
OptimAX: Optimizing Distributed ActiveXML
applications

Serge Abiteboul, Ioana Manolescu and Spyros Zoupanos

1GEMO group, INRIA Saclay – Île-de-France

July 18, 2008

1 of 36

Outline

1 Overview
WebContent project
ActiveXML language

2 A framework for AXML optimization
Extended AXML
AXML rewriting

3 OptimAX
Design Principles
Performance

4 Related (sub) problems

5 Conclusion

2 of 36

Outline

1 Overview
WebContent project
ActiveXML language

2 A framework for AXML optimization
Extended AXML
AXML rewriting

3 OptimAX
Design Principles
Performance

4 Related (sub) problems

5 Conclusion

3 of 36

Distributed web service based applications

WebContent project (R&D project)

Different services provided by different partners.
Service call interaction described in (A)XML documents.
Optimizer needed to optimize the execution plans.

4 of 36

Distributed web service based applications

WebContent project (R&D project)

Different services provided by different partners.
Service call interaction described in (A)XML documents.
Optimizer needed to optimize the execution plans.

4 of 36

Distributed web service based applications

WebContent project (R&D project)

Different services provided by different partners.
Service call interaction described in (A)XML documents.
Optimizer needed to optimize the execution plans.

4 of 36

Distributed web service based applications

WebContent project (R&D project)

Different services provided by different partners.
Service call interaction described in (A)XML documents.
Optimizer needed to optimize the execution plans.

4 of 36

The ActiveXML language

Data-centric Web service composition
ActiveXML document = XML document including calls to (continuous)
Web services

A service call contains contact info for the Web service
When the calls is activated, results are added to the document as
siblings of the service call.

<myPage>
<axml:sc service="getProgram" peer="tvchannel.com">
<parameter>Movies</parameter>
</axml:sc>

</myPage>

5 of 36

The ActiveXML language

Data-centric Web service composition
ActiveXML document = XML document including calls to (continuous)
Web services

A service call contains contact info for the Web service
When the calls is activated, results are added to the document as
siblings of the service call.

<myPage>
<axml:sc service="getProgram" peer="tvchannel.com">
<parameter>Movies</parameter>
</axml:sc>
<program day="today">
<movie>Shrek 3</movie>
</program>

</myPage>

5 of 36

The ActiveXML language

Data-centric Web service composition
ActiveXML document = XML document including calls to (continuous)
Web services

A service call contains contact info for the Web service
When the calls is activated, results are added to the document as
siblings of the service call.

<myPage>
<axml:sc service="getProgram" peer="tvchannel.com">
<parameter>Movies</parameter>
</axml:sc>
<program day="today">
<movie>Shrek 3</movie>
</program>
<program day="tomorrow">
<movie>Persepolis</movie>
</program>

</myPage>

5 of 36

The ActiveXML language

Data-centric Web service composition
ActiveXML document = XML document including calls to (continuous)
Web services

A service call contains contact info for the Web service
When the calls is activated, results are added to the document as
siblings of the service call.

Continuous services may be continuous query services.
Example
Please inform me whenever there is a movie in the TV program (query
over an RSS feed).

5 of 36

The ActiveXML peer v2: overview

6 of 36

AXML evaluation

AXML document d@p1, sc ∈ d@p1 is the call s@p2($in)
Activating sc entails:

Stream $in to p2

Evaluate s@p2

Stream the results of s@p2 to p1

Remark
$in may contain (continuous) service calls

Remark
s@p2 results may contain (continuous) service calls

Call activation can be controlled:
On a per-call basis
Globally (per-subtree basis)

7 of 36

AXML evaluation

AXML document d@p1, sc ∈ d@p1 is the call s@p2($in)
Activating sc entails:

Stream $in to p2

Evaluate s@p2

Stream the results of s@p2 to p1

Remark
$in may contain (continuous) service calls

Remark
s@p2 results may contain (continuous) service calls

Call activation can be controlled:
On a per-call basis
Globally (per-subtree basis)

7 of 36

AXML evaluation

AXML document d@p1, sc ∈ d@p1 is the call s@p2($in)
Activating sc entails:

Stream $in to p2

Evaluate s@p2

Stream the results of s@p2 to p1

Remark
$in may contain (continuous) service calls

Remark
s@p2 results may contain (continuous) service calls

Call activation can be controlled:
On a per-call basis
Globally (per-subtree basis)

7 of 36

AXML evaluation

AXML document d@p1, sc ∈ d@p1 is the call s@p2($in)
Activating sc entails:

Stream $in to p2

Evaluate s@p2

Stream the results of s@p2 to p1

Remark
$in may contain (continuous) service calls

Remark
s@p2 results may contain (continuous) service calls

Call activation can be controlled:
On a per-call basis
Globally (per-subtree basis)

7 of 36

Contributions

A framework for AXML optimization
A small set of predefined services
Precise evaluation semantics for AXML documents
Equivalence-preserving AXML rewriting rules
Classification of AXML optimization problems

OptimAX, an extensible AXML optimizer
Search strategies
Performance

8 of 36

Contributions

A framework for AXML optimization
A small set of predefined services
Precise evaluation semantics for AXML documents
Equivalence-preserving AXML rewriting rules
Classification of AXML optimization problems

OptimAX, an extensible AXML optimizer
Search strategies
Performance

8 of 36

Outline

1 Overview
WebContent project
ActiveXML language

2 A framework for AXML optimization
Extended AXML
AXML rewriting

3 OptimAX
Design Principles
Performance

4 Related (sub) problems

5 Conclusion

9 of 36

Extending AXML

Purpose:

Modest extensions turning AXML into a rich "executable" language
Optimization = AXML-to-AXML equivalence-preserving rewriting
Three new services:

I send
I receive
I newNode

10 of 36

Extending AXML

Purpose:

Modest extensions turning AXML into a rich "executable" language
Optimization = AXML-to-AXML equivalence-preserving rewriting
Three new services:

I send
I receive
I newNode

10 of 36

Extending AXML

Purpose:

Modest extensions turning AXML into a rich "executable" language
Optimization = AXML-to-AXML equivalence-preserving rewriting
Three new services:

I send
I receive
I newNode

10 of 36

AXML as an executable language

How to order the activations of several calls?

Default activation order: inside-out (activate parameter calls
before the parent call)
User-specified activation order:

I sc1 activated afterActivated | afterTerminated sc2

11 of 36

The send service

Sends (a stream of) (A)XML trees as children of a given node

<axml:sc service="send" peer="p" id="#1">
<where node="#2" doc="d2" peer="p2"/>
<what> ... AXML expression ... </what>

</axml:sc>

Default activation order for send
A call to send is activated before activating the descendant calls.

12 of 36

The receive service

Receives (a stream of) (A)XML trees at a given node

<axml:sc service="receive" peer="p2" id="#2">
<from node="#1" doc="d1" peer="p1"/>
<what> ... AXML expression ... </what>

</axml:sc>

Default activation order for receive
A call to receive is activated when the first message from the corre-
sponding send arrives.

The what child of receive only describes data being received. Its
calls are not activated.
Global integrity constraint: send⇔ receive

13 of 36

The receive service

Receives (a stream of) (A)XML trees at a given node

<axml:sc service="receive" peer="p2" id="#2">
<from node="#1" doc="d1" peer="p1"/>
<what> ... AXML expression ... </what>

</axml:sc>

Default activation order for receive
A call to receive is activated when the first message from the corre-
sponding send arrives.

The what child of receive only describes data being received. Its
calls are not activated.
Global integrity constraint: send⇔ receive

13 of 36

The receive service

Receives (a stream of) (A)XML trees at a given node

<axml:sc service="receive" peer="p2" id="#2">
<from node="#1" doc="d1" peer="p1"/>
<what> ... AXML expression ... </what>

</axml:sc>

Default activation order for receive
A call to receive is activated when the first message from the corre-
sponding send arrives.

The what child of receive only describes data being received. Its
calls are not activated.
Global integrity constraint: send⇔ receive

13 of 36

The newNode service

Installs an XML tree as a new document on a peer.

<axml:sc service="newNode" peer="p3" id="#3">
<what> ... AXML expression ... </what>

</axml:sc>

Default activation order for newNode
A call to newNode is activated before activating the descendant calls.

14 of 36

AXML activation order

Given a document d@p, the AXML peer p computes a partial order O
including:

all explicit activation order constraints
as many default order constraints as possible

There can be several legal schedules.

15 of 36

AXML activation order

Given a document d@p, the AXML peer p computes a partial order O
including:

all explicit activation order constraints
as many default order constraints as possible

There can be several legal schedules.

15 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Our document is
installed at peer1.
We want the s1@peer2
and the s2@peer2 to
be called by peer2.
We are interested in
receiving the final
answer at peer1.

16 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Services activated:
newNode@peer1

16 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Services activated:
newNode@peer1
s2@peer2

16 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Services activated:
newNode@peer1
s2@peer2
s1@peer2

16 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Services activated:
newNode@peer1
s2@peer2
s1@peer2
send@peer2

16 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Services activated:
newNode@peer1
s2@peer2
s1@peer2
send@peer2

Data transmition
send@peer2 starts to send
data to receive@peer1

16 of 36

Sample legal schedule

root@p1

receive@p1

s1@p2

s2@p2

newNode@p2

send@p2

s1@p2

s2@p2

aA

Services activated:
newNode@peer1
s2@peer2
s1@peer2
send@peer2
receive@peer1

Receive activation
receive@peer1 is activated
on first result received by
send@peer2

16 of 36

AXML equivalence

AXML fixpoint: the final state of the document (assumed finite)
Service calls may bring service calls
Fixpoint is reached after full evaluation

Two documents are equivalent if their fixpoints are identical (modulo
terminated service calls)
Two documents are one-stage equivalent if activating all their service
calls leads to identical documents

Do not activate calls included in the results

17 of 36

AXML equivalence

AXML fixpoint: the final state of the document (assumed finite)
Service calls may bring service calls
Fixpoint is reached after full evaluation

Two documents are equivalent if their fixpoints are identical (modulo
terminated service calls)
Two documents are one-stage equivalent if activating all their service
calls leads to identical documents

Do not activate calls included in the results

17 of 36

AXML equivalence

AXML fixpoint: the final state of the document (assumed finite)
Service calls may bring service calls
Fixpoint is reached after full evaluation

Two documents are equivalent if their fixpoints are identical (modulo
terminated service calls)
Two documents are one-stage equivalent if activating all their service
calls leads to identical documents

Do not activate calls included in the results

17 of 36

AXML equivalence

AXML fixpoint: the final state of the document (assumed finite)
Service calls may bring service calls
Fixpoint is reached after full evaluation

Two documents are equivalent if their fixpoints are identical (modulo
terminated service calls)
Two documents are one-stage equivalent if activating all their service
calls leads to identical documents

Do not activate calls included in the results

17 of 36

AXML equivalence

AXML fixpoint: the final state of the document (assumed finite)
Service calls may bring service calls
Fixpoint is reached after full evaluation

Two documents are equivalent if their fixpoints are identical (modulo
terminated service calls)
Two documents are one-stage equivalent if activating all their service
calls leads to identical documents

Do not activate calls included in the results

17 of 36

Equivalence-preserving AXML rewriting rules

Rules specific to query services:

root@p1

q1@p1

q2@p1

⇔

root@p1

(q1 ◦q2)@p1

Query composition/decomposition

q1@p1(q2@p1)⇔ (q1 ◦q2)@p1

18 of 36

Equivalence-preserving AXML rewriting rules

Generic rules:

root@p1

f@any
⇒

root@p1

f@p1

Instatiation
f@any ⇒ f@p1 (the same f service)

19 of 36

Equivalence-preserving AXML rewriting rules

Generic rules:

root@p1

f@p2

⇒

root@p1

receive@p1

f@p2

newNode@p2

send@p2

f@p2

aA

Delegation

f@p1(e@p2) ⇒ #1 : receive@p1(e@p2),
newNode@p2(send@p2(e@p2,#1@p1))

20 of 36

Equivalence-preserving AXML rewriting rules

Generic rules:

root@p1

x

e1@p1

y

e2@p2

⇒

root@p1

x

e1@p1

send@p1 y

receive@p1

Factorization

r(x(e1), . . . ,y(e2)) ⇒ r(x(#1 : e1),
e1 ≡ e2 #2 : send@p1(#1@p1,#3@p1), . . . ,

y(#3 : receive@p1)
)

21 of 36

AXML optimization

Given:
Rewriting rule set R

Cost function for sc evaluation
Full AXML optimization: repeat until fixpoint

1 choose one among
1 pick an sc ready to be activated, activate it, add results to the

document
2 pick an AXML subtree t and a rule r ∈R, rewrite t with r

2 so that the total cost of evaluation (+optimization) is minimized

Undecidable if service calls may return other service calls.
In the decidable case, exhaustive optimization prior to any activation is
optimal.

22 of 36

AXML optimization

Given:
Rewriting rule set R

Cost function for sc evaluation
Full AXML optimization: repeat until fixpoint

1 choose one among
1 pick an sc ready to be activated, activate it, add results to the

document
2 pick an AXML subtree t and a rule r ∈R, rewrite t with r

2 so that the total cost of evaluation (+optimization) is minimized

Undecidable if service calls may return other service calls.
In the decidable case, exhaustive optimization prior to any activation is
optimal.

22 of 36

AXML optimization

Given:
Rewriting rule set R

Cost function for sc evaluation
Full AXML optimization: repeat until fixpoint

1 choose one among
1 pick an sc ready to be activated, activate it, add results to the

document
2 pick an AXML subtree t and a rule r ∈R, rewrite t with r

2 so that the total cost of evaluation (+optimization) is minimized

Undecidable if service calls may return other service calls.
In the decidable case, exhaustive optimization prior to any activation is
optimal.

22 of 36

AXML optimization

Given:
Rewriting rule set R

Cost function for sc evaluation
Full AXML optimization: repeat until fixpoint

1 choose one among
1 pick an sc ready to be activated, activate it, add results to the

document
2 pick an AXML subtree t and a rule r ∈R, rewrite t with r

2 so that the total cost of evaluation (+optimization) is minimized

Undecidable if service calls may return other service calls.
In the decidable case, exhaustive optimization prior to any activation is
optimal.

22 of 36

AXML optimization

Given:
Rewriting rule set R

Cost function for sc evaluation
Full AXML optimization: repeat until fixpoint

1 choose one among
1 pick an sc ready to be activated, activate it, add results to the

document
2 pick an AXML subtree t and a rule r ∈R, rewrite t with r

2 so that the total cost of evaluation (+optimization) is minimized

Undecidable if service calls may return other service calls.
In the decidable case, exhaustive optimization prior to any activation is
optimal.

22 of 36

One-stage (static) optimization

Given a document d@p and a set of rewriting rules R

1 Let S := {d}
2 Repeat

1 Pick a rule r ∈R, a document d1 ∈ S and a tree t ∈ d1.
2 Let d2 := r(d1, t). If d2 6∈ S, add d2 to S.

3 Until S stationary
4 Return cheapest plan from S

One stage optimization - Return cheapest document up to one stage
equivalence to d .

23 of 36

One-stage (static) optimization

Given a document d@p and a set of rewriting rules R

1 Let S := {d}
2 Repeat

1 Pick a rule r ∈R, a document d1 ∈ S and a tree t ∈ d1.
2 Let d2 := r(d1, t). If d2 6∈ S, add d2 to S.

3 Until S stationary
4 Return cheapest plan from S

One stage optimization - Return cheapest document up to one stage
equivalence to d .

23 of 36

Outline

1 Overview
WebContent project
ActiveXML language

2 A framework for AXML optimization
Extended AXML
AXML rewriting

3 OptimAX
Design Principles
Performance

4 Related (sub) problems

5 Conclusion

24 of 36

Generic ActiveXML optimizer: OptimAX

Available with the AXML peer v2 (www.activexml.net)
Extensible set of tree rewriting rules
Search algorithms: depth-first, breadth-first, cost-driven variants
Hint language:

"Exhaust factorization, then 20 delegation steps"
"Explore at most 50 rewritten plans"

Checks to preserve send-receive channel integrity

25 of 36

Generic ActiveXML optimizer: OptimAX

Available with the AXML peer v2 (www.activexml.net)
Extensible set of tree rewriting rules
Search algorithms: depth-first, breadth-first, cost-driven variants
Hint language:

"Exhaust factorization, then 20 delegation steps"
"Explore at most 50 rewritten plans"

Checks to preserve send-receive channel integrity

25 of 36

Generic ActiveXML optimizer: OptimAX

Available with the AXML peer v2 (www.activexml.net)
Extensible set of tree rewriting rules
Search algorithms: depth-first, breadth-first, cost-driven variants
Hint language:

"Exhaust factorization, then 20 delegation steps"
"Explore at most 50 rewritten plans"

Checks to preserve send-receive channel integrity

25 of 36

Generic ActiveXML optimizer: OptimAX

Available with the AXML peer v2 (www.activexml.net)
Extensible set of tree rewriting rules
Search algorithms: depth-first, breadth-first, cost-driven variants
Hint language:

"Exhaust factorization, then 20 delegation steps"
"Explore at most 50 rewritten plans"

Checks to preserve send-receive channel integrity

25 of 36

Generic ActiveXML optimizer: OptimAX

Available with the AXML peer v2 (www.activexml.net)
Extensible set of tree rewriting rules
Search algorithms: depth-first, breadth-first, cost-driven variants
Hint language:

"Exhaust factorization, then 20 delegation steps"
"Explore at most 50 rewritten plans"

Checks to preserve send-receive channel integrity

25 of 36

OptimAX performance

We measure: optimization time and reduction of estimated plan cost
Synthetic documents:

deepn.xml
flatn.xml
treen.xml, max fan-out=6

Services assigned with uniform probability distribution over nd
services.
Optimization considers a network of p peers.

26 of 36

OptimAX performance

Search space size 3000, depth-first cost-driven strategy
27 of 36

OptimAX performance

Depth-first cost-driven strategy
28 of 36

OptimAX performance

We compare an exhaustive search with a limited one:
Cost ratio
Time ratio

29 of 36

Outline

1 Overview
WebContent project
ActiveXML language

2 A framework for AXML optimization
Extended AXML
AXML rewriting

3 OptimAX
Design Principles
Performance

4 Related (sub) problems

5 Conclusion

30 of 36

Related problems from previous works

Rewriting

Transforming an input or type τ1 to an output of type τ2 Extend XML
Schema to include the types of services referred by each sc node.
Rewriting problem: find a sequence of activations which brings the doc-
ument from type T1 to type T2 [MAA+03,AMB05].

Distribution
Assimilate service calls to remote tree references.
Query evaluation over an AXML document = local + remote evaluation.
Query shipping optimization rules [ABC+03].

Lazy evaluation

Decompose the query: q@p1(a(α, f@p2,β)) ⇒ q1@p1(a(α,β)) ⊕
q2@p1(f@p)
Prune calls to f such that q2(f) is empty (irrelevant calls)
Full optimization algorithm (decomposition, call elimination) [ABC+04]

31 of 36

Related problems from previous works

Rewriting

Transforming an input or type τ1 to an output of type τ2 Extend XML
Schema to include the types of services referred by each sc node.
Rewriting problem: find a sequence of activations which brings the doc-
ument from type T1 to type T2 [MAA+03,AMB05].

Distribution
Assimilate service calls to remote tree references.
Query evaluation over an AXML document = local + remote evaluation.
Query shipping optimization rules [ABC+03].

Lazy evaluation

Decompose the query: q@p1(a(α, f@p2,β)) ⇒ q1@p1(a(α,β)) ⊕
q2@p1(f@p)
Prune calls to f such that q2(f) is empty (irrelevant calls)
Full optimization algorithm (decomposition, call elimination) [ABC+04]

31 of 36

Related problems from previous works

Rewriting

Transforming an input or type τ1 to an output of type τ2 Extend XML
Schema to include the types of services referred by each sc node.
Rewriting problem: find a sequence of activations which brings the doc-
ument from type T1 to type T2 [MAA+03,AMB05].

Distribution
Assimilate service calls to remote tree references.
Query evaluation over an AXML document = local + remote evaluation.
Query shipping optimization rules [ABC+03].

Lazy evaluation

Decompose the query: q@p1(a(α, f@p2,β)) ⇒ q1@p1(a(α,β)) ⊕
q2@p1(f@p)
Prune calls to f such that q2(f) is empty (irrelevant calls)
Full optimization algorithm (decomposition, call elimination) [ABC+04]

31 of 36

Outline

1 Overview
WebContent project
ActiveXML language

2 A framework for AXML optimization
Extended AXML
AXML rewriting

3 OptimAX
Design Principles
Performance

4 Related (sub) problems

5 Conclusion

32 of 36

Conclusion

ActiveXML: very expressive language for data-driven web service
integration

We take a database-oriented perspective: efficient, declarative
evaluation of data-intensive computations

Many interesting database problems

Ongoing work: incremental query evaluation, integration with
monitoring system

OptimAX demo in ICDE 2008 [AMZb08] and WebContent demo in
VLDB 2008 [AAC+08].

33 of 36

Thank you!

34 of 36

References

AAC+08 S. Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F.
Goasdoué, I. Manolescu, B. Nguyen, M. Ouazara, A. Somani,
N. Travers, G. Vasile, S. Zoupanos, to appear at VLDB 2008

AMZa08 S. Abiteboul, I. Manolescu, S. Zoupanos: OptimAX: Optimizing
distributed AXML applications, ICWE 2008.

AMZb08 S. Abiteboul, I. Manolescu, S. Zoupanos: OptimAX: efficient
support for data-intensive mash-ups, ICDE 2008

AMT06 S. Abiteboul, I. Manolescu, E. Taropa: A Framework for
Distributed XML Data Management, EDBT 2006

35 of 36

References

AMB05 S. Abiteboul, T. Milo, O. Benjelloun: Regular rewriting of Active
XML and unambiguity, PODS 2005

ABC+04 S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, N.
Preda: Lazy Query Evaluation for Active XML, SIGMOD 2004

MAA+03 T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. Dang Ngoc:
Exchanging Intensional XML Data, SIGMOD 2003

ABC+03 S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T. Milo:
Dynamic XML documents with distribution and replication,
SIGMOD 2003

36 of 36

	Overview
	WebContent project
	ActiveXML language

	A framework for AXML optimization
	Extended AXML
	AXML rewriting

	OptimAX
	Design Principles
	Performance

	Related (sub) problems
	Conclusion

