld Wide Web Consortium) started to work on eXtensible Markup Language
in 1996. XML 1.0 has been released on February 10, 1998 and responds fully to IT industry’s need
to develop a simple and efficient mechanism for the textual representation of the structured and
semi-structured data. It has been influenced by the  Standard Generalized Markup Language
(SGML) and HTML. SGML is a meta-language, that is a language that offers the possibility to
specify any given markup language.

XML is a declarative language that, like all the generalized markup (GM) languages, uses
tags to identify pieces of information. This way, the content of such a document is both human-
and machine- easily understandable.

HTML  is, perhaps, the most successful SGML application. But because it uses a fixed set
of tags with standard meaning it is not very easy to extend. So, there was a need to control the
evolution of HTML and create a simple generalized markup language for use on the web. XML
has taken the place of SGML as a “ light-weight language”. Nowadays, XML has become the de
facto standard for representing structured and semi-structured information in textual form. There
are many XML languages – in fact, specifications built on top of XML to extend its capabilities for
broader range of applications. One of the areas of intense use of XML is the Web Services.



5

2.2.2 XML properties

If we compare XML with HTML, the main difference we found is that HTML uses
predefined tags (that is tags with specific meaning for a browser for example) while XML uses tags
to represent data. HTML is document-centric while XML is data-centric. A HTML document
contains some (unstructured) data as well as the way to display it (tags represents specific
instructions for the browsers) while XML represents (semi-) structured data without any
specification of displaying the data.

XML has some features that imposed it as an emerging model for data management and
exchange.

• Portability
The XML documents are, actually, text documents, so, they are portable.
• Transformability
 A XML document can be presented in several ways, using transformation languages like
XSL (eXtensible Stylesheet Language – a XML language itself). They can transform XML
in HTML for representation, but they can transform XML in XML too – which means
XML processing is enabled
• Easy querying.
 Since XML documents have a tree-like structure, they are very suited for querying. Many
querying languages emerge in the field. One that I used intensely during my internship is
XPath.

2.2.3 XML Basics

Let’s consider an example for XML which I’ ll use to outline the major feature of the
language. The example shows a XML document that could be used for ticket registration storing
ticket registration information.

<t i cket - or der
       xml ns=ht t p: / / www. eugenm. home. r o
        i d = “ 74564353432”
 >
   <passenger  number =” 1” >
      <name> Bogdan </ name>
      <l ast name> Mar i noi u </ l ast name>
      <addr ess>
          <apar t ment - number > 273 <apar t ment - number >
          <bui l di ng- number > 5 </  bui l di ng- number >
           <st r eet >  Pacat er i e </ st r eet >
           <t own>  Or say </ t own>
           <post al - code> 91400 </ post al - code>
       <count r y> Fr ance </ count r y>
       </ adr ess>
  </ passenger >
  <passenger  number =” 2” >
         …
    </ passenger >
<t r avel - i nf or mat i on>
  <f r om> Par i s- Gal i eni  </ f r om>
  <t o> Br uchsal  </ t o>
</ t r avel - i nf or mat i on>
<pr i ce>



6

   <cur r ency> EUR </ cur r ency>
   <val ue> 76. 00 </ val ue>
</ pr i ce>
</ t i cket - or der >

XML Elements

The term element is used for the pairing of a start and end tag in an XML document. The
“ ticket-order”  element has the start-tag “<ticket-order>”  and the end-tag “</ticket-order>” . Every
start/end tag must have an end/start counterpart and everything between the two tags is the content
of the element. This includes nested element, text, comments.

According to XML specification, elements can have three different content types: element-
only content, mixed content or empty content. XML documents can be seen as tree-like structures
but one constraint is that these trees have order (the set of children for a certain element node is
ordered) ex: for passenger, the set of child-elements: name, lastname, address is always in this
order.
           As with semi-structured data we may use repeated elements with the same tag to represent
collections (i.e. passenger element).

XML Attributes

XML allows us to associate attributes with elements. An attribute is a name-value pair that
appears in the start tag. As with tags, users can define arbitrary attributes but their value is always a
string and must be enclosed in quotation marks. 

In the above example, “number”  is an attribute of the elements “passenger” . We assume that
several passengers can travel in a group and have a group ticket.

There is a special attribute the elements generally can have and that is “ id”  attribute. The
value must be unique in the document and permits the rapid identification of the element in the
document. We can also use the “ id”  attribute to eliminate duplicate information: we write it only
once and we can refer to it later using an “ id/idref”  mechanism.

XML Namespaces

The namespaces are a way to reuse XML. The mechanism consists in associating document
elements with a specific URI and represent a (possible) response to the problem of collision that
arises in composed XML documents because of the likelihood of common name elements(ex: item )
to be reused in different document types. The problem is addressed by using a qualified name the
element which is likely to be unique in the composed document:

            QName = Namespace Identifier + Local Name.

XML Namespaces uses URIs (Uniform Resource Identifiers) as namespace identifiers
which are described in RFC 2396. One type of URIs are the well-known URLs. In our example I
used the URL http://www.eugenm.home.ro in order to qualify all the elements in the document: the
default namespace for that document is, as a consequence,    http://www.eugenm.home.ro. So, the
element passenger has actually, the qualified name:http://www.eugenm.home.ro: passenger



7

2.3 Queries on XML: the XPath language

The interrogation of databases and of semi-structured data in XML documents has been an
important research topic in the past years and this research gave birth to some languages of which I
will present the one I used during my internship.

XPath was released as a W3C Recommendation 16. November 1999 as a language for
addressing parts of an XML document. XPath was designed to be used by XSLT, XPointer and
other XML parsing software.
It’s in a way an extension to the paths in Operating Systems. The location path can be absolute or
relative. Contrary to a relative path, an absolute location path starts with a slash ( / ) . In both cases
the location path consists of one or more location steps, each separated by a slash.

Path expressions represent the bricks of any query language for semi- structured data.
They allow expressing a form of constraint navigation in the set of nodes of a labeled tree. The idea
is that for an edge-labeled directed graph
A sequence of edge labels l1.l2...in is called a path expression. The location steps are evaluated in
order one at a time, from left to right. Each step is evaluated against the nodes in the current node-
set. If the location path is absolute, the current node-set consists of the root node. If the location path
is relative, the current node-set consists of the node where the expression is being used.
   
Location steps consist of:

• an axis (specifies the tree relationship between the nodes selected by the location step
and the current node). This is actually optional, the implicit value is: child

• a node test (specifies the node type and expanded-name of the nodes selected by the
location step)

• zero or more predicates (use expressions to further refine the set of nodes selected by
the location step) . This one is optional too since it does a filtering.

The syntax for a location step is: �����������	
����
������

There are twelve axes along which a location step can move. Each selects a different subset
of the nodes in the document, depending on the context node. These are: self, child, descendant,
descendant-or-self, parent, ancestor, ancestor-or-self, preceding, preceding sibling, following,
following-sibling, attribute, namespace.

An XPath expression can return : nodes, set of nodes, numbers, character arrays.

2.4 Processing XML: DOM & SAX

The processing of the XML documents can be done in two ways:
- a declarative way by using XSL, XSLT
- a procedural way by writing procedures:

• syntactic analysis (parsers)
• build an internal representation  of the XML document
• the processing of that representation



8

• automatic  generation of the document

Figure 2.1 The DOM way of operating

The so-called “parsers”  which implement the steps 1, 2 and 4 are already written and for
the 3rd step, there is an API which is made available to the user.

For an application to be able to work with a XML document, it should first be able to parse
it. Parsing is a process that involves breaking up the text of an XML document into small
identifiable pieces (nodes). These pieces are fed into the application using a well-defined API
implementing a particular parsing model. The parsing models commonly used include:

Ø  One-step parsing
The parser reads the whole XML document and generates a data structure (parse tree)

describing its entire content. The data structured obtained is deeply nested and corresponds as
hierarchy to the nesting of elements in the parsed XML document. The W3C has defined Document
Object Model (DOM ) for XML. It has become so popular that the one-step parsing is usually
referred to as: DOM parsing. The DOM is a language- and platform- independent API. Its biggest
drawback is the huge memory-cost. The DOM architecture is the one in the figure 1.

Ø  Push Parsing
The application receives notifications from the parser about the XML document pieces it

encounters during the parsing process. The notifications are typically implemented as event
callbacks in the application code. The XML community created a de facto standard for push-parsing
called the Simple API for XML (SAX). The architecture for that kind of parsing is shown in the
picture below:

K

XML
Document

Parsing
A
P
I    Appli

Document Object Model
 Internal Representation

    XML
 Document SAX Parser

Scan the XML
document

Evt1 :Callback
function 1

Evt2 : Callback
function 2

Evt3 :Callback
function 3

Evt4 : Callback
function 4

Application



9

Figure 2.2 The SAX Parser  way of operating

If we analyze those two approaches in the same time we can see that the sequential model
that SAX provides does not allow for random access in an XML document while the DOM approach
can be slow and costly in terms of resources so choosing one or another depends on the type of the
application.

2.5 Transforming  XML documents : the XSL language

In order to provide the user with more flexibility in styling his XML and HTML
documents, the CSS (Cascading Style Sheets) were adopted as an emerging technology. Using
it, the developer can change attributes (like the ones for the font) and can even make
animations.

XSL  is a XML based language (any XSL document is an XML valid document with
“ .xsl”  extension) that provides the user with the possibility of programming besides the ones
offered by the CSS. It is used for styling and for XML documents transformation (XSLT =
XSL Transform). XSLT is a declarative programming language (a program = collection of
rules like in CLIPS). Because it is declarative, it supports extensions easily (programming by
examples)

An XSL document starts with:

<? xml  ver s i on=” 1. 0” ?>
<xsl : st y l esheet  xml ns: xsl =ht t p: / / www. w3. or g/ 1999/ xsl / Tr ansf or m>

because the special namespace should be used as an indication for the XSLT processor.

   

Figure 2.3 XSLT Processing Schema

      XSLT
   Processor

rules



10

The XSLT rules have a conditional part (pattern matching: generally XPath
expression) and an action part (tree fragment result).

The rules are bounded in “ templates” :

<xsl : t empl at e mat ch = “ XPat h expr essi on” >
   … tree fragment
</ xsl : t empl at e>

One can explicit invoke templates with apply-templates / call –template instructions.
A match can be done on multiple rules: the XSLT processor has a strategy for conflict
resolution:

• the most specific rule is applied
• priorities can be assigned to templates

2.6 WEB Services

This term has seen multiple interpretations. Many organizations are involved in the
refinement of the Web Services standards and therefore, although it seems to be a slow convergence
towards a common understanding of the term, there is no single definition for it.

The definition found on the W3C official site, states the following:

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. I t has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.]

Several main characteristics of the web services need to be outlined:
• Web Service need not necessarily exist on the World Wide Web. This is a naming

issue, because, actually, the Web Services can exist anywhere on the network and others can be used
using only a simple method invocation in the processes running on the same computer.

• Web Service’s implementation and deployment platform details are not relevant to
the program invoking the service. The Web Service is available through its invocation mechanism
(network protocol, data encoding schemes etc.)

Web services provide a standard mean of interoperation between applications of different
types running on different platforms.

There are many protocols/languages involved in this architecture. HTTP and SMTP which
are standard network protocols are only a part.

 XML imposed itself as the standard for data transfer and data representation. But it is
complemented by other languages. Several XML languages/ protocols can be found around the Web
services. The WSDL (Web Services Description Language) is a XML language. The basic unit of
communication in the Web Services Architecture (WSA) is the SOAP message and SOAP is an
XML language too.

 Web Services technologies can be factored into three stacks of which I will detail only the
first:

• The wire stack
• The description stack



11

• The discovery stack

           Figure 2.4 The Web Services wire stack.

The wire stack represents the technologies that are involved in sending a message from the
service requestor to the service provider. The network protocols at the base of the stack can be
standard Internet wire-protocols like HTTP, HTTPS, SMTP, FTP or sophisticated enterprise-level
protocols.

For data encoding, Web Services use XML. The XML messaging layers which are on top
of this use SOAP in all the data encoding, interaction style and protocol binding variations. SOAP is
as an XML wrapper in an envelope. On top of the SOAP enveloping mechanism is a mechanism for
envelope extensions called SOAP headers which allow the association of orthogonal extensions such
as digital signatures with XML digital signatures and XML cryptography.

The description stack involves mainly WSDL while the discovery stack involves UDDI
(Universal Description Discovery and Integration).

W3C defines WSDL as following:
WSDL is an XML format for describing network services as a set of endpoints operating

on messages containing either document-oriented or procedure-oriented information. The
operations and messages described abstractly, and then bound to a concrete network protocol and
message format to define an endpoint. Related concrete endpoints are combined into abstract
endpoints(services). WSDL is extensible to allow description of endpoints and their messages
regardless of what message formats or network protocols are used to communicate.

It describes several critical pieces of information a service client would
need:
• the name of the service, including its URL.
• the location the service can be accessed at.
• the methods available for invocation.
• the input and output parameter types for each method.

Envelope
 Extensions

XML
Messaging

Data Encoding

Network
Protocol

SOAP
Headers

SOAP

XM and
SOAP

HTTP,
SMTP, FTP

S
E
C
U
R
I
T
Y

M
A
N
A
G
E
B
I
L
I
T
Y



12

2.6.1 The Web Services Architecture

The Web Services Architecture can be described by the figure 2.5.

            Figure 2.5 The Web Services Architecture

Any service-oriented architecture contains three roles:

• a service provider, who creates a service description, publishes it and receives web
services invocation messages.

• a service requestor who has to find a service description published to one or more
service registries and use it in order to bind to or invoke the web services.

• the service registry is responsible for advertising Web service descriptions published by
the service providers and allowing the service requestors to use the service registry for finding the
descriptions. The above figure outlines all of these.

Three operations are involved in this architecture:
• the publish operation – act of service registration or service advertisement.
• the find operation – the service registry matches its collection of descriptions against a

search criteria stated by the service requestor and returns a list of service descriptions to the service
requestor.

• the bind operation can take two forms: an on-the-fly generation of a client-side proxy
based on the service description used to invoke the Web service or a very static model where the
developer specifies the way the client invokes a Web service.

      Service
     Registry

      Service
    Requestor

       Service
      Provider

Service
Description

Publish
WSDL ,UD
DIDI

- Service
- Service Description

                 Find
WSDL ,UDDI
DI

Bind



13

2.7 Simple Object Access Protocol (SOAP)

The official W3C definition of the SOAP Protocol is the following:

            SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment. I t is an XML based protocol that consists of three parts: an
envelope that defines a framework  for describing what is in a message and how to process
it, a set of encoding rules for expressing instances of application-defined data types, and a
convention for representing remote procedure calls and responses.

               Basically, SOAP provides the following:
• a mechanism for defining the unit of communication. In SOAP all the exchanged
information is packaged into SOAP messages. The SOAP envelope encloses all the
information and the SOAP body can contain arbitrary XML.
• a mechanism for error handling which allows the identification of the source and
of the error nature through the SOAP Fault notion
• a mechanism for introducing extensions via SOAP headers
• flexible mechanism for data representation : data already serialized in some
format (XML, but text too) and convention for representing abstract data structures
such as programming languages data types
• a convention for representing Remote Procedure Calls (RPCs – the most common
type of distributed computing interaction ) and responses as SOAP messages
• a binding mechanism between SOAP and the underlying HTTP protocol

         Example:

Let’s say we want to access a service which, through the method getTime which takes
two arguments: locale and timezone, provides us with a text response representing the date and
time in a town. The answer is in the country’s language.

             The SOAP request:    

<soapenv: Envel ope
xml ns: soapenv=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ "
soapenv: encodi ngSt yl e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ " ><s
oapenv: Header / >
   <soapenv: Body>
     <a0: get Ti me xml ns: a0=" Ti me" >
      <l ocal e> i t  </ l ocal e>
      <t i mezone> Eur ope/ Rome </ t i mezone>
     </ a0: get Ti me>
   </ soapenv: Body>
</ soapenv: Envel ope>

          The SOAP response:

<?xml  ver s i on=" 1. 0"  encodi ng=" UTF- 8" ?>
<soapenv: Envel ope
xml ns: soapenv=" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ "



14

xml ns: xsd=" ht t p: / / www. w3. or g/ 2001/ XMLSchema"
xml ns: xsi =" ht t p: / / www. w3. or g/ 2001/ XMLSchema- i nst ance" >
  <soapenv: Body>
   <ns1: get Ti meResponse
   soapenv: encodi ngSt yl e=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ "
   xml ns: ns1=" Ti me" >
      <ns1: get Ti meRet ur n xsi : t ype=" xsd: st r i ng" >
       mar t edì ,  22 gi ugno 2004 15: 41: 25 Or a est i va Eur opa cent r al e
      </ ns1: get Ti meRet ur n>
    </ ns1: get Ti meResponse>
   </ soapenv: Body>
</ soapenv: Envel ope>

Actually the two examples above are true examples from some of the tests of my
application. The values for the parameters were it and Europe/Rome. Those parameters specify
that the requested answer should be in Italian and that the town is the European city of Rome.

The response is: “ martedì, 22 giugno 2004 15:41:25   Ora estiva Europa centrale”

2.8 The Mozilla framework

2.8.1 Mozilla is everything you need.

For my application I chose to use the Mozilla framework which provides a good
support for such applications. The Mozilla Application Framework allows easy development of
cross-platform applications.

To benefit from the ActiveXML Commander  one has to have installed only Mozilla
on his computer. The application can be downloaded from a web server and then it will be
installed automatically using XPI.

The Mozilla Project was started in March 1998 with the goal of developing the
successor to Netscape's Communicator 4.x browser suite. Today Mozilla is used by developers
as a platform for creating applications that can be installed locally or run remotely over the
Internet.

For a company committed to creating an application that runs on a wide range of
different systems, using platform-specific code was a big waste of time. XPFE, Mozilla's
cross-platform front end, was designed to solve this problem by enabling engineers to create
one interface that would work on any operating system.

Perhaps the biggest advantage Mozilla has for a developer is that Mozilla-based
applications are cross-platform, which means that these programs work the same on Windows
as they do on Unix or the Mac OS. It's possible to have applications run across different
platforms because Mozilla acts as an interpretation layer between the operating system and the
application.

As long as Mozilla runs on a given computer, most Mozilla-based applications also
run on that computer, regardless of what operating system it uses. Not all Mozilla applications
are cross-platform however, since it is possible to create an application with platform-specific
code that runs only on certain operating systems.

XPFE uses a number of existing web standards, such as Cascading Style Sheets,
JavaScript, and XML (the XML component is a new language called XUL, the XML-based
User-interface Language). In its most simple form, XPFE can be thought of as the union of
each technology. Viewed together, these technologies can be seen forming the XPFE
framework in the figure 2.6.



15

Figure 2.6 The XPFE framework

To understand how XPFE works, we can look at how these different components fit
together. JavaScript creates the functionality for a Mozilla-based application, Cascading Style
Sheets format the look and feel, and XUL creates the application's structure.

Instead of using platform-specific code in languages like C or C++ to create an
application, XPFE uses well-understood web standards that are platform-independent by
design. Because the framework of XPFE is platform-independent, so are the applications
created with it. Since the framework is also made up of some of the technologies used to create
web pages, people familiar with creating a web page can learn how to use XPFE to create a
cross-platform application.

So what is this framework made up of?
• XUL : a comprehensive, cross-platform UI (User Interface) toolkit that provides the
structure and the content of the application
• Gecko: a performance web content rendering/editing engine with support for standards
that can drop into the application with a single line of XUL;
• XPCOM/XPCONNECT : used to allow JavaScript, or potentially any other scripting
language, to access and utilize C and C++ libraries
• JavaScr ipt: Used to create the functionality of an application, although other scripting
languages, such as Python, Perl, or Ruby, can be used in place of JavaScript.
• Web Services:  support for XMLHttpRequest, XML-RPC, SOAP, and WSDL
• XPInstall: the cross-platform installer for trivial packaging and installation of the
Mozilla framework applications;

2.8.2 Web Services Calls in Mozilla

2.8.2.1 Mozilla SOAP API

Until the Mozilla 1.0, the browsers had nothing to do with the SOAP clients, since
composing SOAP messages and connecting with Web services was better suited to server-
based applications designed specifically for those tasks. A Web application running in
Mozilla (or in a client using the same scripting engine, such as Netscape 7.0) can now make
SOAP calls directly from the client. The data returned from a SOAP operation can be
accessed via the same DOM methods used to traverse any XML document.



16

Mozilla's SOAP API  is a JavaScript interface for a series of objects designed to
create, send, and receive SOAP messages. These messages are encoded as XML, but the
developer does not need to know much about the XML part of SOAP to use the Mozilla API.
SOAP is used as a wire protocol. Construction of a SOAP message is as easy as creating any
other JavaScript object.

In this context although, the security becomes an issue. A secure browser will not
allow, normally, SOAP calls to a service in a foreign domain. So, special requests to the user
have to be made by the script in order to be granted with proper rights.
A SOAP message can be created just as an array or image object with scripting would be.

The four important objects that need to be created are the following:

• SOAP Cal l : the heart of the SOAP operation, providing the means to encode and
send your message.

• SOAPPar amet er : a single parameter to be passed as an argument to the service
method. Multiple parameters are stored in an array to be given to the SOAPCal l  object.

• SOAPResponse: the response from the service. It contains the results of the
method invoked by the SOAPCal l .

• SOAPFaul t : an object that represents an error or warning from the service.

The SOAPCal l  and SOAPPar amet er  objects are the only ones needed to create with
JavaScript. SOAPResponse and SOAPFaul t  are automatically generated when the service
sends back a response.

A basic SOAP message contains some key information: the URI of the target service,
the name of the service method you want to invoke, and a series of parameters to be passed
as method arguments. The t r anspor t URI  property of the SOAPCal l  object is a string
indicating the endpoint URI of the service.

Generally, the asynchronous invocations of methods should be used in order not to
block the applications. But that enforces the use of a particular style of programming: event-
driven programming.A name of a callback function must be provided. That function will be
called when a response to the service invocation becomes available.

Example:
For the example presented earlier the code needed for making a SOAP call from

inside the browser and after that parsing the response would be the following:

f unct i on cal l Met hod( met hod, par amet er s, cal l backFunct i on)
{
  t r y {
net scape. secur i t y . Pr i v i l egeManager . enabl ePr i v i l ege( " Uni ver sal Br owser
Read" ) ;
  }  cat ch ( e)  {
      al er t ( e) ;
    r et ur n f al se;
  }

  var  soapCal l  = new SOAPCal l ( ) ;
  soapCal l . t r anspor t URI  = " ht t p: / / s t ar os. f ut ur s. i nr i a. f r : 8080" ;



17

  soapCal l . encode( 0,  met hod,  " " ,  0,  nul l ,  par amet er s. l engt h,
par amet er s) ;
  soapCal l . asyncI nvoke(
    f unct i on ( r esponse,  soapcal l ,  er r or )
     {
        var  r  = handl eSOAPResponse( r esponse, soapcal l , er r or ) ;
        cal l backFunct i on( r ) ;
      }
  ) ;
}

f unct i on handl eSOAPResponse ( r esponse, cal l , er r or )
{
    i f  ( er r or  ! = 0)
    {
        al er t ( " Ser vi ce f ai l ur e" ) ;
        r et ur n f al se;
    }  el se
    {
        var  f aul t  = r esponse. f aul t ;
        i f  ( f aul t  ! = nul l )  {
            var  code = f aul t . f aul t Code;
            var  msg = f aul t . f aul t St r i ng;
            al er t ( " SOAP Faul t : \ n\ n"  +
                " Code:  "   + code +
                " \ n\ nMessage:  "  + msg

            r et ur n f al se;
        }  el se
        {
            r et ur n r esponse;
        }
    }
}

/ /  t he mai n f unct i on
f unct i on mai n( )  {

/ /  cr eat e t he par amet er s ar r ay
var  par ams = new Ar r ay( ) ;

par ams[ 0]  = new SOAPPar amet er ( “ i t ” ,  “ l ocal e” ) ;
par ams[ 1]  = new SOAPPar amet er ( “ Eur ope/ Rome” , " t i mezone" ) ;

/ /  now cal l  t he get Ti me ser vi ce
cal l Met hod( " get Ti me" , par ams, par seResul t ) ;

}

This works fine when the arguments you need to provide are of simple type: text /
integer etc, types that are easy to map to JavaScript types or when they are JavaScript arrays
or objects. And that because the Mozilla SOAP API was designed with one purpose in mind:
allowing the developer to made SOAP calls once he has the parameters as  JavaScript
objects. When the arguments are more general: XML arbitrary content, this method will not
work. At least this is the conclusion I reached after trying to do it for some time.

2.8.2.2 XMLHttpRequest Object

The other method is actually constructing a SOAP message with DOM with the
parameters in XML format that I want to send, serializing it as text message, encapsulating it



18

in a HTTP message and sending it on the wire. This method of sending complex XML
parameters actually worked.

Internet Explorer on Windows and Mozilla provide a method for client side javascript
to make HTTP requests. This allows you to make HEAD requests to see when a resource was
last modified, or to see if it even exists.

Whilst the object is called the XML HTTP Request object it is not limited to being
used with XML, it can request or send any type of document.

The creation of the XML HttpRequest object is very simple:

   t r y  {
      xml ht t p = new XMLHt t pRequest ( ) ;
      xml ht t p. over r i deMi meType( " t ext / xml " ) ;
   }
   cat ch( e)  {
     al er t ( " XMLHt t pRequest  Message not  bui l t " ) ;
   }

After that , the endpoint URI has to be specified as well as the way of sending the
HTTP message (GET/ POST):

Example:
xml ht t p. open( " POST" , ht t p: / / coul os: 8180/ axml / ser v i ces/ WebSer vi cesXMLTest ) ;

When a response will be ready ( readyState = 4), it will be processed by a callback
function (asynchronously).

     xml ht t p. onr eadyst at echange = f unct i on( )  {
i f  ( xml ht t p. r eadySt at e == 4)  {

       cal l backFunct i on( xml ht t p. r esponseText ) ;
    }

Some non-standard headers could be appended to the HTTP message:

        xml ht t p. set Request Header ( " SOAPAct i on" , "  " ) ;
        xml ht t p. set Request Header ( " Cont ent - t ype" , " t ext / xml " ) ;

            and the SOAP message (serialized in the JavaScript string) is sent:

         xml ht t p. send( SoapMessage) ;

2.8.3 The XUL Language

The XML User Interface Language (XUL ) is a markup language for creating rich
dynamic user interfaces. It is a part of the Mozilla browser and related applications and is
available as part of Gecko. It is designed to be portable and is available on all versions of
Windows, Macintosh as well as Linux and other Unix-based operating systems. With XUL and
other Gecko components, there is possible to create sophisticated applications without special
tools.

Like HTML, in XUL  an interface can be created using a markup language, use CSS
style sheets to define appearance and use JavaScript for behaviour. The developer  also have
access to programming interfaces for reading and writing to remote content over the network,



19

calling web services, and reading local files. Unlike HTML however, XUL provides a rich set
of user interface widgets for creating menus, toolbars, tabbed panels, and hierarchical trees to
give a few examples.

XUL is an XML language and you can use numerous existing standards including
XSLT, XPath and DOM functions to manipulate a user interface, all supported directly by
Gecko. In fact, XUL is powerful enough that the entire user interface in the Mozilla application
is implemented in XUL.XUL applications may be either opened directly from a remote Web
site, or may be downloaded by the user and installed. Mozilla's XPInstall technology allows an
application to be placed on a remote site and installed easily. The benefit of installing an
application is lowered security restrictions so that applications may read and write files, user
preferences and system information.

XUL may also be used to create standalone applications that embed the Gecko engine
or may be used as part of the browser. Gecko also supports various Web Services technologies
such as SOAP and WSDL.

Exampl e:

<?xml  ver s i on=" 1. 0" ?>
<wi ndow
xml ns=" ht t p: / / www. mozi l l a. or g/ keymast er / gat ekeeper / t her e. i s . onl y. xul
" >
<box al i gn=" cent er " >
  <but t on l abel =" Push Me"  oncl i ck=" al er t  ( ‘ Hi ’ ) ; "  / >
</ box>
</ wi ndow>

We notice the special namespace:

 (http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul)

that is used to specify to the browser that this is a XUL application. This simple application
represents a window with a button in it which, when pressed, opens a JavaScript alert window
with some text in it. The XUL documents have to be saved with the “ .xul”  extension.

2.8.4 XPCOM/ XPCONNECT

JavaScript in XUL can be used for other things besides the manipulation of various
interface elements and scripting the DOM. It can be used for example for accessing the
services provided by Mozilla. Browsing the Web, reading email, and parsing XML files are
examples of application-level services in Mozilla. They are part of Mozilla’s low-level
functionality which is usually written in platform-native code (C++). This functionality is
organized in modules which are known as XPCOM components.

XPCONNECT  is the bridge between the JavaScript and XPCOM. The
XPCONNECT wraps the natively compiled components with JavaScript objects. Using
JavaScript, instances of these components can be created and used the same way a regular
JavaScript object is created and used. The relationship is shown in the figure 2.7.



20

            Figure 2.7 The Mozilla Framework

The example below shows the way a file is removed from a directory whose path is
provided (localpath).

Example (from my application):

f unct i on r emoveFi l e( f i l eName)
{
 var  di r ect or y =

Component s. c l asses[ " @mozi l l a. or g/ f i l e/ l ocal ; 1" ] .
cr eat eI nst ance( Component s. i nt er f aces. nsI Local Fi l e) ;

      di r ect or y. i ni t Wi t hPat h( l ocal Pat h) ;
      var  f i l e;
      i f  ( di r ect or y. i sDi r ect or y( ) )
      {

    var  f ound = f al se;
    var  l i s t Fi l es = di r ect or y. di r ect or yEnt r i es;

whi l e ( l i s t Fi l es. hasMor eEl ement s( ) )
            {

      f i l e = l i s t Fi l es. get Next ( ) ;
  f i l e. Quer yI nt er f ace( Component s. i nt er f aces. nsI Local Fi l e) ;

i f  ( f i l e. l eaf Name == f i l eName)
                        {

   f ound = t r ue;
         br eak;

 }
}

      i f  ( f ound == t r ue)  {
   f i l e. r emove( t r ue) ;
   al er t ( " The del et e phase was successf ul ! " ) ;

      }
      }
}

XUL
Interface

JavaScript XPCOM
    Objects

XPCONNECT

User

C++



21

2.8.5 XPInstall

XPInstall is a technology used for cross-platform installation. Mozilla uses it  to
install new packages, but as a general-purpose technology, it can be used to install anything on
your computer. The XPI file format is the basic unit of exchange in an XPInstall and the
installation script manages the installation.
Installation scripts -- whether they appear within the XPI, on a web page as an external "trigger
script," or elsewhere in JavaScript -- use the XPInstall API to do all the heavy lifting. The
XPInstall API includes installation functions organized into such high-level objects as the
Install object, the InstallTrigger object, and the File object, which  can be used to install new
Mozilla packages.

The Common XPInstall functions
i ni t I nst al l (  )       / /  i ni t i al i zes ever y i nst al l at i on
get Fol der (  )         / /  cr eat es a new f ol der  on t he t ar get  syst em
addFi l e(  )           / /  adds f i l es and di r ect or i es t o t he i nst al l
per f or mI nst al l (  )    / /  execut es t he i nst al l at i on
cancel I nst al l (  )     / /  cancel s i nst al l at i on i f  t her e ar e er r or s

In addition to the XPInstall API installation functions, installation scripts often call
methods on the chrome registry itself.

Chapter 3. The Active XML Project
3.1 Concept presentation



22

Active XML  (http://purl.org/net/axml) is a declarative framework for distributed data
management based on XML and web services. An Active XML  document is an XML
document that may contain calls to web services. These calls to web services can produce more
data as result, data that can be used to update the document. So, these documents are not static,
they evolve in time, since only a part of data they contain remains the same and, besides it,
they contain intentional information.

The system which for stores and manages this kind of documents is called Active
XML Peer , since, as we will see, it is working in a decentralised Peer-To-Peer environment.
This is the system responsible for the automatic activation of the service calls and for updating
the AXML Documents.

An Active XML peer  can have three roles:

• Repository for AXML Documents. It has a Query Engine which can process queries over
the documents in repository.

• Client. A number of service calls in the documents in the repository needs to be activated
and the Active XML Peer  needs to call the correspondent Web Services.

• Server. A number of services can be provided by the Peer under the form of queries over
the documents in its repository.

 Figure 3.1
(from the official site)

The internal architecture of an AXML peer (shown in the figure above) relies on the following
modules:

• The repository, which provides persistent storage for AXML documents,

• The evaluator , whose role is to trigger the services calls embedded inside AXML
documents and to update them accordingly.

•      The XQuery processor  deals with the service requests, by evaluating the corresponding
queries.



23

Peers communicate with each other only by the mean of web service invocations,
through their SOAP wrapper  modules. They can exchange XML data with any web service
client/provider and AXML data with AXML peers.

3.2 Active XML documents

The Active XML documents are valid XML documents. They contain static XML
data and might contain intentional data which is represented under the form of service calls.
Let’s consider as example a part of a document I tested my application on:

<ci t i es axml :  docName=" CI TY"  xml ns: axml =
" ht t p: / / www- r ocq. i nr i a. f r / ver so/ AXML" >
   <ci t y l ocal e=" i t "  name=" Rome"  t i mezone=" Eur ope/ Rome" >
     <t i me>
       <axml : sc doNest i ng=" t r ue"  f r equency=" ever y 3600000"
        i d=" 076A1B60- C353- D4A4- 0056- 5E9DC88450B9"
        l ast Cal l ed=" 1087387299111"  met hodName=" get Ti me"
        mode=" r epl ace"  ser v i ceNameSpace=" Ti me"
        ser v i ceURL=" ht t p: / / s t ar os. f ut ur s. i nr i a. f r : 8080/ axi s
        / ser v l et / Axi sSer vl et " >

<axml : par ams>
   <axml : par am name=" l ocal e" >
       <axml : xpat h>
 . . / . . / @l ocal e
        </ axml : xpat h>
   </ axml : par am>
   <axml : par am name=" t i mezone" >
        <axml : xpat h>
 . . / . . / @t i mezone
   </ axml : xpat h>
   </ axml : par am>
 </ axml : par ams>

        </ axml : sc>
      </ t i me>
    </ c i t y>
     ….
</ c i t i es>

The first important element is the namespace declaration. “http://www-
rocq.inria.fr/verso/AXML”  is required as a namespace for all the Active XML Documents and
is usually bound to the axml prefix.

The central element is the Service Call (sc) XML element. It is defined in the special
namespace mentioned before and has a set of attributes and children XML elements defining:

• The Web Service to call
• Its parameters
• How and when to call it
• What to do with the results

The most important attributes of this element which define the web service to call are:
serviceURL, serviceNameSpace and methodName.

The serviceURL attribute specifies the end-point of the WebService to call, in our
case: “http://staros.futurs.inria.fr:8080/axis/servlet/AxisServlet” .



24

The serviceNameSpace attribute specifies the namespace to use for the body element
of the SOAP message (soap:body), more simply the method namespace URI. In our case this is
“ Time” .

The methodName attribute defines the name of the operation to invoke on the Web
Services, in our example “ getTime” . For the Active XML Web Service (a declarative Web
Service provided by the Active XML Peer), it is not important: “ invoke”  can be used or
anything else.

Other less important attributes are: signature and useWSDLDefinition attribute. The
first one set the URL of the WSDL file defining the Web Service and is optional since it’s used
only when type validation on that particular service call is wanted. The other one specifies if
the file indicated by the first should be used, is optional and its default value is false.
A Service Call element has also attributes that provide information on how and when to
activate the service call.

The frequency attribute is the most important in this category. It can have several
attributes:

• Once
• Lazy
• On Date
• Every X

 If no frequency is defined, the Service Call will not be activated by the Active XML Peer .
Once means that the service call will be activated only once at the start-up of the peer. Every
time the peer is restarted, the service call is activated.
Lazy means that a service call will be activated only when its result is useful to the evaluation
of a query or when the instantiation of a Service Call parameter, defined through a XPath
expression is necessary.
On Date indicates exactly when the service call will be activated. If the format is incorrect or
the date is in the past, the service call will not be activated. Example: frequency = “on 02/04/05
14:22”
Every X means the service call will be activated periodically and the interval is given in
milliseconds.

Other important attributes are:
- id – identifies uniquely in time and space the Service Call. It is automatically

generated by the Active XML System.
- Name – has no particular meaning and is optional
- Callable – its value is true by default and if it’s set to false causes the Service Call

not to be activated, not even the frequency is correct.
- lastCalled – used to keep track of the last activation of the Service Call
- followedBy – allows chaining the evaluation of the Service Calls inside the same

Active XML Document in a simple manner. Its value has to be a valid XPath expression
returns a single sc element or the id of the Service Call.

3.2.1 Service Call Parameters



25

           The parameters of the service call are specified by a child element of the sc element
which has the name params and is bounded to the Active XML namespace. It has to be
present even if the service call has no parameters. Every parameter has a correspondent
element param in the representation (bounded to the same namespace). An attribute name is
required for this element. The parameters can be expressed directly as a value or through an
XPath expression. If the service call has several parameters their order must match exactly
the one from the WSDL that describes the Web Service.

The above statements can be resumed through the following schema representations:

<el ement  name = “ par ams” >
    <compl exType>
      <sequence>
         <el ement  r ef  = “ axml : par am”  mi nOccur s=” 0”
maxOccur s=” unbounded” / >
       </ sequence>
    </ compl exType>
</ el ement >

<el ement  name = “ par am” >
   <compl exType>
       <choi ce>
           <el ement  r ef =” axml : xpat h” / >
           <el ement  r ef =” axml : val ue” / >
       </ choi ce>
       <at t r i but e name = “ name”  t ype = “ xsd: NCName”  use =
“ r equi r ed” / >
</ compl exType>
</ el ement >

3.2.1.1 The Value Parameter

This value can be any well-formed XML fragment. It conforms to the following
representation:

<el ement  name = “ val ue” >
  <compl exType mi xed = “ t r ue” >
  <sequence>
   <any namespace=” ##any”  mi nOccur s=” 0”  maxOccur s=” unbounded” / >
</ sequence>
</ compl exType>
</ el ement >

3.2.1.2 The XPath Parameter

The second way of writing an Active XML Parameter is through an XPath expression
and conforming to the following schema component representation:

<el ement  name=” xpat h” >
  <si mpl eType>
    <r est r i c t i on base=” xsd: st r i ng” >
      <whi t eSpace val ue = “ col l apse” / >
      <mi nLengt h val ue = “ 1” / >
    </ r est r i c t i on>
  </ s i mpl eType>
</ el ement >



26

Every time a Service Call needs to be activated, the XPath parameter is evaluated.
The evaluation of the XPath is made starting from the corresponding sc element.
So, in our example, the Service Call has two XPath parameters: ../../@locale and
../../timezone. Those parameters evaluate to it and Europe/Rome respectively.

3.2.2 Service Call result handling
The AXML Document author might provide the system with the information regarding

what to do with the results of an Active XML Service Call. The two attributes influencing this
behavior  are: mode and doNesting

The mode attribute has possible values: merge and replace.
The merge value means that the results will be added as the immediate right sibling of

the sc element, considering the AXML Document as an ordered labeled tree. The previous
results will be kept in the AXML Document like in the figure 3.2

Figure 3.2 The service call and its responses in the tree hierarchie.

Replace means that the previous results will be replaced by the current invocation of
the Active XML Service Call. To keep track of the results, the Active XML system will add a
special attribute to the top-level elements of the results named origin and bound to the Active
XML namespace having as value the id attribute of the Active XML Service Call.

The doNesting attribute is used to keep track of the TEXT nodes which resulted from a
service call. That special kind of nodes has to be handled differently: if keeping track is
desired, they have to be wrapped in a special element named text and bound to the Active
XML.

Example: Since the doNesting attribute is true, after calling the Service Call from the
presented document, the updated document looks like this:

<ci t i es axml : docName=" CI TY"  xml ns: axml =" ht t p: / / www-
r ocq. i nr i a. f r / ver so/ AXML" >
  <ci t y l ocal e=" i t "  name=" Rome"  t i mezone=" Eur ope/ Rome" >
    <t i me>
      <axml : sc doNest i ng=" t r ue"  f r equency=" ever y 3600000"
i d=" 076A1B60- C353- D4A4- 0056- 5E9DC88450B9"  l ast Cal l ed=" 1087387299111"
met hodName=" get Ti me"  mode=" r epl ace"  ser v i ceNameSpace=" Ti me"
ser vi ceURL=" ht t p: / / s t ar os. f ut ur s. i nr i a. f r : 8080/ axi s/ ser v l et / Axi sSer vl e
t " >
      <axml : par ams>
          <axml : par am name=" l ocal e" >
              <axml : xpat h>
                   . . / . . / @l ocal e
              </ axml : xpat h>

SC   (t) (t-1) (t-2)



27

          </ axml : par am>
          <axml : par am name=" t i mezone" >
              <axml : xpat h>
 . . / . . / @t i mezone
   </ axml : xpat h>
          </ axml : par am>
      </ axml : par ams>
     </ axml : sc>
     <axml : t ext
        axml : or i gi n=" 076A1B60- C353- D4A4- 0056- 5E9DC88450B9" >
         mer col edì ,  23 gi ugno 2004 16: 23: 38 Or a est i va Eur opa
         cent r al e
     </ axml : t ext >
      </ t i me>
     </ c i t y>
</ c i t i es>

3.3 Active XML Services

The Active XML  peers can offer services as queries over the documents in their
repository. The example below illustrates the definition of such a service in the X-OQL syntax:

<ser vi ceDef i ni t i on t ype=" quer y" >
 <def i ni t i on>

 <quer y>
<! [ CDATA[

<r esul t s>
sel ect

<r esul t >
t ,
a

</ >
f r om b i n BI B/ bi b/ book,  t  i n       b/ t i t l e,  a i n b/ aut hor
</ >;

] ] >
</ quer y>

</ def i ni t i on>
</ ser v i ceDef i ni t i on>

The result returned by calls to this kind of services can contain themselves other
service calls. The question is how should the result be returned to the caller. Should the peer
return a response with service calls in it (an AXML document) or should it try to call the
service calls itself and return only simple XML content. The response to that question is given
by using schemas in a way I am not going to detail here.

Chapter 4

       A light-weight Active XML client



28

Goal:  Active XML  is a very flexible language and framework, but it needs a user
interface to be easily used/managed by application developers and end-users. The goal was to
develop such a client. Its main characteristic should be the few pre-requisites in terms of
infrastructure:  Mozilla is the only thing needed to be installed on the user’s machine.

Expected functionality
The first part of our work was to precise the functionalities of such a light-client.

We consider three functionalities of major importance:
• the user should be able to exploit any  received Active XML document (in

browser, through the e-mail). This means that the developed tool should permit the
interaction with the document, and especially with the service calls that are inside it. The user
should also be able to view/edit the various attributes of the service call (activation mode and
passed parameters) and to activate (from the local computer) the service calls. The returned
values should enrich/update the document by replacing the previously obtained results, or
being appended to them

• the user should be able to remotely connect to an existing Active XML peer  and
to use it as a proxy to perform some operations that are locally unavailable like: remotely
activating a service call on a document that resides on a peer forcing this way an update of
that document. It should also be possible to query a peer remotely.

• the user should be able to perform management operations
o on peers:
Ø  creating/deleting/modifying Active XML documents at the remote peer
Ø  creating/deleting/modifying Active XML services at the remote peer
Ø  interacting remotely with the service calls of these documents (as described

above)
o locally:

                     organize/manage the Active XML documents on the computer the person uses

4.1 The Active XML browser

An important part of our work was the design of the Active XML browser . The first
version  is, in fact a Mozilla/JavaScr ipt/XUL application which has an graphical interface
which resembles to the one in the figure 4.1

The
load/save
Area

The
Document
Area



29

Figure 4.1 A snapshot with the Active XML Browser

4.1.1 Interface and functionalities description

As can be seen in the picture above, the graphical interface appears as a web page
divided in four areas: the Load/Save Area, the Document Area, the Editing Area and the
Service Call Results Area.

The Load/Save Area permits the I/O interaction with the system. Actually, this part is very
little developed in the first version.
The Document Area is the zone in which the Active XML document is loaded.
The Editing Area is where the modifications of the attributes are made.
The Service Call Results Area is where the responses from the service calls are displayed.

Possible scenario of utilization :

The Service
Call Results
Area

The
Editing
Area



30

1. Load a document by filling the area of text in the Load/Save Area with the name of
the AXML document and by pressing the button “Get It” .

2. The corresponding document is “ loaded” in the Document Area using a XSL style
sheet. Actually in that space it is loaded the “ image” of that document which is a HTML
document obtained by the XSL transformation. This HTML document contains JavaScript
code which actually enables the user to interact with the interface.

3. The user has some choices:

   a) modify some attributes of the Service Call Element
This can be done by clicking on the corresponding attribute name. That moment a XUL
document is loaded in the Editing Area. In some cases the an editing process can be
started (in our example for the serviceURL, serviceNameSpace, methodName
attributes). In the case the attribute allows only for discrete values, the alternative is
displayed in the form of radio buttons (like for doNesting and  mode attributes) and in
the last case where the alternative is more complexe the choice is offered by a
combination of radio-buttons and areas of text ensures (like for the frequency attribute).

   b) activate a service call
            This can be done very easily by clicking on the image of the corresponding
Service Call element tag. The result appears in the Service Call Results Area and can be
further used to enrich the document. This can be done by clicking the Response Options
button.
            The result will be manipulated accordingly to the values of mode and
doNesting attributes. If the mode is replace  all the previously results of the service
call (which are siblings of the Service Call element in the tree representation of the
XML document) are replaced by the last result. If the mode is replace, the result will
be appended as the first sibling of the corresponding Service Call node. So the
conventions presented for the Active XML peer are respected. For the text nodes, the
convention regarding the doNesting respected as well.

  c) modify a parameter
There are two types of parameters: Value and XPath they are treated mainly

the same way.
The selection is made by clicking on the images of the corresponding XPath

and Value element-tags. A XUL window is opened in the Editing Area, containing a
text area and two radio buttons for selection. If the text typed is selected as a normal
Value, no validation is made and the parameter gets the text typed as value. If not, two
validations are made:
- the first one to make sure that the text represents a correct XPath expression
- the second one to make sure that the expression actually evaluates to a pertinent
value for the parameter.

I chose to halt the modification operation if at least one of the above
validations fail. Another possible choice is to halt it only if the syntactic (the first)
validation fails, in order to permit future development. In my opinion, adopting the
second would be a wrong choice.

4.1.2 Technical Issues



31

This is a Mozilla/JavaScript application. The front-end is basically HTML / XUL  and
the functionality is ensured by JavaScript code. For XML parsing, the Mozilla DOM 3
Implementation, available under JavaScript wrapping functions, was used. Some XPConnect/
XPCOM elements were used in order to ensure the I/O file operations.

The  architecture of modules is depicted in the figure 4.2 .

            Figure 4.2 The modules architecture in the AXML Browser application.

The parsing of the XML document is made mainly in the module parseXML.js using
the Mozilla implementation of DOM.

The Jslib.js module is the one having the central role: it’s the main interface between
the GUI modules and the JavaScript modules and in the same time it is a sort of interface
module between the GUI modules themselves because it ensures the dynamic/contextual
loading of XUL in the application’s front-end window. All the event-handling functions are
here.
           The Tranform.js module provides the I/O file operations and contains the XML
transformation code which uses a XSL Stylesheet in order to obtain a valid HTML fragment
for presentation. Key JavaScript code used for the transformation:

var  xsl t Pr ocessor  = new XSLTPr ocessor ( ) ;
var  xsl t Pr ocessor . i mpor t St y l esheet ( xsl St y l esheet ) ;
var  f r agment  = xsl t Pr ocessor . t r ansf or mToFr agment ( xml Doc,  document ) ;

In  this code, xslStylesheet  is a JavaScript (DOM) object representing the style sheet
XSL and the xmlDoc represents a XML document.The two objects have been built both
using a similar code:

            xsl St y l esheet =
      document . i mpl ement at i on. cr eat eDocument ( " " , " " , nul l ) ;
      xs l St y l esheet . addEvent Li st ener ( " l oad" ,  document Loaded,
      f al se) ;
      xs l St y l esheet . l oad( " document . xsl " ) ;

One important worth mentioning thing is that the “ loading”  of XML documents is
asynchronous which imposes an event-driven style programming (using callback/event-
listener  functions like the documentLoaded function in the previous code).

Jslib.js

Transform.js

parseXML.js Services.jsGUI
modules



32

The Services.js  module is the one responsible of the interactions with the Web
Services: the SOAP messages creation functions, the functions for sending the SOAP
message over HTTP and the callback functions handling the responses to the service calls.
The creation of the SOAP message is done using the Mozilla DOM implementation and
serializing the resulting DOM object in text. The message core is built by the
buildXMLFromParameters which take as arguments the parameters (names and values as
JavaScript arrays) and the wrapping SOAP “envelope”  is added by the buildSOAPMessage
function.

As an example of DOM utilization, I will present below the content of
buildSOAPMessage function:

f unct i on bui l dSOAPMessage( namespace,  xml Cont ent ,  met hodName)  {

  var  docSOAP =
document . i mpl ement at i on. cr eat eDocument ( ' ' , ' r oot ' , nul l ) ;
      var  r oot  = docSOAP. document El ement ;
      var  namespaceSOAP =
" ht t p: / / schemas. xml soap. or g/ soap/ envel ope/ " ;

      var  nodeEnv = docSOAP. cr eat eEl ement NS( namespaceSOAP,
" soapenv: Envel ope" ) ;
      r oot . appendChi l d( nodeEnv) ;
      var  encodi ngAt t r  = docSOAP. cr eat eAt t r i but eNS( namespaceSOAP,
" soapenv: encodi ngSt yl e" ) ;
      encodi ngAt t r . val ue
=" ht t p: / / schemas. xml soap. or g/ soap/ encodi ng/ " ;
      nodeEnv. set At t r i but eNode( encodi ngAt t r ) ;

      var  nodeHeader  =
docSOAP. cr eat eEl ement NS( namespaceSOAP, " soapenv: Header " ) ;
      nodeEnv. appendChi l d( nodeHeader ) ;

      var  nodeBody =
docSOAP. cr eat eEl ement NS( namespaceSOAP, " soapenv: Body" ) ;
      nodeEnv. appendChi l d( nodeBody) ;

      var  nodeMet hod =
docSOAP. cr eat eEl ement NS( namespace, " a0: " +met hodName) ;
      nodeBody. appendChi l d( nodeMet hod) ;
      var  par ams = xml Cont ent . document El ement . chi l dNodes;

 var  i ;
 f or  ( i =0;  i <par ams. l engt h;  i ++)  {

      nodeMet hod. appendChi l d( par ams. i t em( i ) . c l oneNode( t r ue) ) ;
  }

var  s = new XMLSer i al i zer ( ) ;
      var  st r  =
s. ser i al i zeToSt r i ng( docSOAP. document El ement . f i r s t Chi l d) ;
      r et ur n st r ;
 }

The xmlContent argument represents the DOM object resulted after the encoding of
the Service Call parameters. The namespace is the Web Service namespace required in order
to access it and the methodName attribute – the name of  the Web Service method called.



33

The XUL modules used are: choiceDialog, choiceSpecialDialog, dialogInput & XPathValue.
While the first three provide GUI for human - service call attributes interaction, the last one
permits the service call arguments management.

4.1.3  Conclusion

As I mentioned previously, this was just a “side-tool” . It is now   included in the final
version of the Active XML Commander  as a central feature. I preferred to presented it
separately for a better understanding.

4.2  The Active XML Commander
         The second main part of our work was the design and implementation of  the AXML
Commander.

4.2.1 The Global Architecture

Figure 4.3 The P2P context in which AXML Commander works.

Figure 4.3 above shows the architecture. The Active XML Commander  is a light-
weight XML client that permits the management of a local AXML documents repository.

It can also connect remotely to the Active XML Peers at a special web service called
Peer Access Point (PAP) provided by every peer and run operations on those peers. To
install and run this powerful instrument on a local computer, only the Mozilla framework is a
pre-requisite.

P
A
P

P
A
P

P
A
P

P
A
P

L
O
C
A
L

Peer
Services

A
P
P

Service call

Service call results

Local I/O operations



34

Of course, the Active XML  Commander  inherits all the functionality of the Active
XML Browser  since the latter  is a part of it. As a consequence, a user would be able to
access a Web Service (on an Active XML Peer or not) directly from the Commander .

In addition, he would also be able to force a service call activation in a document on
an Active XML Peer and to make a query on a Peer. So, he would be able to use Peers as
proxies perform operations that are not locally available. We could imagine that the light-
weight client might not have the proper credentials for accessing a web service and that the
user might try to do it using a Peer as a proxy.

 4.2.2 The Peer Access Point module presentation

This module is actually a  Java language class that is used by the Axis Engine as the
logic module corresponding to Peer Access Point Web Service and was especially designed
to ensure the interaction between the Peers and the Active XML Commander.

4.2.2.1 The Axis Context

Axis (one of the latest products of the Apache SOAP project) is a “SOAP Wrapper” .
It can be seen as a thin layer between the logic of the Web Service and the transport layer
carrying the data. As depicted in the figure below, Axis is simply the means by which the
SOAP message is taken from a transport (such as HTTP) and handed to the Web Service and
the means by which any message is formatted as a SOAP message to then be sent back to the
requestor.

The components of the Axis architecture are the following:
• Axis Engine – the main entry in the SOAP processor
• Handlers – the basic building blocks inside Axis that link Axis to existing back-

end systems (modules that perform specific functions)
• Chain – an ordered collection of handlers
• Transports – mechanism by which the SOAP messages flow into and out of Axis
• Deployment/Configuration – means by which the Web Services are available

through Axis
• Serializers /Deserializers – code that will convert native (for ex. Java) data types

into XML and back.

  Figure 4.4 The AXIS architecture

Requestor Axis Engine
Web
Service
Logic

      Transport

Request Handlers

Response Handlers

Pivot Point
Handler



35

One special handler is Pivot Point Handler. This handler is the point where the target
of the processing is switched: it’s the response message that is processed now and no longer
the request message. That is the place where the Web Service Logic resides.

4.2.2.2 The Module

This module is the Pivot Point Handler  in the corresponding Web Service Handlers
Chain, thus having a central role. It’s materialization is a Java class with several public
methods serving as back-end for the “methods”  offered by the Web Service.
The classes imported belong to the following packages :
   org.w3c.dom
   org.xml.sax  -   used f or  par s i ng
   org.apache.axis – f or  t he Axi s Engi ne
   fr.inria.gemo.axml – t he c l asses f r om Act i ve XML pr oj ect

This module is actually built on top of the classes from the Active XML project,
using specific methods to access the documents and the services from Peer’s repository, to
access the Query Processor and the Service Call Executor.

public org.w3c.dom.Element[] getDocument(String documentName) throws
Exception

  -> takes as argument String representing a document name and returns an AXML
Document as result (in fact an array containing only the root of this AXML Document) or
generates an Exception if there is no document having that name

public org.w3c.dom.Element[] getService(String serviceName) throws
Exception

  -> takes as argument String representing a service name and returns an AXML Service
Definition as result (in fact an array containing only the root of this AXML Service
Definition) or generates an Exception if there is no service on the Peer having that name

public String[] getAvailableDocuments ()

  -> takes no arguments and returns an array of String representing a list of document names

public String[] getAvailableServices ()

    -> takes no arguments and returns an array of String representing the list of names of the
Peer services

public void activateServiceCall(String documentName, String serviceId)
throws Exception

  -> takes as arguments two String object: one representing a name of document, and the
other presenting a Service Call Id. The side effect of calling this method would be forcing the
activation of a certain service call in a document on the Peer. This method can raise an
Exception if the document with that name doesn’ t exist.
 
public org.w3c.dom.Element query(String q) throws Exception

  -> takes as argument a  String object representing a XOQL query and returns a DOM
Element object representing the response to the query
public void saveService(String serviceName, Element serviceElement) throws
Exception

-> takes 2 arguments:



36

  - a String object representing a service name
  - a DOM Element representing the new definition of the service

public boolean saveDocument(String documentName, Boolean update, Element
content) throws Exception

-> takes 3 arguments:
  - a String object representing a document name
  - a Boolean object representing an option (true -> if the document file can be overwritten,
false -> if not // the document can be only created if it does not exist)
  - a DOM Element representing the new content of the document
The response is a boolean (true -> if the save was successful, false -> if it wasn’ t).
The effect is saving the document on the peer.

public void removeDocument(String URL) throws Exception

-> takes as argument a String representing a document name and its effect is erasing the
document from the peer. If such a document does not exist, an Exception is raised.

4.2.3 The GUI  description

A snapshot of the Active XML Commander  GUI in presented in Figure 4.5.
The AXML Commander  is actually an independent Mozilla XUL application. The
Graphical Interface appears as a standalone window application composed of several areas:

- The bar of menus – is actually not very “heavy”  in the sense that it was preferred,
for user-ergonomics reasons, that as many choices as possible be made in contextual menus.
It contains two menus: AXML Peer and Local Space. The first one can be thought of as a
Bookmark section in a Browser. The menu-  items in the popup menu are names of known
(registered) peers. A new peer can  be registered by providing its URI (required) and a name
(optional). The second one contains 2 items: the first one offers the possibility of creating a
blank Active XML document while the second one permits changing the path of “ the local
repository”  directory.

- AXML Navigator Area
In this area names/URI of  Peers and the special “Local Space” label are

presented. The Peers are seen as special “ repositories”  holding documents and  services. The
Local Space represents actually a directory on the local computer, where AXML Documents
are stored. This way the  “Active XML Peer-to-Peer Space”   is seen in a uniform way. Peers
can be added  by clicking  a menu-item representing a  registered peer or directly by entering
the name and the corresponding URI.

- AXML Content
Situated just below the Navigator Area, this area can present alternatively (using tabs)

lists of AXML Documents and Services names.

-     Display Area
In this area, AXML Document and Services Definitions can be displayed /

modified. For the documents there are two ways of displaying: using a simple text box  (the
document can then be edited at will) or using an updated version of the Active XML
Browser  previously presented. For the service definitions only the second way is possible.
Actually, in this area many documents/services definitions can be displayed in the same time



37

and this is possible thanks to the idea of using panels. The displayed document can be
changed using the tabs.

Figure 4.5 A snapshot with the Active XML Commander

- SOAP / Debug Area
This is the area where the SOAP messages exchanged by the ActiveXML

Commander with the Peers are presented. This area is divided in two sections:  one for the
ongoing messages and the other for the just received ones. This instrument has the same
functionality as the Axis TCP Monitor  Tool but the approach is a bit different, our
application working on  the AXML Client side.

4.2.4  A new Active XML Browser version

The version of the Active XML Browser  used by the Active XML Commander
was updated. All the I/O file operations area was removed since its place was taken by the
global I/O modules of the Commander.

An add-on is the possibility of forcing a service call in an AXML Document remotely
on a peer. As it can be seen in the picture above, when the activation of a service call in a
document is requested, an alternative is offered: activate it locally (from the imported
document copy) or activate it remotely on the peer in the original document.



38

4.2.5 Technical Issues

This application is a  Mozilla/JavaScript application. The front-end is basically XUL
and the functionality is ensured by JavaScript code.

For XML parsing, the Mozilla DOM 3 Implementation, available under JavaScript
wrapping functions, was used.  XPConnect/ XPCOM elements were used in order to ensure
the I/O file operations.  The  architecture of modules is presented below.

Figure 4.6 The modules architecture in the AXML Commander application

The Client.js module is the script entry point: it is the main interface between the
GUI modules and the JavaScript modules and in the same time it is an interface module
between the GUI modules themselves ensuring the dynamic loading of XUL interface
modules in the application’s front-end window. The most of the event-handling functions are
in this module.
The Browse.js module is the one grouping the main of the updated Active XML Browser
functionality.

The parseXML.js module uses the JavaScript API offered by the Mozilla 3 DOM
implementation for parsing any needed XML documents in order to extract the useful
information.

The Services.js module is now grouping the PAP module’s counterpart functions (the
functions responsible for the remote interaction with the module on the Peer).
The soap.js module contains the functions involved in messages SOAP coding.

4.2.6  AXML Commander’s Functionality

Active XML Commander is a flexible and powerful tool which meets most of the
requirements stated in the project specification:
• The first requirement is fulfilled:  the local I/O file operations are fully implemented,
so the user is able to have access to any document on the local system (not only Active XML
actually, but the tentative of loading a non-XML file will generate an error because the
application would try parsing that file) by setting the directory path for the local repository as
being the directory path of that document. An important issue being the portability, the
application works fine on the Unix and Windows System since it’s using the Mozilla back-
end to figure out the platform Mozilla is running (the application has access to the version
compilation type through a JavaScript navigator object). Documents can be edited (using a

Client.js

Browse.js

parseXML.js Services.jsGUI
modules

Soap.js



39

simple text editor) and browsed (using the Active XML Browser  built on a special-purpose
written XSL style sheet). Using the same Browser, various attributes of the service calls in
documents can be manipulated (activation mode and passed parameters) and service calls can
be activated from the current compute, the possibility of modifying  documents using the
results of these service calls being provided too.
• The second requirement is partially fulfilled: the user is able to connect to remote
peers and view the Active XML content  of those peers (documents and service calls through
their definitions). Using the updated version of the Active XML Browser, the user can force
the remote activation of a service call and view the corresponding results by reloading the
document in the application. The option of querying an Active XML Peer from the
Commander  context is not yet implemented.
• The third requirement is partially fulfilled as well. The user is able to perform all the
desired management operations in the case of the documents: documents on the Peer locally
available documents can be created/deleted/modified at will. Transferring a document from a
Peer to another, from the Local Space to a Peer or from the Peer to the Local Space is
possible with a simple drag-and-drop from the corresponding “ label”  representing the
document name in the AXML Content Area to the label representing the destination Peer
name in the AXML Navigator. For the services, only the possibility of viewing/modifying the
Service Definition is currently available. It is not possible to create (install) a service on a
Peer using the Active XML Commander .



40

Chapter 5
Future extensions

As it can be noticed, the work on the Active XML light-weight Client project is far
from being completed.
     Functionalities such as creating/ installing services on the Active XML Peer and of
remote querying this Peer should be introduced as well.
  

 One important, very important issue of such architecture would be the security.
There are two possible options I consider here:

•  providing a username and a password for every single operation on the Peer.
•  using a session mechanism which would allow a user to authenticate only at the

beginning of such a session. The session would have to be managed on the Peer.

Another issue would be the encryption of the SOAP messages (one reason would
quickly  come to mind in this context: parts of Active XML documents are exchanged over
SOAP and they would have to be confidential, the other being the fact the authentication to a
peer requires an username and a password which would have to remain secret).

              As the graphical interface is concerned we could optimize it by adopting inline
modifications of attributes/ parameters, a unique space for displaying the interchangeable
views of one document and a simplified-tree view aside which could be seen as providing
shortcuts to the elements of  interest of Active XML documents.

Bibliography



41

[1] S. Abiteboul, P. Buneman, D. Suciu Data on the Web: From Relations
to Semistructured Data and XML , Morgan Kaufmann Publishers, San
Francisco, 1999
[2] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. Ngoc Exchanging
Intensional XML Data, SIGMOD 2003
[3] S. Abiteboul, T. Milo, O. Benjelloun Web Services and Data Integration,
International Conference onWeb Information Systems Engineering 2002
[4] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R. Weber Active
XML: Peer-to-Peer Data and Web Services Integration (demo), VLDB
2002
[5] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, R. Weber Active
XML: A Data-Centr ic Perspective on Web Services, Conference sur les
Bases de Donnes Avances 2002
[6] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T. Milo Dynamic
XML Documents with Distr ibution and Replication, INRIA Futurs 2003
[7] S. Abiteboul, O. Benjelloun, T. Milo Towards a Flexible Model for  Data
and Web Services Integration, proc. Internat. Workshop on Foundations
of Models and Languages for Data and Objects 2001
[8] The Active XML Site (http://www.purl.org/net/axml)
[9] Steve Graham, Simeon Simeonov and others, Building Web Services with Java,
SAMS Publishing 2001
[10] Creating Applications with Mozilla, O’Reilly & Associates
      http://books.mozdev.org/html/index.html
[11] Scott Andrew LePera, Using the Mozilla SOAP API , O’Reilly 2002
      http://www.oreillynet.com/lpt/a/2677
[12] Trausan-Matu, Stefan,  Advanced Inter faces Course, Politehnica University,
Bucharest
[13] The JavaScr ipt Central  Site,
http://devedge.netscape.com/central/javascript/
[14] Doron Rosenberg (Netscape Communications), The XSLT/JavaScr ipt
Inter face In Gecko, Published 09 May 2003
http://devedge.netscape.com/viewsource/2003/xslt-js/
[15] W3C Working Group, Document Object Model Core,
  http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html
[16] W3C Working Group, Document Object Model XPATH,
http://www.w3.org/TR/2004/NOTE-DOM-Level-3-XPath-20040226/xpath.html
[17] Using the XML HTTP Request Object,
        http://jibbering.com/2002/4/httprequest.html
[18] The XUL Planet Site, http://www.xulplanet.com/


