
Active XML User’s Guide

The Active XML team

Contents

1 Introduction 1

2 Instalation 2
2.1 Download and install a Java Development Kit . 2
2.2 Download and install the Tomcat 4.1 container . 2
2.3 Download and install the Active XML framework . 2

3 Using Active XML 3
3.1 Basic concepts of Active XML . 3
3.2 Creating your Active XML peer . 5
3.3 Accessing your Active XML peer . 7
3.4 Active XML web services . 7

3.4.1 X-OQL queries . 7
3.4.2 Update services . 9
3.4.3 XSLT . 11
3.4.4 Continuous services . 13
3.4.5 Services written in Java . 13

3.5 Active XML Service Call . 14
3.5.1 Web service information . 14
3.5.2 Service call information . 16
3.5.3 Service call result handling . 18
3.5.4 Service call parameters . 19

3.6 Customizing your Active XML Peer . 21

A Continuous Services 22

1 Introduction

Active XML (http://activexml.net) is a declarative framework for distributed data management
based on XML and web services (SOAP, WSDL). An Active XML document is an XML document
that may contain calls to web services.

An Active XML peer is mainly a repository of Active XML documents. It is both a client (as
a web services consumer) and a provider of declarative web services. A service can be defined, for
example, as a query over a stored XML document or an update of the document. The use of calls
to web services embedded in documents allows to dynamically update data and also to control

1

frequency of these updates and durability of the information. The peers can exchange intensional
data, i.e. data defined as calls to Web services. Thus, each Active XML peer acquire and provide
dynamic information, in a decentralised peer-to-peer architecture.

This user’s guide presents the basic steps of installation of the Active XML framework, the
main concepts of the system, and describes the definition, usage and management of Active XML
documents and different kinds of Web services.

2 Instalation

The Active XML framework is provided as a web application for a Servlet 2.3 / JSP 1.2 container
like Tomcat 4.1 (http://jakarta.apache.org/tomcat/). You should also be able to get it working
with other containers like Jetty (http://jetty.mortbay.org/), Orion (http://www.orionserver.com/)
or Resin (http://www.caucho.com/).

This section describes its installation with the Tomcat 4.1 container. The steps needed to install
and use the Active XML framework are as follows.

2.1 Download and install a Java Development Kit

The first step is to download a Java Development Kit (JDK) release (version 1.4 or later) from
http://java.sun.com/j2se/. Make sure it is a JDK and not a Java Runtime Environment (JRE).
Install the JDK according to the instructions included with the release.

2.2 Download and install the Tomcat 4.1 container

The second step is to download a binary distribution of Tomcat 4.1 from http://jakarta.apache.org/tomcat/
and install it according to the instructions included with the release. Make sure to test it before
going on with the installation of the Active XML framework.

2.3 Download and install the Active XML framework

ActiveXML is now an Open Source project. The latest CVS version of the project, containing
Source code, binaries and a sample webapp, is available for download at
http://forge.objectweb.org/projects/activexml/, in the CVS part. There are several directories in
this package:

• ”Active XML” and ”Gemo Utilities”, containing the source code of Active XML,

• ”XOQL” and ”CDQA”, containing the source code of the XML repository and query language
that are mainly used in Active XML,

• ”Copy of Active XML webapp”, which contains a sample webapp with documents, services
and examples for all the main features of Active XML,

• ”Java Libs”, containing jars that are used by the various projects,

• ”ActiveXML Light Client”, the Mozilla plugin of the client for ActiveXML peers.

2

To install an Active XML peer on a machine, copy the directory ”Copy of Active XML we-
bapp/axml” in the ”webapps” directory of Tomcat. Restart Tomcat and your peer will be available
via a user interface at http://localhost:8080/axml. The same can be achieved by using the Eclipse
environment and its plugin for Tomcat. In this case, you just need to declare that ”Copy of...” is
a Tomcat project (if by default it is not the one).

If this part fails and the peer is not available at the mentioned address, you can consult the logs
of Tomcat to see what exactly went wrong. You can consult them either from the ”logs” directory
of Tomcat or from the logging window of Eclipse (if Eclipse was used to start/restart Tomcat).

Finally, if you want to use continuous services (see 3.4.4) as a client, you will need to mod-
ify the value of the axml.peer.url parameter in the web.xml file in the Copy of Active XML
webapp/axml/WEB-INF directory by entering the correct address of your peer instead of ”local-
host”.

3 Using Active XML

3.1 Basic concepts of Active XML

In Active XML (AXML for short), parts of data are given explicitly, while other parts consist of
calls to Web services that generate more data. AXML is an XML dialect. Let us consider an
example where an AXML document invokes a service call which consists of a query on another
XML document.

First, an XML document representing a short ATP list (ATPList.xml) of tennis players is
specified:

<?xml version="1.0" encoding="UTF-8"?>
<ATPList date="18042005">

<player>
<name>

<firstname>Roger</firstname>
<lastname>Federer</lastname>

</name>
<points>475</points>

</player>
<player>

<name>
<firstname>Rafael</firstname>
<lastname>Nadal</lastname>

</name>
<points>313</points>

</player>
</ATPList>

Next, a Web service including a X-OQL query is defined. X-OQL is a query language for
XML developed at INRIA. The following service (named GetATP) uses a query which returns the
firstname and the lastname for every player element in the ATPList.xml document.

3

<?xml version="1.0" encoding="ISO-8859-1" ?>
<serviceDefinition type="query">

<definition>
<query>

<![CDATA[
select p/name
from p in ATPList//player;

]]>
</query>

</definition>
</serviceDefinition>

See more details on defining Web services in section 3.4, with more examples of X-OQL state-
ments given in 3.4.1.

A call to the service GetATP is included into the following AXML document (named test-
GetATP.xml). Generally, an AXML document is a valid XML document where some particular
elements (labeled sc and associated with the axml namespace) are interpreted as service calls.

<?xml version="1.0" encoding="UTF-8"?>
<atp xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<players>
<axml:sc frequency="every 3600000"

serviceNameSpace="GetATP"
serviceURL="http://localhost:8080/axml/servlet/AxisServlet"
methodName="GetATP"
mode="replace">

<axml:params/>
</axml:sc>

</players>
</atp>

In this example, the service call will be activated every hour (frequency is set to 3600000
miliseconds) and the previous results will be replaced by the ones returned by the current service
invocation (mode=”replace”). For more details on service definition, see section 3.5.

After the service invocation, the end of the AXML document, below the axml:sc element, will
look like this:

...
<name>

<firstname>Roger</firstname>
<lastname>Federer</lastname>

</name>
<name>

<firstname>Rafael</firstname>
<lastname>Nadal</lastname>

</name>

4

</players>
</atp>

For the sake of simplicity, some attributes that are automatically generated during the service
invocation (namely origin and timestamp) were not shown in the last XML document.

3.2 Creating your Active XML peer

As said in the introduction of this document, an Active XML peer is mainly a repository of Active
XML documents. An Active XML document is a well-formed XML document that may contain
calls to Web services.

The repository of the Active XML peer is located in the repository directory in your Active
XML installation. In order to publish a Web service that contains a query and to call the service
from an AXML document, the repository directory should contain:

1. an XML document that will be queried (such as ATPList.xml),
2. a Web service (like GetATP),
3. an AXML document that invokes the Web service (such as testGetATP.xml).
4. an docRepository.xml file, which consists of references to Active XML files (in this example,

to testGetATP.xml and ATPList.xml):

<?xml version="1.0" ?>
<mxbase>

<forest name="TestGetATP" replicationIndex="0">
<file name="" href="testGetATP.xml" />

</forest>
<forest name="ATPList" replicationIndex="0">

<file name="" href="ATPList.xml" />
</forest>

</mxbase>

5. an svcRepository.xml file should contain the reference to Web services, such as:

<?xml version="1.0" ?>
<mxbase>
<forest name="GetATP" replicationIndex="0">

<file name="" href="GetATP.xml" />
</forest>

</mxbase>

As shown above, the structure of docRepository.xml and svcRepository.xml files is quite simple.
The root element is named mxbase and the items of the repository are represented by a forest
element.

In docRepository.xml, a forest is a logical document that may be composed of several physical
XML or Active XML documents. The name attribute of the forest element identifies the forest.
The relative path of each physical document can be specified by using the file element and its href
attribute. In svcRepository.xml, a forest is related to a Web service.

Consider now another example of the docRepository.xml file, where the forest named ATPList
consists of the two files, ATP1.xml and ATP2.xml:

5

<?xml version="1.0" ?>
<mxbase>

<forest name="ATP" replicationIndex="0">
<file href="ATP1.xml" />
<file href="ATP2.xml" />

</forest>
</mxbase>

If ATP1.xml is written as:

<?xml version="1.0" encoding="UTF-8"?>
<atp1>

<player>
<firstname>Roger</firstname>
<lastname>Federer</lastname>
<points>450</points>

</player>
</atp1>

and ATP2.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<atp2>

<player>
<firstname>Rafael</firstname>
<lastname>Nadal</lastname>
<points>313</points>

</player>
</atp2>

then the following query (notice that we use the name of the forest here):

ATP;

will return:

<result>
<atp1>

<player>
<firstname>Roger</firstname>
<lastname>Federer</lastname>
<points>450</points>

</player>
</atp1>
<atp2>

<player>
<firstname>Rafael</firstname>

6

<lastname>Nadal</lastname>
<points>313</points>

</player>
</atp2>

</result>

3.3 Accessing your Active XML peer

You can access the Web interface of your AXML peer by pointing your browser to http://localhost:8080/axml/.
You can then interact with your Active XML peer:

• access, query and modify your AXML documents,

• manually activate AXML service calls,

• see and test your AXML web services.

One can also use the provided Java Web Services (such as PeerAccessPoint or DocumentRepos-
itory) to:

• query AXML documents,

• retrieve, save or remove AXML documents/services,

• activate service calls.

via Web Service invocation.

3.4 Active XML web services

An Active XML peer is also a repository of Active XML web services. An Active XML web service
is defined in a declarative manner and can be of type:

• query,

• update,

• xslt,

• continuous,

• written in Java.

3.4.1 X-OQL queries

In order to explain some basic elements of X-OQL syntax on different examples, the ATP.xml file
will be slightly modified:

7

<?xml version="1.0" encoding="UTF-8"?>
<ATPList date="18042005">

<player rank=1>
<name>

<firstname>Roger</firstname>
<lastname>Federer</lastname>

</name>
<citizenship>Swiss</citizenship>
<points>475</points>

</player>
<player rank=2>

<name>
<firstname>Rafael</firstname>
<lastname>Nadal</lastname>

</name>
<citizenship>Spanish</citizenship>
<points>313</points>

</player>
</ATPList>

The basic syntax of X-OQL can be illustrated by the following query:

select p/name/lastname
from p in ATPList//player
where p@rank=1;

The query selects the lastname of the player who is at the first place of the ATP list. The
FROM clause binds the p variable to each player element in the document. The WHERE clause
selects the elements that satisfy the given filter. In this query it is the value of rank, which is an
atribute of the player element. The result of the query is:

<result>
<lastname>Federer</lastname>

</result>

In the following query, the WHERE clause is composed of two conditions considering the values
of elements citizenship and points:

select p/name/lastname, p/points
from p in ATPList//player
where p/citizenship = Spanish and p/points > 300;

The result consists of the lastname and points of the player satisfying both conditions of the
given filter:

<result>
<lastname>Nadal</lastname>
<points>313</points>

</result>

8

The next example shows the construction of elements in X-OQL. The player element will be
constructed, having points and rank as attributes and firstname and lastname by using the following
statement:

select <player points ={p/points}
rank={p@rank}>

p/name/firstname,
p/name/lastname
</>

from p in ATPList//player;

The result is:

<result>
<player points="475" rank="1">

<firstname>Roger</firstname>
<lastname>Federer</lastname>

</player>
<player points="313" rank="2">

<firstname>Rafael</firstname>
<lastname>Nadal</lastname>

</player>
</result>

For more information about X-OQL, see http://activexml.net/xoql/documentation/index.html.

3.4.2 Update services

These Active XML services can be used to perform updates on documents of the peer’s repository.
We define them by using a simple update language implemented on top of X-OQL.

The definition of an update service will have two parts, both consisting of X-OQL queries:

• a ”location” part, defining the document nodes on which an update will be performed,

• a ”data” part, along with an action (”replace”, ”delete” or ”insert”).

Depending on the specified action, one of the following activities will take place at each of the
nodes selected by the ”location” part (as a relative root):

• deleting the piece of data selected by the ”location” part,

• replacing it by the piece of data returned/constructed by the ”data” part,

• inserting the piece of data returned/constructed by the ”data” part.

Example 1. A replace service that changes the value of the social security number for a certain
patient in a medical file:

9

<serviceDefinition type="update">
<definition>
<action type="replace">

<data>
<SSN>123-555-1234</>;

</data>
<location>

select y
from x in PatientFiles/patientData,

y in x/SSN
where x@patientID=’5’;

</location>
</action>
</definition>

</serviceDefinition>

Example 2. A service that removes a patient:

<serviceDefinition type="update">
<definition>
<action type="delete">

<data>
</data>
<location>

select x
from x in PatientFiles/patientData
where x@patientID=’5’;

</location>
</action>
</definition>

</serviceDefinition>

Example 3. A service that constructs a visit element using data from one document and inserts
it in another document:

<serviceDefinition type="update">
<definition>
<action type="insert">
<data>

select <visit patientID=’5’>
y,
{<notes>Some notes</>}

</>
from x in PatientFiles/patientData,

y in x/visit/*
where x@patientID=’5’;

10

</data>
<location>

MedicalFiles/patientVisits;
</location>

</action>
</definition>

</serviceDefinition>

3.4.3 XSLT

X-OQL is not the only data management language that can be used to define Active XML service.
Similarly to X-OQL query services, we can define XSLT services, specified by a template. The
service will return the piece of data that is constructed by the template. The template will be
applied on data is passed as parameter, and not on repository data as in the case of services
defined as X-OQL services.

We will show an example to clarify these type of AXML services. First, see the following XML
document containing book elements:

<bib axml:docName="BIB" xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">

<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">

<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>
</bib>

The XSLT service below takes the document describing books. It filters out the books published
before the year 1994. It also does some restructuring: it transforms price elements into attributes
and keeps only book titles (author and publisher data is left out).

<serviceDefinition type="xslt">

11

<parameters>
<param name="bib"/>

</parameters>
<definition>
<xslt>
<![CDATA[
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="text"/
<xsl:template match="/">

<xsl:apply-templates/>
</xsl:template>
<xsl:template match="bib">
<xsl:text><bib since="1994"></xsl:text>

<xsl:for-each select="book">
<xsl:if test="@year >= 1994">

<xsl:apply-templates select="." />
</xsl:if>

</xsl:for-each>
<xsl:text></bib></xsl:text>

</xsl:template>
<xsl:template match="book">

<xsl:text><book year="</xsl:text>
<xsl:value-of select="@year"/>
<xsl:text>" price="</xsl:text>
<xsl:value-of select="price/text()"/>
<xsl:text>"></xsl:text>
<xsl:text><title></xsl:text>
<xsl:value-of select="title/text()"/>
<xsl:text></title></xsl:text>
<xsl:text></book></xsl:text>

</xsl:template>
</xsl:stylesheet>

]]>
</xslt>

</definition>
</serviceDefinition>

After calling that XSLT service, the result will be the following:

<bib axml:origin="2270466F-89C2-0834-016B-B7D952B36E3A"
axml:timestamp="1125859312619" since="1994">

<book price="65.95" year="1994">
<title>TCP/IP Illustrated</title>

</book>
<book price="39.95" year="2000">

12

<title>Data on the Web</title>
</book>

</bib>

3.4.4 Continuous services

Continuous services enable the clients to subscribe to some information, which will be periodically
pushed to them by a server. The functionality of the continuous services can be described by the
following basic steps:

1. The client sends a subscription request to the service provider which registers it.

2. Periodically, the service provider will do the following actions:

• Evaluate the subscription.

• Call a possible post-processing service (if it is specified to do so in the subscription).

• Call the client’s callback service and send it the results.

3. The client will periodically integrate the results by means of the callback service.

By using the continuous services, the clients do not have to call the same service over and
over again, as often as they wish to receive the results. On the other hand, in a pull system, the
same request would be periodically sent over the network and generate an overhead. Also, it could
happen that the data is not available for clients every time the service is called. Thus, the peer
would be forced to evaluate the calls that it cannot respond to. Another important limitation that
is overcome by the continuous services system is the one given by the timeout of connections. In our
system, a connection is open only when the client is demanding a subscription and every time the
service result is available for the client. The connection will be automatically closed after reaching
the maximum allowed inactivity time interval.

For more details and some examples on continuous services, see Appendix A.

3.4.5 Services written in Java

Users can also create their own services written in Java and those services can be invoked from
AXML documents. The services can be anywhere in the CLASSPATH. Let us create, for instance,
a a simple class ”Salut” and store it in the ”Active XML” project.

package fr.inria.gemo.axml.service.webservices;
public class Salut

{
String hello = "Salut!";
public Object greeting(){

return hello;
}

}

13

After creating this service, the ”axml.jar” file should be updated. Then the ”server-config.wsdd”
file in ”Copy of ActiveXML webapp/axml/WEB-INF” should be modified by adding a new service
tag for the Salut service:

<service name="Salut" provider="java:RPC">
<parameter name="allowedMethods" value="greeting"/>
<parameter name="className"

value="fr.inria.gemo.axml.service.webservices.Salut"/>
<parameter name="scope" value="application"/>

</service>

To invoke this service written in Java, we need an AXML document like the one below:

<?xml version="1.0" encoding="UTF-8"?> <salut
axml:docName="TestGreeting"
xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<sayHello>
<axml:sc methodName="greeting"

serviceNameSpace="Salut"
serviceURL="http://localhost:8080/axml/servlet/AxisServlet">

</axml:sc>
</sayHello>

</salut>

3.5 Active XML Service Call

The main Active XML specific XML element is the Service Call (sc) element. It is defined in the
http://www-rocq.inria.fr/verso/AXML namespace and usually bound to the axml prefix. The sc
element defines the behaviour of an Active XML Service Call. It is composed of a set of attributes
and children XML elements defining :

• the Web Service to call,

• how and when to call it,

• what to do with the results,

• the call parameters.

3.5.1 Web service information

Attribute Type Default Value Status
serviceURL anyURI required
serviceNameSpace anyURI required
methodName NCName required
signature anyURI optional
useWSDLDefinition boolean false optional

14

serviceURL attribute This attribute specifies the endpoint URL of the Web Service (see the
SOAP 1.1 TR : 2.6 Ports; 3 SOAP Binding; 3.8 soap:address; 4.3 http:address) to call, for example
http://api.google.com/search/beta2 or http://localhost:8080/axml/servlet/AxisServlet.

serviceNameSpace attribute This attribute specifies the namespace to use for the body element
of the SOAP message (see the SOAP 1.1 TR : 3.5 soap:body), more simply the method namespace
URI. This information is provided in the WSDL of the Web Service. For example : urn:GoogleSearch
or GetMatchingFeeds.

methodName attribute This attribute defines the name of the operation to invoke on the Web
Service (see the WSDL 1.1 TR : 2.4 Port Types), for example doGoogleSearch. Note that for an
Active XML Web Service (a declarative Web Service provided by an Active XML Peer), the value
of the methodName attribute is not important. By convention we use ”invoke”, but any other name
can be used.

signature attribute This attribute sets the URL of the WSDL file defining the Web Service. It
is optional and is only used if you want to do type validation on that particular Service Call. For
example : http://api.google.com/GoogleSearch.wsdl.

useWSDLDefinition attribute This attribute specifies if the WSDL file defined by the signa-
ture attribute should be used for type validation. It is an optional boolean attribute and its default
value is false.

Examples The following example shows how to define the Web service related information to
call the GoogleSearch Web service and especially the doGoogleSearch operation. Note that it spec-
ifies type validation. If you do not want to validate types, you can just omit the signature and
useWSDLDefinition attributes.

<axml:sc xmlns:axml="http://www-rocq.inria.fr/verso/AXML"
serviceURL="http://api.google.com/search/beta2"
serviceNameSpace="urn:GoogleSearch"
methodName="doGoogleSearch"
signature="http://api.google.com/GoogleSearch.wsdl"
useWSDLDefinition="true"
...>

[children elements]
</axml:sc>

This other example shows how to define the Web service related information to call an Active
XML Web service. As the previous example it specifies type validation.

<axml:sc xmlns:axml="http://www-rocq.inria.fr/verso/AXML"
serviceURL="http://localhost:8080/axml/servlet/AxisServlet"
serviceNameSpace="GetMatchingFeeds"
methodName="invoke"

15

signature="http://localhost:8080/axml/services/GetMatchingFeeds?wsdl"
useWSDLDefinition="true"
...>

[children elements]
</axml:sc>

3.5.2 Service call information

DESIREDFREQUENCY, FORWARDINGLIST]
A sc element also provides information on how and when to activate the service call through

the following attributes:

Attribute Type Default Value Status
id ID generated
name string optional
frequency string optional
callable boolean true optional
lastCalled unsignedLong generated
followedBy string optional

id attribute The id attribute identifies (uniquely over time and space) a Service Call. You
should not define it manually to insure its uniqueness, the Active XML system will generate it
automatically and make it persistent.

Its value is restricted to the pattern:

[0-9 A-F]{8}\-[0-9 A-F]{4}\-[0-9 A-F]{4}\-[0-9 A-F]{4}\-[0-9 A-F]{12}

name attribute This attribute specifies the name of a Service Call. It has no specific meaning
and thus is optional. It is kept to ensure backward compatibility but may be totally ignored in
future releases.

frequency attribute This attribute defines when the Service Call will be activated unless the
callable attribute is set to false. It can have several values :

• once,

• lazy,

• on Date,

• every X.

If no frequency is defined the Service Call will not be activated by the Active XML Peer unless
you explicitly evaluate it through the Active XML Web Interface.

Once means that the Service Call will be activated only once at start-up time. Note that every
time you start or restart your Active XML Peer, Service Calls with a frequency of once will be
activated.

16

Lazy means that a Service Call will only be activated when its results may be useful to the
evaluation of a X-OQL query or the instantiation of a Service Call Parameter defined through an
XPath expression.

On Date specifies when exactly the Service Call will be activated. The date format pattern is
dd/MM/yy HH:mm. If the date has an incorrect format or if it is in the past, the Service Call
won’t be activated. For example frequency=”on 25/12/05 14:36” will activate the Service Call on
the 25th December of 2005 at 14:36.

every X means that the Service Call will be activated every X milliseconds. For example
frequency=”every 1800000” will activate the Service Call every 30 minutes.

callable attribute By setting the value of this attribute to ”false” you can make a Service Call
not being activated by the Active XML Peer even though it defines a correct call frequency.

lastCalled attribute This attribute is used by the Active XML Peer to keep track of the last
activation of a Service Call to enforce the frequency when the Active XML Peer is restarted or the
Active XML Document reloaded after modifications. It is set by the system and you should not
specify it unless you are sure of what you are doing. For implementation reasons, the value should
be less than 9223372036854775807.

followedBy attribute This attribute allows to chain (a very simple kind of workflow) evaluation
of Service Calls inside the same Active XML Document. The value of this attribute must be an
XPath expression returning a single sc element or the id attribute of a Service Call. For example,

followedBy="//axml:sc[@serviceNameSpace=’XSLT_BIB_QUERY’]"

specifies that right after the activation of the current Service Call is completed, the Service Call
with the serviceNameSpace attribute set to

XSLT_BIB_QUERY

should be activated.

Examples The following examples extend the ones presented in the previous section with the
Service Call related information presented in this section.

This example defines the id, name, frequency, lastCalled and followedBy attributes. Remem-
ber that the id and lastCalled are generated by the Active XML Peer and are provided here for
information purpose only, you should never define them yourself.

<axml:sc xmlns:axml="http://www-rocq.inria.fr/verso/AXML"
serviceURL="http://api.google.com/search/beta2"
serviceNameSpace="urn:GoogleSearch"
methodName="doGoogleSearch"
signature="http://api.google.com/GoogleSearch.wsdl"
useWSDLDefinition="true"

id="038BD50A-C353-D490-0082-D603FA7A81AC"

17

name="GoogleSearch"
frequency="lazy"
lastCalled="1082395879693"
followedBy="//axml:sc[@serviceNameSpace=’Crawler’]"

...>
[children elements]

</axml:sc>

This example only defines the frequency attribute. You can see it as a typical Active XML
Document that has never been loaded by a peer.

<axml:sc xmlns:axml="http://www-rocq.inria.fr/verso/AXML"
serviceURL="http://localhost:8080/axml/servlet/AxisServlet"
serviceNameSpace="GetMatchingFeeds"
methodName="invoke"
signature="http://localhost:8080/axml/services/GetMatchingFeeds?wsdl"
useWSDLDefinition="true"
frequency="once"
...>

[children elements]
</axml:sc>

3.5.3 Service call result handling

The way of treating the results of an Active XML Service Call can be specified by users. Considering
an XML document as an ordered labelled tree, the results will be inserted as a sibling of the sc ele-
ment. The behaviour is defined by two attributes :

Attribute Type Default Value Status
mode string merge optional
doNesting boolean false optional

mode attribute This attribute specifies what to do with the results of an Active XML Service
Call activation. It can take two values (default value is merge) :

• merge,

• replace.

Merge defines that the results will be added as a sibling of the sc element, while the previous
results will be kept in the XML document too.

Replace means that the previous results will be replaced by the ones returned by the current
invocation of the Active XML Service Call.

To keep track of the inserted results, the Active XML system will add a special attribute
to the top level elements of the results named origin and bound to the Active XML namespace
http://www-rocq.inria.fr/verso/AXML having as value the id attribute of the Active XML Service
Call.

18

doNesting attribute The tracking of inserted results described previously works well with ele-
ments, but cannot be applied to TEXT nodes. If you want to keep track of inserted TEXT nodes,
you can ask the Active XML Peer to nest the TEXT nodes in a special element named text and
bound to the Active XML (http://www-rocq.inria.fr/verso/AXML like the following example :

<axml:text
axml:origin="038BD50A-C353-D490-0082-D6033B1BA431">Hello World

</axml:text>

[ADD: FUSION DESCRIPTION (SYNTAX, BEHAVIOUR AND EXAMPLES)]

3.5.4 Service call parameters

The parameters of the Web Service that a Service Call references are specified by a child element
of the sc element. This element must be named params and bound to the Active XML namespace
http://www-rocq.inria.fr/verso/AXML and also must be present even though the Web Service does
not have any parameters. This params element conforms to the following XML schema represen-
tation :

<element name="params">
<complexType>
<sequence>
<element ref="axml:param" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>

If your Web Service has no input parameter, you would just write an empty params element
like :

<axml:sc ...>
<axml:params />

</axml:sc>

An Active XML Parameter is defined by the param element bound to the Active XML namespace
http://www-rocq.inria.fr/verso/AXML and can be expressed as a value or through an XPath ex-
pression. The Active XML parameter is either a value or a xpath parameter, according to the
following schema component representation :

<element name="param">
<complexType>
<choice>
<element ref="axml:xpath"/>
<element ref="axml:value"/>

</choice>
<attribute name="name" type="xsd:NCName" use="required"/>

</complexType>
</element>

19

The param element has only one required attribute (named name) specifying the name of this
parameter. The value of this attribute must conform to the name of a web service parameter
referenced by the Active XML Service Call.

Note that if your Active XML Service Call has several parameters, they must be in the correct
order as defined by the web service WSDL file.

Value parameter The first way of writing an Active XML parameter is through a ”value”. This
value can be any well-formed XML fragment. If you need to define an Active XML parameter as
an (A)XML document (including the prolog part - see http://www.w3.org/TR/2004/REC-xml11-
20040204/#NT-prolog), we recommend using a CDATA section to keep your Active XML document
well-formed. The value parameter conforms to the following schema component representation :

<element name="value">
<complexType mixed="true">
<sequence>
<any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>

For example, to call a currency converter Web Service taking as inputs from and to (as currency
element), you would write the following parameters :

<axml:params>
<axml:param name="from">
<axml:value>
<currency symbol="EUR">1</currency>

</axml:value>
<axml:param>
<axml:param name="to">
<axml:value>
<currency symbol="USD">1</currency>

</axml:value>
<axml:param>

</axml:params>

XPath parameter The other way of writing an Active XML parameter is through an XPath
expression and conforming to the following schema component representation :

<element name="xpath">
<simpleType>
<restriction base="xsd:string">
<whiteSpace value="collapse"/>
<minLength value="1"/>

</restriction>
</simpleType>

</element>

20

An XPath parameter is considered by the system as being non-concrete and its evaluation
is done upon need. Thus, every time a Service Call is activated, the XPath parameters will be
evaluated. The evaluation of an XPath expression may return several values. In that case, a cross-
product will be done with all the values of the different parameters of your Service Call and will
actually call the Web Service as many times as required.

To better understand this, consider a Currency Converter web service and the following example
of AXML document:

<?xml version="1.0" encoding="UTF-8"?>
<currencies xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<currency symbol="EUR">1</currency>
<currency symbol="GBP">1</currency>
<currency symbol="CHF">1</currency>
<currency symbol="USD">1</currency>
<axml:sc serviceURL="http://www.some-url.com/services"

serviceNameSpace="urn:CurrencyConverter"
methodName="convert"
frequency="every 1800000">

<axml:params>
<axml:param name="from">

<axml:xpath>//currency</axml:xpath>
</axml:param>
<axml:param name="to">

<axml:xpath>//currency</axml:xpath>
</axml:param>

</axml:params>
</axml:sc>

</currencies>

After the evaluation of the instantiation of the two parameters (i.e. evaluation of the XPath
expressions), the following invocations will be performed:

conv(EUR,EUR) conv(GBP,EUR) conv(CHF,EUR) conv(USD,EUR)
conv(EUR,GBP) conv(GBP,GBP) conv(CHF,GBP) conv(USD,GBP)
conv(EUR,CHF) conv(GBP,CHF) conv(CHF,CHF) conv(USD,CHF)
conv(EUR,USD) conv(GBP,USD) conv(CHF,USD) conv(USD,USD)

As can be seen, this can lead to many service calls including redundant ones.

3.6 Customizing your Active XML Peer

[EXPLAIN WEB.XML FILE PARAMETERS]

21

APPENDIX

A Continuous Services

The process of turning a normal service into a continuous one can be seen as a ”wrapping” of that
service in a continuous service. After a client sends a subscription request, the behavior on server
side consists of the following steps:

• calling the wrapped service from the continuous service,

• retrieving the results,

• sending the results back to the client’s callback service.

We can also define services that process data after invoking the wrapped service and before
sending the data to the client’s callback service. A typical example of such post-processing is a
service that returns the differences between a document and its previous version. For the sake of
simplicity, the post-processing services will not be further described in this document.

When using continuous services, the repository on the server side should contain:

• a continuous service,

• a wrapped service,

• a post-processing service (optional).

Another option is to have a continuous service that contains, for instance, a wrapped query,
instead of invoking another service (the wrapped service) to execute the query.

See the continuous service ContinuousGetPlayerByRank.xml (that invokes the wrapped ser-
vice getPlayerByRank.xml):

<?xml version="1.0" encoding="UTF-8"?> <serviceDefinition
name="ContinuousGetPlayerByRank" type="continuous">
<!-- Continous service parameters -->
<parameters>
<param name="rankNumber"/>

</parameters>
<definition>
<!-- Non continuous service location -->

<baseService URL="http://localhost:8080/axml/servlet/AxisServlet"
methodName="getPlayerByRank"
nameSpace="GetPlayerByRank"/>

<!-- Result transformation service (Post Processing Service)
<transformService URL="" methodName="" nameSpace=""/>

<!-- Frequency Settings -->

22

<frequency default="60000" max="10000"/>
<!-- Subscription Settings -->

<subscription maxLifeTime="8640000"
maxSuspensionTime="86400" maxClientsNo="15000"/>

</definition>
</serviceDefinition>

Note the following details in the continuous service shown above:

• The response frequency is specified by the frequency element. In this example, the wrapped
service will be invoked by default every minute (60000 ms), while the maximum allowed
frequency (i.e. minimum time period) that a client can ask for is every 10 seconds (10000
ms).

• The subscription element is used to impose subscription related restrictions:

– maxLifeTime (maximum subscription validity time) - For instance, a provider can allow
free subscription for one month. After that the clients that would like to continue using
the service would have to pay for their subscription.

– maxSuspensionTime (maximum subscription interruption time) - It limits the time in-
terval for saving consecutive results. In other words, it defines for how long the results
of a service will be saved in the case that a client is connected to the server.

– maxClientsNo (maximum number of subscribers).

• In this example, the transform service (i.e. post-processing service) is not specified.

• In the continuous service above, by using the baseService tag, the wrapped service named
getPlayerByRank is called.

The wrapped service getPlayerByRank.xml is shown below.

<?xml version="1.0" encoding="UTF-8"?> <coreServiceDefinition
type="query">

<parameters>
<param name="rankNumber"/>

</parameters>
<definition>
<query><![CDATA[

select <player>
p/name,
p/citizenship,
p/atp/rank
</>

from p in ATPRace//player
where p/atp/rank = rankNumber;]]>

</query>
</definition>

</coreServiceDefinition>

23

After writing the wrapped service and the continuous service, the references to them should be
added to svcRepository.xml :

<forest name="GetPlayerByRank" replicationIndex="0">
<file name="" href="GetPlayerByRank.xml" />

</forest>
<forest name="ContinuousGetPlayerByRank" replicationIndex="0">

<file name="" href="ContinuousGetPlayerByRank.xml" />
</forest>

After subscribing to the continuous service, the client will start receiving periodical results. The
entry point on the client’s peer for the data sent by the server is the callback service. It deals with
the integration of received data in the client application. The result of the service will be inserted
as a sibling of a service call’s node.

When using continuous services, the repository on the client side contain:

• a callback service,

• an AXML file that calls a continuous service.

The callback service CallbackService.xml :

<?xml version="1.0" encoding="ISO-8859-1" ?>
<serviceDefinition

name="CallbackService" type="callback">
<definition>
<transformService URL="" methodName="" nameSpace=""/>
<integratorService URL="" methodName="" nameSpace=""/>

</definition>
</serviceDefinition>

In this simple example, no transformation (post-processing) service and no integrator service is
specified.

The callback service should be referenced in svcRepository.xml :

<forest name="CallbackService" replicationIndex="0">
<file name="" href="CallbackService.xml" />

</forest>

The continuous service is called from an AXML file: testCompilInLineCont.xml

<?xml version="1.0" encoding="UTF-8"?> <test_compil_inline_cont
axml:docName="TestCompilInLineCont"

xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<axml:sc callable="true"

24

desiredFrequency="60000"
frequency="once"
methodName="doSubscribe"
mode="merge"
serviceNameSpace="ContinuousGetPlayerByRank"
serviceURL="http://localhost:8080/axml/servlet/AxisServlet"
subscription="true" useDiff="false"
xmlns:axml="http://www-rocq.inria.fr/verso/AXML">

<axml:params>
<axml:param name="rankNumber">
<axml:value>1</axml:value>

</axml:param>
</axml:params>

</axml:sc>
</test_compil_inline_cont>

Note the following details in the AXML file shown above:

• The value of the subscription attribute should be set to ”true”.

• The frequency should be set to ”once” (a subscription is started only once)

• SOAP parameters of the continuous service we wish to subscribe to are specified.

• The way of inserting the result into the document is defined.

• A set of optional parameters can be defined. Atribute useDiff specifies whether we want
to use the post-processing service or not by setting the value for useDiff to ”true”. The
desiredFrequency attribute specifies the desired time interval for receiving the results from
the continuous service.

• Finally, the AXML file should be added to docRepository.xml :

<forest name="TestCompilInLineCont" replicationIndex="0">
<file name="" href="testCompilInLineCont.xml" />

</forest>

After subscribing, the AXML will look like this:

<axml:sc callable="false"
desiredFrequency="60000"
frequency="once"
id="175F6799-C353-D4DB-014B-03EAA1F6AB06"
lastCalled="1125673561153"
methodName="doSubscribe" mode="merge"
serviceNameSpace="ContinuousGetPlayerByRank"
serviceURL="http://localhost:8080/axml/servlet/AxisServlet"
subscription="true" useDiff="false"

25

xmlns:axml="http://www-rocq.inria.fr/verso/AXML">
<axml:params>
<axml:param name="rankNumber">
<axml:value>1</axml:value>

</axml:param>
</axml:params>

</axml:sc>

<player axml:origin="F379673B-C353-D4DB-00B7-CD92ACD5E127"
axml:timestamp="1125317811997">
<name>

<firstname>Roger</firstname>
<lastname>Federer</lastname>

</name>
<citizenship>Swiss</citizenship>
<rank>1</rank>

</player>

</test_compil_inline_cont>

The id and lastCalled attributes are generated by the system, while the player element is in-
cluded in the document as an output of the wrapped service. The system set the callable attribute
to ”false”.

For more details on continuous services, see:
http://activexml.net/reports/internships/emanuel report.pdf

26

