The Axlog Guide

Bogdan-Eugen MARINOIU

July 22, 2009

This is a guide for a user or a developer of the AXML framework. In partic-
ular, this is a technical guide on azlog, a module of AXML that maintains views
over active documents. The concepts of the view maintenance are explained
in the papers [1] and [3]. Please refer to them if you encounter difficulties in
understanding the concepts.

The first part, i.e. The User’s Guide, is about how to configure the axlog
module and how to define views on active documents. The second part, i.e.
The Developer’s Guide, contains a brief description of the different software
components of the axlog module. Detailed information about the software has
been documented automatically using the javadoc tool and is available next to
the axlog’s sources.

Chapter 1

The User’s Guide

1.1 Defining views: the axlog subscriptions

An axlog subscription is usually made of four parts: the document, the tree-
pattern query, the template for rendering results as trees and an optional dis-
semination section. For now, there is no XML Schema or DTD for typing an
axlog subscription but it would be good to have one in the future.

On every AXML peer there is an axlog subscription service, named AzlogSer-
vice. E.g. an endpoint URL for that service would be:

http://localhost:6969/MyPeer/services/AxlogService.

MyPeer is the name of the peer, localhost is the host and 6969 is the port
number. The name of the method is subscribe and the namespace can be set to
n/a. The root of the XML subscription has as prefix the prefix of the namespace
and as local part subscription.

1.1.1 Active Document

There are several options for the specification of the active document. All need
that a document-labeled XML element be child of the subscription-labeled XML
element.

The first possibility is that the active document is on the current AXML
peer, where the axlog module is situated. Then, the name of the active docu-
ment has to appear as value of a docI D-attribute of the document-element, e.g.
<document docID="doctest.xml"/>.

The second possibility is that the active document be on a different peer. In
this case, the a peerU RL attribute should be set to the URL of the peer.

For both cases, an optional where attribute might be set to peer. If it is not
provided, the peer value is implicitly considered.

A third possibility is that the active document be provided explicitly as
subtree of the document-labeled element. There must be explicitly a where
attribute valued included for the document-element to specify this. This pos-

sibility is mainly used for testing (since the document can be loaded directly in
memory by the axlog module).

1.1.2 Tree-pattern Query

A tree-pattern query (TPQ) is provided as an XML element, child of subscription-
labeled element. The root of this subtree is labeled query.

There are two parts for the query: one that captures the structure, subtree
rooted tree and another one, labeled conditions, that captures the join/equality
conditions and inequalities.

The node’s of the tree-pattern query are mapped to elements of the XML
document. The node’s are descendants of the tree-labeled element. This has at
least as attribute a label attribute and a link attribute. The label attribute has
its value set to the label of the TPQ node, part of the label alphabet or * in
case of a variable. The link attribute specifies the relation of that node to its
parrent, either a / or a //. There are two additional attributes that are optional:
output, that is set to true if the node’s valuation is needed in the output and id
- an identifier of the node, also used for the output. For the extraction, one can
specify either to extract the label of the element or the text content. This is
done with an additional attribute selectionStyle of TPQ node’s that is valued
either to node or text. If this attribute is missing, the implicit selectionStyle is
node.

The conditions-labeled element has as children either condition-labeled chil-
dren (one per equality condition), or timecondition-labeled children (for in-
equalities).

Examples:

1. <condition>
<op>il</op><relation>equ</relation><op>i4</op>
</condition>

stands for an equality condition between two TP(Q nodes, one identified
by i1 and the other identified by i4.

2. <timecondition>i5 - il 1t 150000</timecondition>

stands for the inequation: i5 - i1 < 150000, where i1 and i5 are TPQ
node identifiers. This condition means that the document data that
matches the TPQ nodes identified by i5 and i1 has to be timestamped
with timestamps that are separated by 150 seconds of delay. The times-
tamps correspond to time instants when the data has been inserted into
the document. The accepted operators are: *, +, 1t (for <), gt (for >),
lte (for <=) and gte (for >=). Empty spaces are needed to separate
identifiers and operators.

1.1.3 The template

The template is used to reformat the tuples obtained with the tree-pattern
query. The template is XML data with variables. A variable is of form $<id>
(do not confound with XML tags), where <id> is the identifier of a TPQ node.
For instance, <a>{$i1}<c>{$i2}</c> is a legitimate template with
two variables: one for i1 and one for i2. For each valuation of the variables, a
tree is produced by replacing the variables with their values. The result, since
there may be several valuations, is a forest in general (a set of XML documents).

1.1.4 Optional: the BY clause

The BY clause serves for dissemination purposes. If the subscription is ”sent”
through a Web service call from an AXML document, this clause is not required.
The implicit behaviour of axlog in this case is to send results to the AXML
document from where the call to the Axlog service has been fired.

The BY clause, if present, will override the default behaviour. For now,
axlog can only upload results to Web services, but other dissemination means
may be implemented, fon instance: send e-mails, write in a RSS feed etc..

A typical BY clause accepted by the current implementation is:

<by type="serviceCall">
<ns2:address xmlns:ns2="http://futurs.inria.fr/gemo/axml/service/Algebra"
endpoint="http://localhost:6969/MyPeer/services/Receivelperator">
<ns2:currentID>
<ns2:peerID>MyPeer</ns2:peerID>
<ns2:docID>docsub.xml</ns2:docID>
<ns2:nodeID>task1</ns2:nodeID>
</ns2:currentID>
</ns2:address>
</by>

1.1.5 An example

Let us consider the document, the query and the template in Figure 1.1. The
query imposes a join/equality condition on the labels of two nodes (n; and
ny are labeled with the same variable) and an explicit inequality condition on
timestamps for other two nodes (ny and nj). It also extracts (see the + prefix)
the labels of four nodes: ni, ns, n3 and ng.

I present below how all these are encoded in XML.

First, the AXML document to monitor called doctest.xml has the following
content:

<a xmlns:axml="http://futurs.inria.fr/gemo/axml/">

<axml:sc axml:id="£f">
<axml:return>

document query

+ny: 81 tn2ix dng ik ng:§1 Ns ik Ang ok

T(ns) — 7(n1) < 150s template
out
N
ol 02 03 o4
ni nog ns3 Ne

Figure 1.1: Document, query and template

<axml :append/>
</axml:return>
<axml:ws-soap endpoint="http://localhost:6969/MyPeer/services/DummyStreamService">
<s:streamToMe xmlns:s="n/a">
<s:max-timeout>5</s:max-timeout>
<s:query>for $i in doc(’/db/sourcef.xml’)/*/* return $i</s:query>
</s:streamToMe>
</axml:ws-soap>
</axml:sc>

<c>
<axml:sc axml:id="g">
<axml:return>
<axml:append/>
</axml:return>
<axml:ws-soap endpoint="http://localhost:6969/MyPeer/services/DummyStreamService">
<s:streamToMe xmlns:s="n/a">
<s:max-timeout>10</s:max-timeout>
<s:query>for $i in doc(’/db/sourceg.xml’)/*/* return $i</s:query>
</s:streamToMe>
</axml:ws-soap>
</axml:sc>
</c>

The subscription is part of another AXML document, called docsub.zml. It
specifies the name of the document on which the view is defined, i.e. doctest.xml,
a TPQ, a template and a BY clause.

<trace xmlns:axml="http://futurs.inria.fr/gemo/axml/">
<monitoringTask>
<axml:sc axml:id="task1">
<axml:return>
<axml:append/>
</axml:return>
<axml :ws—soap
endpoint="http://localhost:6969/MyPeer/services/AxlogService">
<s:subscribe xmlns:s="n/a">
<s:subscription>
<document docID="doctest.xml"/>
<query>
<tree>
<node label="a" link="/">
<node label="Db" link="/">
<node label="d" link="/">
<node label="e" link="/">

<node id="il" label="*" 1link="/" output="true"/>
</node>
<node label="a" link="/">
<node id="i2" label="x" link="/" output="true"/>
</node>
<node label="b" link="/">
<node id="i3" label="*" link="/" output="true"/>
</node>
</node>
</node>
<node label="c" link="/">
<node label="u" link="/">
<node label="x" link="/">
<node id="i4" label="x" link="/"/>
</node>
<node label="y" link="/">
<node id="ib5" label="x*" link="/"/>
</node>
<node label="z" link="/">
<node id="i6" label="*" link="/" output="true"/>
</node>
</node>
</node>
</node>
<conditions>
<condition>
<op>il</op><relation>equ</relation><op>i4</op>
</condition>
<timecondition> i5 - il 1t 150000 </timecondition>
</conditions>
</tree>
</query>
<template><out><o1>{$il1}</01><02>{$i2}</02><03>{$i3}</03><04>{$i6}</04></out>
</template>
<by type="serviceCall">
<ns2:address xmlns:ns2="http://futurs.inria.fr/gemo/axml/service/Algebra"
endpoint="http://localhost:6969/MyPeer/services/Receivelperator">
<ns2:currentID>
<ns2:peerID>MyPeer</ns2:peerID>
<ns2:docID>docsub.xml</ns2:docID>
<ns2:nodelID>task1</ns2:nodelD>
</ns2:currentID>
</ns2:address>
</by>
</s:subscription>
</s:subscribe>

</axml:ws-soap>
</axml:sc>
</monitoringTask>
</trace>

1.2

Configuration

The whole configuration is done in the web.zml file of the AXML peer.
Several things can be configured:

host_name this is the name of the host of AXML peer, e.g. localhost or
an IP address

peer_url this is the URL of the AXML peer, e.g. http://localhost:6969/MyPeer

exist_url this is the URL of the eXist database that AXML (and axlog)
uses, e.g. xmldb:exist://localhost:6969/exist/xmlrpc/db

port this is the port number where the alerter publishes observations, e.g.
9900

timestamping this is a delay, in seconds, between two timestamping ses-
sions for a document, e.g., 100 (for 100 seconds)

reevaluation the views are recompiled periodically, this is the delay in
seconds between two recompilation sesions, e.g., 1000 (for 1000 seconds)

persistence this is set to yes if the views are persistent, i.e. they are stored
in the eXist DB and reloaded when the peer restarts

test set to yes if the default battery of axlog tests is to be run when the
peer starts

storage set to yes if the memory is cleaned between updates handled by
axlog, otherwise axlog data is memory-resident

debug set to yes if axlog functions in verbose mode

1.3 Installing AXML with Axlog and testing it

Remark. A distribution has been compiled for Windows, but you will still need
to download sources for checking that everything works fine (the sources contain
also test files) or recompile the distribution.

1.3.1 Install Binaries

1. download a AXMLaxlogDistribl_0.zip, exist.war and demo.zip from
the F'iles section of the ICDE2009proj project. The address of the project
is https://gforge.inria.fr/frs/7?group_id=1356

2. unzip AXMLaxlogDistribl_0.zip, this is actually a Tomcat server that
has two AXML peers as Web applications, i.e. MyPeer and peerl

3. add exist.war to the webapps directory of the Tomcat and a brand new
eXist webapp manager of a database will be created when you start Tom-
cat for the first time

4. make sure that CATALINA_HOME is set to the path of the Tomcat installation
directory

1.3.2 Obtain the sources and create a development envi-
ronment

1. make sure that the ant tool is installed, so that the build.xml scripts can
be run using the ant tool

2. download into a directory that will become the <AXLOG_HOME> directory
the sources from the SVN of the project ICDE2009proj available at

https://gforge.inria.fr/scm/?group_id=1356

3. set the AXLOG_HOME variable of your environement to the path of the
<AXLOG_HOME> directory

4. if you want to compile the sources and install the resulted binaries, run
the build.xml scripts from the root of the <AXLOG_HOME> directory and
from <AXLOG_HOME>/services/subscription

1.3.3 Demonstration

Let’s consider that you want to use the peer MyPeer. You can check the instal-
lation by setting the parameter test to the yes-value in the web.xml of the peer
MyPeer. When the peer starts (this happens when you start Tomcat), it will
automatically run the tests.

If you want to do play with the distribution, unzip demo.zip. It contains 4
files: docsub.xml, doctest.xml, sourcef.xml and sourceg.xml. The first two files
will need to be loaded in the eXist collection corresponding to the MyPeer peer,
e.g. /db/MyPeer, while the three source*.aml files will be loaded into the /db/
collection. You can do this by using the graphical interface of eXist.

You can use the AXML peer’s interface to activate service calls, e.g., for
MyPeer an example of URL would be http://localhost:6969/MyPeer. The
docsub.xml has a task] service call that sends a subscription to the axlog service
of the same peer, asking for the monitoring of the doctest.xml document. You

can first activate this service call. Then, you could activate the service calls
of the document doctest.zml, for instance first activate the f service call (the
service will stream data from sourcef.zml) and then the g service call (the service
will stream data from sourceg.zml). The view data will be uploaded in the
document docsub.xml.

10

Chapter 2

The Developer’s Guide

The current version of axlog supports : active updates, end-of-stream and time
queries. The nodes of the document are timestamped. TPQs are enriched
with systems of inequality constraints. Axlog does satifiability evaluation for
tuples with equality constraints only. A module for solving systems of con-
straints could be added for computing satisfiablity with inequalities, e.g. JaCoP
http://jacop.osolpro.com/. Axlog does not support non-monotone features
like negative queries or deletes.

Timestamping of the axml documents’ nodes for now is performed period-
ically for all the nodes in a document. A more "incremental” way of doing it
should be adopted in the future. The timestamping is exact: the roots of the
inserted subtrees are already timestamped by the core module of AXML, so the
timestamping done by axlog consists of propagating the timestamp value of the
subtree’s root to all the nodes of the subtree.

2.1 Model (axlog.model.query)

This package holds the classes that model the tree-pattern queries. The most
important are QueryTree - that represents the tree-pattern, and QueryNode -
that represents a node of this tree.

A QueryTree typically has a QueryNode as root, a set of equality and in-
equality constraints and a set of output nodes. A QueryNode is part of a
QueryTree has a label, has a father node (which is null in case this node is the
root), with which is in either a ”/” or ”//” relation and might appear in the
output, or might be needed to solve join constraints. It has also a set of needed
descendants, meaning it has to propagate their matches upwards. There is also
a Constraint class hierarchy for modeling (equality or inequality) constraints.
The equality constraints form equivalence classes (sets of QueryNode’s) regis-
tered with a QueryTree.

11

2.2 Model to XQuery (axlog.querytranslator)

The XQueryGenerator class in the querytranslator package has methods for
building XQuery queries for the persistent XML data, either for looking for sat-
isfiable tuples and for satisfied ones. For instance, the methods generateXQuery*
are used to generate XQuery queries that extract tuples that are satisfied, as
well as a plan-an XML document. This plan is the support of the datalog pro-
gram that maintains the view and for the computation of scenarios, see the
Datalog section. The other methods build the XQuery queries that correspond
to sub-patterns of the tree-pattern query and are used to extract the satisfied
tuples only.

2.3 Engine (axlog.engine)

The engine consists of three components: a ViewCompiler, a Maintainer and a
Tuner. Subpackages and classes have been defined for each of them.

A ViewCompiler typically builds a view from an AXML document and a
tree-pattern query. Several constructors have been defined, depending whether
the document is provided in memory or is in an AXML peer’s DB and whether
a QueryTree object (for the tree-pattern query) has been already built or needs
to be extracted from an XML fragment. Typically, when recompiling a view,
one wants to reuse the same QueryTree object, because the pattern nodes have
been given identifiers that need to remain the same.

A Maintainer typically searches for the right relation (filter) in the right
datalog program in order to launch an incremental evaluation of the program
with the inserted data as input.

A Tuner will do a scenario analysis, will generate the appropriate filters and
will update the index structure of the ViewManager, by adding filters for the
relevant functions.

2.4 View (axlog.view)

This package contains two classes: the class View that models views on AXML
documents and a class ManagerViews that indexes all the views registered with
the system.

A View object contains all the informations related to the maintenance of
a view on an active document. A View object has mainly three entries, for a
(View)Compiler, for a Maintainer and for a Tuner. The system supports full
recompilation for views, performed periodically, and incremental recompilation,
that is performed whenever there is a new AXML tree (an active update) re-
ceived by the document.

The Manager of views indexes the view objects with respect to the functions
that need to be monitored for them: the key is a function, the value is a set of
view objects. Besides methods for registering/unregistering a view, this class has
three methods that are called depending on the type of the update detected:

12

maintain for standard XML trees, activeUpdate for AXML trees, and eos for
end-of-stream messages.

2.5 Utility classes (axlog.utility)

This package contains very important classes: AzlogServiet and Utility.

AxlogServlet is the entry point of the module and the place where most of
the configurations take place. That is because the class is a servlet, it is started
when the AXML peer starts and has access to all the configuration parameters
available in the web.xml file. If it is configured properly, the AxlogServlet starts
predefined tests and pre-loads axlog subscriptions that are persistent in the
eXist database.

The Utility class contains several static methods that are of much help for
translating between several data models (DOM, StAX etc.), or for transfering
data between memory and the eXist database.

2.6 Datalog (axlog.datalog)

These are the classes that implement datalog for View Maintenance over AXML
documents. Operators (FilterOnFunction, Join, Unions, Operations) and Tu-
ples and Relations are all Entity classes. The transfers between the memory
and the database are done at the level of the Relation class. The tuples are
produced by the FilterOnFunction classes (that correspond to Filter/Projectors
associated to a sub-pattern). They climb upwards the object hierarchy and are
transformed by the other operators. In the end, they reach the Plan root that
registers them with the View.

2.7 The Subscription Parser (axlog.languageparser)
and the Input/Output (axlog.environment)

This package contains only one class, the ViewSubscriptionParser, that parses
an axlog subscription expressed in XML and builds a View for it, registers it
with the Manager of Views and adds environment elements to the view: a tem-
plate (ReformatTuple) and a dissemination mechanism (Sender). The template
builds an XML document out of a tuple and the sender sends a set of tuples to
a particular Web service, using the information extracted by the ViewSubscrip-
tionParser. The parser is also in charge with storing the subscription definition
in the eXist space of axlog. Every tuple that is added to the view is also stored in
this subscription space on eXist, so that when re-loaded it is avoided resending
data that has already been sent.

The connection with the alerter (on Web services) is done by COMAlert-
erAXML (client to the alerter - ”server of updates”) and by WSAlerterIn that

13

processes the incoming messages for ReceiveService (the inserts in the AXML
documents).

2.8 Periodic Tasks (axlog.timedtasks)

There are two kinds of tasks that are run periodically: the timestamping of
the monitored documents and the reevaluation of satisfiability and satisfaction.
Both types of tasks are implemented as Java TimerTask objects associated with
a Timer object.

The first one is necessary because all the data is extracted by tree-pattern
queries with the timestamps. But AXML by default puts timestamps only
at the roots of the inserted subtrees. These tasks propagate the timestamps
downwards to all the elements in the subtrees.

The second type of tasks redo the scenario analysis and retune the system.
When the reevaluation happens, the set of tuples newly obtained is compared
with the ones obtained previously. Only the tuples that where not previously in
the view will be considered for reformatting with the template and for sending
to the proper recipient.

The delays between two tasks are configurable in the web.xml file. Read the
User’s Guide to see how.

14

Bibliography

[1] Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu. Efficient Mainte-
nance Techniques for Views over Active Documents. International Confer-
ence on Extending Database Technology, Saint-Petersburg, Russia, 2009.

[2] Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu. Distributed Moni-
toring of Peer to Peer Systems (demo). International Conference on Data
Engineering, Cancun, Mexico, 2008.

[3] Serge Abiteboul, Pierre Bourhis and Bogdan Marinoiu. Satisfiability and
Relevance of Queries for Active Documents. In Proc. PODS, Providence,
Rhode Island, USA, June 20009.

15

