
User-Friendly Functional Programming for Web Mashups

Rob Ennals David Gay
Intel Research Berkeley

2150 Shattuck Avenue, Penthouse Suite
Berkeley, CA 94704

{robert.ennals,david.e.gay}@intel.com

Abstract
MashMaker is a web-based tool that makes it easy for normal
users to create mashups from live data on the internet. Users can
query, combine, and explore data, using an interface inspired by
spreadsheets and web browsers. Like a spreadsheet, MashMaker
mixes program and data and allows ad-hoc unstructured editing of
programs. Like a web browser, MashMaker allows users to find the
information they are interested in by browsing, rather than writing
code, and allows users to bookmark interesting things they find,
forming new widgets — reusable mashup fragments.

MashMaker is also a modern functional programming language
with non-side effecting expressions, higher order functions, and
lazy evaluation. We argue that a functional language provides an
excellent model to allow users to easily create mashups from web
data.

In order to cope with this unusual domain, MashMaker contains
a number of deviations from normal functional programming lan-
guages. Data is live, programs are mixed with data, map and fold
operations are described using direct manipulation of data, data is
structured like a file-system, and it is possible to write a program
largely by browsing around, without having to type or decide in
advance what one wants to do.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Very high-level languages; H.4.3 [Information Systems Ap-
plications]: Information Browsers

General Terms Languages, Human Factors, Design, Manage-
ment

Keywords Mashup, web, end-user, browser

1. Introduction
There has recently been lots of interest in so called “mashup
sites” – web sites that combine information, processing, or visu-
alizations from several web sites to provide information the user
could not easily obtain my manually operating the base web sites
themselves. Probably the most cited such mashup site is Hous-
ingMaps.com, which uses a map from Google Maps to visualize
houses available for rent on Craigslist.org. Other examples in-
clude WeatherBonk.com which combines various sources of in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’07 October 1–3, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

formation about weather, BidNearby.com which finds items be-
ing sold nearby on sites such as EBay.com and CraigsList.org,
DiggDot.com which combines Digg.com with Slashdot.org, and
WikiMapia.com which combines WikiPedia.org with Google Maps
to provide information about physical locations. At the time of
writing, ProgrammableWeb.com lists around 1,800 known mashup
sites and the number is growing rapidly.

While there are a large number of mashup sites in existence,
there are many many more that could usefully be created. For
example, as far as the authors are aware, no existing mashup site
can answer any of the following questions1:

• Which of these houses on Craigslist has lots of good restaurants
nearby according to Yelp, and would be less than a 30 minute
commute to work according to Google Maps?

• Might any of these news stories on BBC News affect people in
my GMail address book?

• How much would each of these recipes from Epicurious cost to
make if I brought the ingredients at Safeway?

• How much of my weekly expenditure according to Bank of
America goes to companies who donate money to political
parties I don’t like according to OpenSecrets?

• What is the best route through town according to GoogleMaps
that allows me to visit highly rated shops according to Yelp that
sell suggested Christmas presents appropriate for each of my
friends according to FindGift?

It seems reasonable to assume the number of such useful ques-
tions users might ask is huge. New web sites, containing new infor-
mation, appear on the web every day, and the number of possible
ways of combining them is huge, particularly when one consid-
ers the affect of combining three, or four, or more different web
sites in order to answer a question. At the time of writing, Pro-
grammableWeb lists over 400 web sites with published APIs in-
tended to be used by mashups, and millions more web sites can be
used via scraping (Schrenk 2007).

If each mashup site were only able to answer a single question,
based on a fixed set of source web sites, then it seems the number
of mashup sites needed would be impractical — both for the pro-
grammers who create them, and the users who have to find them.
The obvious solution seems to be generic mashup sites that allow
end users to easily combine information from multiple web sites to
answer a wide range of questions. Indeed several groups have built
such generic mashup creation sites (see Section 5).

1 If such a mashup site does exist then that merely goes to underscore one
of our other points — having such a large number of mashup sites makes it
very hard to find a site that can answer a specific question.

Value
v ::= c constant (file)

| ∅ empty directory
| v n (k 7→ v) directory with extra subnode
| s, λ(x0 . . . xn).e closure with body e, env s

Subnode Key
k ::= x Property with name x

| • Unnamed child

Expression
e ::= c constant

| ∅ empty directory
| e n q 7→ e add subnode to directory
| λ(x0 . . . xn).e lambda
| e (e) function application
| this current context
| p link to another node
| e.p path from expression
| X global

Extension Path
q ::= k new subnode

| ∗.q for all children
| x.q inside property x

Reference Path
p ::= x variable

| x.p inside property x
| !.p inside parent

Scope
s ::= v0 : . . . : vn stack of parent dir values v

Figure 1. Simplified grammar for the MashMaker core language

We believe this is an excellent application domain for a pro-
gramming language. Moreover, since the vast majority of mashups
are side-effect free queries and manipulate lists of data, we believe
this an excellent application domain for a functional programming
language2. If web sites can be modelled as functions from form pa-
rameters to structured results, then a mashup can be seen as being
an expression composed of such functions. In this paper, we will
describe MashMaker, a tool we have built that allows normal users
to easily create their own mashups, using ideas inspired by func-
tional programming.

In addition to functional languages, MashMaker draws inspira-
tion from spreadsheets, web browsers, and file systems. Time has
shown that these are all metaphors that normal users are able to use
productively, and as a result, all three have been wildly successful.
We explain in Section 2 how each of these tools has influenced the
design of MashMaker.

1.1 The Language and the Interface
The heart of MashMaker is a functional programming language.
A simplified grammar for this language is given in Figure 1. In
some ways the features of this language are quite conventional: it is
dynamically typed, function arguments are bound by name rather

2 Cynics might suggest that when one has a hammer everything looks like a
nail, and indeed several of the authors do have a background in functional
programming, however it is a very nice hammer and this does look awfully
like a nail.

than order, evaluation is lazy, and functions are first class values.
This language is explained in more detail in Section 3.

The most interesting features arise from the way in which the
MashMaker language interoperates with the MashMaker GUI. Un-
like most functional languages, we anticipate that the vast majority
of MashMaker users will never actually see the textual source code
of the programs they write. Instead, they will interact with their
programs using the MashMaker user interface. The novel features
of MashMaker are not just in the core language, but in the way we
expose this language through a user interface, and the result of the
interplay between the two. In particular:

• MashMaker intermingles a program with the data it is applied
to. MashMaker’s tree view presents not only the current expres-
sion, but also the result of it’s evaluation (Section 2.3)

• MashMaker allows operations such as map, fold, and filter to
be applied through direct manipulation of data (Section 2.3).

• MashMaker automatically suggests functions that a user might
apply to their data, based on the functions that other users have
applied to similar data. It this way, it automatically shares code
between users (Section 2.4).

• MashMaker’s user interface allows users to write expressions
in a simplified form. This form allows users to avoid quoting
constants, and automatically infers arguments for lambda ex-
pressions (Section 3.5).

• All data is “live”, meaning that functions automatically recom-
pute their values in response to changing data (Section 3.6).

• MashMaker bundles functions up together with associated
metadata to form “widgets” — reusable mashup fragments
(Section 2.4).

• Perhaps most importantly, users can interact with MashMaker
at a number of different levels making it useful for anyone from
a complete beginner to a skilled programmer (Section 2.5).

1.2 Why this Paper is Interesting
This paper makes several interesting and novel contributions:

• We propose the use of a functional language for the creation of
web mashups.

• We propose several changes to the standard functional paradigm,
in order to make such languages more suitable for this domain.

• We demonstrate that this approach is practical, through the
creation of MashMaker, which is, in our opinion3, the first truly
general purpose mashup creation tool that is usable by normal
users. MashMaker has been implemented and we plan to make
it publically available soon. 4

2. The MashMaker Design
In this section we sketch the overall design of the MashMaker
system, and explain how it draws inspiration from file systems,
spreadsheets, and web browsers.

2.1 An Illustrative Example
Since MashMaker is quite different from most functional lan-
guages, it is perhaps helpful to set the scene with a walk through of
an actual session using the current version of the MashMaker tool.

1. The user is planning to rent an apartment, so they navigate
their normal web browser to Craigslist.com and have a look

3 Terms such as “truly general purpose” and “usable by normal” are hard to
define formally, so some might disagree with this statement.
4 Hopefully by the time of the ICFP camera ready deadline.

Figure 2. Craigslist apartment listing imported into MashMaker

Figure 3. Using a Google Maps visualization for an apartment

at the apartments listed there. The user looks at the apartments
listed by craigslist and would like to know more about them.
In particular, they would like to know which apartments have
good restaurants nearby. Since Craigslist can’t do this itself, the
user realizes they need to use MashMaker.

2. The user clicks on the “Add to MashMaker” button on their
web browser bookmark bar to launch MashMaker and suck the
Craigslist housing list into MashMaker. MashMaker starts up
as an AJAX web application, within the user’s web browser,
hosted by the central MashMaker webserver (Figure 2). The
right hand window shows the web page the user is looking
at, and the left hand side shows a tree representation of the
web site. In this case, there is a node for the Craigslist query,
with a child node for each apartment. Each of these apartment
nodes has a set of property nodes, expressing properties of that
apartment such as it’s price and the number of bedrooms.

3. MashMaker notices that Craiglist apartments are things that
users have previously displayed on maps, so it provides a button
at the top of the window allowing the user to add a map to each
apartment. The user clicks on this button to get a map for each
apartment (Figure 3).

Figure 4. Joining Yelp to Craigslist

Figure 5. Yelp displays restaurants near the apartment

4. The user would like to see Yelp restaurant reviews near each
apartment, but is disappointed to see that MashMaker has not
provided a button to do this automatically. They will thus need
to teach MashMaker about this connection themselves.

5. The user navigates to Yelp and searches for food at an arbitrary
address. When the result of the query appears, they then click on
“Add to MashMaker” to suck this query page into MashMaker.
The resulting Yelp node is called “food nearby” and contains
nodes for all restaurants near to the specified address.

6. The user now has both CraigsList and Yelp in their MashMaker
web site, but they are not yet connected. The user copies the
Yelp node into one of the apartments5. They then expand the
“widget panel” to reveal the form defining the Yelp query, and
change the “address” field of the Yelp form to be “=address” –
a reference to the address property of the enclosing apartment
node (Figure 4). Each apartment now has a “food nearby” prop-
erty, showing the restaurants near to that apartment (Figure 5).

7. As a result of the user creating this “food nearby” node, Mash-
Maker learns that this is a property that users might want to
define for craiglist apartments. In the future, if another user

5 This corresponds to a “map” operation (Section 2.3).

Figure 6. Filtering apartments using a lambda expression

views a Craigslist apartment, MashMaker will provide a “food
nearby” button to allow other users to add this same property.

8. Currently “food nearby” shows all restaurants near to each
apartment, but the user is picky, and so is only interested in
highly rated restaurants very near to the apartment. MashMaker
knows that previous users have applied a filter operation to Yelp
listings, so it suggests that the user apply a filter operation here
(Figure 5). The user clicks on this button and types “distance
< 1 AND rating > 4” as the condition6 (Figure 6). The user
could alternatively have used an interactive UI to compose
this query. The user renames the result of the filter to “good
restaurants within walking distance”.

9. This new property is dependent on the existence of a “food
nearby” property, and so will not be suggested by MashMaker
for Craigslist apartments that lack this property.7 Thinking that
this property might be useful for other users searching for apart-
ments on craiglist, the user decides to bundle up the new prop-
erty, together with the other properties in depends on, as a new
widget. To do this, they click “bookmark as new widget”, and
tell MashMaker which of the properties that this property de-
pends on should be considered to be arguments, rather than be-
ing internal to the widget. In this case, the address is an argu-
ment, and “food nearby” is internal. In the future, when other
users select a Craigslist apartment, “good restaurants within
walking distance” may be suggested to them.

10. To allow themselves to get an overall view of the quality of
each apartment on offer, the user adds a number of additional
properties (commute time to work, crime level, average income)
and uses the “calculator” widget to define a scoring metric by
combining these features. They then sort all the data by this
metric.

In Section 3.2 you will see the functional program created by
this editing session.

2.2 Learning from File Systems
Like a file system, MashMaker arranges all data in a tree (Figure 2).
The underlying data may well be a graph, but the simple tree

6 This is actually a lambda expression, despite the absence of lambda sym-
bol or explicit arguments (Section 3.5).
7 See Section 2.4 to see why.

view duplicates all shared nodes in the same manner as the data
inspectors of many debuggers. 8

Like a file system, each node either has its own content (a file),
or subnodes (a directory). The content can be of arbitrary type. For
example, it might be some text, or a number, or an image, or a URL.
Additionally, each subnode is either a property with an explicit
name, or a child with no name. It is assumed that all children will
represent things of roughly equivalent type, whereas the types of
properties will vary, and correspond to their names.

MashMaker’s tree view shows a text summary for each node.
If the node is a named property, then this summary is preceded
by the property name. The summary for a simple file node is a
text summary of the content (e.g. the text for a next node). The
summary for a directory node is a user-configurable combination
of the summaries for its properties — by default the summary of
the first property.

MashMaker’s right hand pane shows a visualization of the se-
lected node. If the node is a file, then this will be a visual repre-
sentation of the file’s data. In some cases, this will be a computed
representation of other data in the tree, for example a map, a graph,
or a table. If the node’s is a URL, or a directory with a “url” prop-
erty, then that URL is shown. Similarly, text, images, and other
visualizations can be shown in this panel..

Figure 1 shows the notation for such tree values in Mash-
Maker’s underlying language. For convenience, one can write
[k0 7→ v0, . . . , kn 7→ vn] as an abbreviation for ∅ n (k0 7→
v0) n . . . n (kn 7→ vn). To illustrate the way this notation works,
here is the notation for the value shown in Figure 5:

[
food nearby 7→ . . . ,
craigslist housing 7→ [

url 7→ . . . ,
• 7→ [

title 7→ “Rare Jordan Park Listing”,
food nearby 7→ [
• 7→ {title 7→ “Tawan’s Thai Food”, . . .},
• 7→ {title 7→ “Assab Eritrean ...”, . . .}

],
google map 7→ . . . , . . .

], . . .
], . . .

]

Somewhat unusually for a programming language, but entirely
in keeping with a file system, MashMaker allows identifier names
to contain spaces.

MashMaker’s data representation is also heavily influenced by
XML9. In particular, the idea of distinguishing between properties
and children is taken from XML. The key differences are that,
unlike XML, MashMaker allows properties to be arbitrary subtrees,
rather than just simple text, and MashMaker nodes do not have tag
names. We believe that this representation is simpler for users to
understand than XML, however it is close enough to XML that it is
easy to encode each in the other.

2.3 Learning from Spreadsheets
Spreadsheets have achieved remarkable success in allowing normal
users to write relatively complicated programs. One of the key fea-

8 Like UNIX filesystems, advanced users can see where data is being shared,
and follow a link to a canonical position – however we consider this to be
primarily a user interface feature, and so do not discuss this approach further
in this paper, or indeed include it in the simplified grammar of Figure 1.
9 Originally our plan was to use XML as the data model, but we eventually
decided that a simplified model would be easier for users.

tures that has allowed spreadsheets to do this is their avoidance
of unnecessary separation between a program and the data it is
working with. In a conventional programming language, the pro-
grammer writes a program in isolation of any argument data. As
they write this function, they must imagine what it will do with ar-
guments they might give it. By contrast, a spreadsheet avoids this
separation by allowing the programmer to apply operations directly
to a specific piece of data and then copying the operation to other
data if it seems to work.

MashMaker borrows four key features from spreadsheets:

• Values and expressions are mixed in one central workspace
• Map and fold are described through direct manipulation of data,

rather than using abstract functions
• Text entered by a user is assumed to be a constant, unless

proceeded by “=”
• Expressions re-evaluate automatically in response to changing

arguments10

The tree view on the left of the MashMaker window shows
both the current expression and the value it evaluates to, in a
combined view. Each node is either a defined node, meaning that
there is a user-specified expression defining its value, or it is a result
node, meaning that it is part of the result of evaluating a parent
defined node. In the user interface, result nodes have a green ball
as their icon while defined nodes have an icon corresponding to the
function that defines them.

Just as a spreadsheet allows a user to edit a formula using
the formula bar, but avoids displaying the formula in the normal
display, MashMaker allows a user to edit the form arguments for a
defined node using the widget panel which pops down from the top
of the right hand side when a user clicks on its icon. For advanced
users, MashMaker also allows the user to turn on a spreadsheet-
style formula bar, which displays the current expression textually,
in MashMaker’s underlying functional language.

Another great feature of spreadsheets is the way they allow a
user to map a single expression over a collection of objects by sim-
ply writing a formula in one cell, and then copying the expression to
all data rows below. This approach allows the user to easily see how
their expression is evaluated for each data element. MashMaker
takes a similar approach. If a user creates a new defined node, then
copies of this node are automatically created for all sibling nodes.
For example, in Section 2.1, when the user added a google map to
one apartment, a map was automatically added to all other apart-
ments. All these expressions use the same defining expression, and
when the user uses the widget panel to change the arguments then
they change the arguments for all the other replicas. As in a spread-
sheet, a MashMaker user can easily look at a specific application of
the expression to some data and see directly how it evaluates.

Similarly, spreadsheets have a great way of allowing users to
fold an operation over a collection of objects. fold is infamous
within the functional programming community as being a difficult
function for beginners; they either can’t remember the argument
order, or they have difficulty thinking about exactly what a function
will do when folded over a collection of data. However those
same users have little difficulty performing fold operations in a
spreadsheet. In a spreadsheet, all a user has to do to fold their
function over data rather than simply map it is write an expression
that refers to the cell above, and then read out the final value from
the bottom. Following this example, MashMaker allows users to

10 There are some systems issue here. In particular, how does one determine
that a web site has changed, and how does one avoid querying a web site
too often? However these are off-topic for this paper, so we will not discuss
them further.

write fold-like operations using the built in “prev” property to refer
to the previous sibling. If there is no previous sibling then “prev”
returns the value of the user-defined “init” property, or an empty
value if this is not defined.

MashMaker also appropriates spreadsheet syntax for distin-
guishing constants from expressions within the user interface. By
default, any text entered by a user is assumed to be a string con-
stant, unless it is proceeded by “=”. We chose this default partly
because it is what users are familiar with and partly to avoid the
need for beginning users to learn about expressions before they
can edit form arguments. This feature is not part of the underlying
functional language — it is simply part of the user interface.

2.4 Learning from Web Browsers
The web browser is perhaps the most successful user interface of
modern times. This simple interface allows users to find informa-
tion and perform sophisticated queries by merely following a se-
quence of links and occasionally typing data into forms.

MashMaker attempts to follow this model as much as possible.
When a user is looking at a particular node, MashMaker will
automatically suggest additional functions that they might want
to apply by providing buttons across the top of the view pane
(Figure 5). Clicking on one of these buttons will insert a new
node whose defining expression extracts data from the data already
available (e.g. “food nearby” finds its address argument from the
existing address property).

The expectation is that most users of MashMaker will never use
the keyboard or expand the widget pane. Instead they will explore
their data entirely by clicking on MashMaker suggestions. In effect,
MashMaker extends the web browsing experience by adding new
links that users can follow.

The suggestions that MashMaker makes are derived from ob-
servations of functions that other users have previously applied to
similar-looking data. For example, in Section 2.1, once one user
had added a node to a Craigslist apartment whose defining expres-
sion was food nearby = Yelp(address = address, what
= "food"), MashMaker will automatically suggest adding a node
with the same definition for all other Craigslist apartments.

Another behavior that MashMaker borrows from web browsers
is bookmarks. If a user is using a web browser, they can use book-
marks to remember interesting pages that they have found, or to
share an interesting page with friends. The equivalent behavior in
MashMaker is user-defined widgets. To create a user defined wid-
get, the user navigates to an interesting result that they would like
to remember for later or share with friends and clicks “bookmark
as new widget” (Figure 4). MashMaker will then prompt the user to
select which of the nodes that the result depends on should be con-
sidered arguments and which should be considered internal to the
function. Non-expert users will typically opt for the default — all
nodes the result depends on are internal, causing the entire mashup
to be bookmarked, just as if the user had bookmarked a normal web
page.

This approach allow users to experiment with their function on
real data before abstracting it as a function. Perhaps more impor-
tantly, it allows users to browse around aimlessly, looking for some-
thing interesting, without necessarily having to think in advance
that they might be going to create a function at the end of it all. Even
when they do create a function, our intention is that they think of
what they are doing as bookmarking an interesting discovery, rather
than writing a function.

2.5 Multi-Level MashMaking
We have designed MashMaker with the intention that it should be
usable by anyone from a complete novice to an expert programmer.
In particular, we anticipate that users will use MashMaker at the

following levels, where each level requires a little more skill from
the user and allows the user to do more powerful things:

1. Basic Users: Never unfold the widget panel. They explore
their data purely by clicking on “Add to MashMaker” in their
browser, and clicking on suggestion buttons to add enhance-
ments to their data. Basic users will sometimes bookmark
things they find, using the default bookmark settings (Sec-
tion 2.4). In the next version of MashMaker, we intend that
basic users should not even have to see the tree on the left since
all important information will be visible in the view pane on the
right.

2. Normal Users: Occasionally expand the widget panel to edit
form parameters. The changes they make flow through into the
suggestions made to all users.

3. Skilled Users: Connect up new sites that have not previously
been connected, using copy and paste and simple expressions
that refer to other properties.

4. Semi-Expert Users: Use semi-automated scraper-creation tools
(not yet written) to create scraper widgets for new web sites.

5. Expert Users: Write complex expressions directly in Mash-
Maker’s core language.

6. Gurus: Write scrapers for new sites using XPath-like scraping
operations, within MashMaker. Define custom web interfaces
for configuring such sites.

7. Wizards: Create new visualizations of data by writing web sites
that can do interesting things when passed structured Mash-
Maker data as the argument to a web form.

We expect that each category will contain an order of magnitude
fewer people than the previous category. However, even though
the number of highly skilled users may be small, their presence
is essential since it is they who import the web sites and write the
functions that less skilled users later use.

3. The MashMaker Language
In the previous sections, we have explained the general model of
how MashMaker works and the mental model that it presents to a
user. In this section we will describe in more detail the functional
programming language that is at the core of MashMaker.

3.1 Core Syntax
Figure 1 gives the grammar for expressions in MashMaker’s core
language. This grammar deals with a simplified version of the full
MashMaker language. In particular, this version is strict, while the
real language is lazy (Section 3.4) and we omit the expression
forms and semantics for such features as prev (Section 2.3) and er-
ror handling. Our intention is that this cut-down language includes
enough detail to give users a feel for how the language works, with-
out including so much as to be confusing.

Values were described in Section 2.2. A value is either a con-
stant file value (of arbitrary type), a directory with property and
child subnodes, or a lambda expression. A directory is either empty,
or is a smaller directory with an additional subnode added to the
end11. It is legal for a directory to contain multiple properties with
the same name, however the last definition is considered to override
preceding ones.

MashMaker is dynamically typed, in common with the Lisp
family of languages, and, of course, spreadsheets. If a dynamic type

11 Note that, unlike normal list concaternation, we add new elements to the
end, rather than the beginning of a directory.

error occurs then the erroneous node’s text summary and view pane
will explain what went wrong.

An expression is evaluated with respect to its location in the data
tree, which we refer to as its scope. The scope is represented as a
stack of parent values, each of which is a directory. If an expression
looks up a variable, the lookup is relative to the current scope. The
innermost directory value in the scope is known as the context.

Expressions take the following forms:

• A literal constant c

• An empty directory ∅
• An extension enq 7→ e′ adds a new subnode to e. e is assumed

to evaluate to a directory, and q is an extension path that says
where the new subnode should appear. The expression e′ is
evaluated within the scope of e, so e′ can refer to any properties
in the directory e evaluates to. We discuss extensions in more
detail in Section 3.2.
For convenience, one can write [q0 7→ e0, . . . , qn 7→ en] as an
abbreviation for ∅ n (q0 7→ e0) n . . . n (qn 7→ en).

• A lambda expression λ(x0 . . . xn).e defines a closure value
whose arguments have names x0 . . . xn and whose body is the
expression e. MashMaker identifies its arguments by their label,
rather than their order.

• A function application e (e′) applies e to e′. e must evaluate to
a function and e′ must evaluate to a directory with properties
matching the the names of all the arguments of e.

• Writing “this”, allows an expression to refer directly to the
current scope as a directory value.

• A path reference p looks up a property relative to the current
scope. By default, only properties in the current context are
matched, but the !x form allows one to search the parent scopes.

• An expression path e.p follows a path within a given expression.

3.2 Directory Extensions
Probably the most unusual and also the most important construct in
the MashMaker language is the directory extension:

e n q 7→ e′

This construct is key to the connection between the core Mash-
Maker language and the MashMaker user interface, since it de-
scribes what it means for a user to add a new node to the data tree.
In this construct, e is the base of the current tree, q is a path to the
position at which the user has inserted a new node, and e′ is the
expression used to define the new node.

The path q can include the wildcard symbol, “∗”, meaning that
the rest of the path should be applied to all children. In fact, there is
no way to add a new subnode for just one child node. If one wishes
to add a subnode to one child node then one must add it to all of
them.

Here is the simple expression that the user created interactively
in the example in Section 2.1.

[
houses 7→ Craiglist Housing([area 7→ sfbay]),
houses.*.map 7→ Google Maps([address 7→ address]),
food nearby 7→ Yelp([what 7→ “food”, where 7→ . . .]),
houses.*.food nearby 7→

Yelp([what 7→ “food”, where 7→ address]),
houses.*.good food nearby 7→

Filter([what 7→ food nearby, how 7→
λ(distance, rating).(distance < 1) ∧ (rating > 5)]),

]

The user in that example also defined the following global function:

Good Food Nearby = λ(address).(
[

food nearby 7→ Yelp([what 7→ “food”, where 7→ address]),
good food nearby 7→ Filter([what 7→ food nearby, how 7→

λ(distance, rating).(distance < 1) ∧ (rating > 5)]),
].good food nearby)

3.3 Semantics
Figure 7 gives a big-step operational semantics for strict evalua-
tion of MashMaker expressions. The evaluation relation is of the
following form:

s, e ⇓ v

where

• s is the scope at which the expression is evaluated. This is a
stack of parent values, each of which is a directory value. The
innermost parent value is known as the context. We write v : s
to denote a scope with context v on top of the rest of the scope.

• e is the expression being evaluated
• v is the value that e evaluates to in the scope s

Most of these rules should be easy to follow:

• (CONST) and (EMPTY) are already values, and so do nothing
• (EXTEND-NEW) adds a new subnode to a directory. The new

node is evaluated in a context that includes all previous proper-
ties, but not any properties added to the directory subsequently.

• (EXTEND-EMPTY), (EXTEND-ALL) and (EXTEND-SKIP)
add an extension to all child nodes. (EXTEND-SKIP) skips
over property nodes, (EXTEND-ALL) extends the last child
node, and then recursively extends the others.

• (EXTEND-PROP1) and (EXTEND-PROP2) extend a named
property. (EXTEND-PROP1) matches the last property and ex-
tends it. (EXTEND-PROP2) skips over a non-matching prop-
erty.

• (LAM) builds a closure, stashing the current scope as the envi-
ronment.

• (APP) applies e to e′. e is evaluated to a closure with body
e′′. e′ is evaluated to a directory v′′. A new context is built by
extending the closure environment with properterties from v′′

that match the closure arguments, and e′′ is evaluated in this
context.

• (THIS) simply grabs the current context value.
• (VAR), (FIELD), (INEXPR), and (PARENT) follow a path from

the current scope.

3.4 Lazy Evaluation
Like Haskell (Peyton Jones 2003b), all MashMaker expressions are
evaluated lazily. The current consensus in the programming lan-
guage community seems to now be that lazy evaluation is the wrong
evaluation model for conventional programming languages (Peyton
Jones 2003a). This is because the bookkeeping overhead of lazy
evaluation makes programs run slowly, the complex evaluation be-
havior makes performance hard to predict, and programmers ofter
have to battle with space leaks, due to long chains of lazy thunks.

MashMaker, however, is not a conventional programming lan-
guage. We believe that the unusual application domain that Mash-
Maker works in makes lazy evaluation highly appropriate. In par-
ticular:

• In the case of web mashups, the bookkeeping cost of remember-
ing how to evaluate something is tiny compared to the massive
cost of fetching and scraping a web site, thus it is only neces-
sary for a very small number of expressions to be unneeded for
the bookkeeping cost to be more than paid back.

• Even if fetching a web site was cheap, it is important for us to
minimize the number of queries we make to a remote server, to
avoid overwhelming a server (Section 3.7).

• Typical mashup programs work with relatively small amounts
of data that are not directly presented to the user, and so space
leaks are far less of a problem.

• Many web sites are already essentially lazy. For example when
one makes a search using Google, it does not return all results
in one page, but instead produces results lazily as one presses
the “next” buttons.

3.5 Lambda Expressions in the User Interface
The MashMaker user interfaces has somewhat unusual treatment
of lambda expressions. While the syntax in the underlying core
language is fairly conventional, with lambda expressions explicitly
marked as such and arguments explicitly listed, the user interface
attempts to hide this from users as much as possible.

Although MashMaker is dynamically typed, the Widget meta-
data for a function includes a bit for each argument saying whether
it is a closure. If an argument is a closure then the forms UI in-
terprets text entered for that argument a little differently than for
non-closure arguments. Any text entered is assumed to be the body
of a lambda expression, and any variables in the expression that are
not bound within the current scope are assumed to be lambda argu-
ments. Advanced users can tell that this alternative text handling is
in use by noticing a λ icon next to the argument text box.

3.6 Live Data
All data in MashMaker is live, meaning that it may change over
time and will react to changes in other parts of the data tree. If a
tree is the result of a web query, then this tree will update over
time, as the source web site changes 12.

The MashMaker language is designed to handle changing data
well. In particular, since MashMaker overlays extensions over gen-
erated data (Section 3.2), rather than modifying it in-place, these
extensions will be automatically applied to new versions of the
underlying data. Also, since the MashMaker extension construct
automatically adds new properties to all children of a node, these
properties will also apply to any new children that are added to the
tree.

3.7 Throttling
One important practical issue that has to be dealt with whenever
one creates a mashup is the need to avoid placing too much load on
the web sites supplying data. If one has an agreement with the web
site provider then it is likely to specify a maximum load, and if one
does not have an explicit agreement then placing too much load on
a server could cause the owners to block the mashup system’s IP
address.

As a result of this, it is necessary for MashMaker to throttle the
rate at which requests can be made to external web sites. Indeed this
rate is one of the primary issues that determines the performance of
a Mashup, since if a mashup needs to make too many requests, then
it will have to slow itself down in order to avoid sending requests
too rapidly. This performance restriction has motivated MashMaker
not only to use lazy evaluation (Section 3.4), but also to use a

12 Either by polling the web site at a fixed frequency, or waiting until the
user asks for a refresh.

(CONST)
s, c ⇓ c

(EMPTY)
s, ∅ ⇓ ∅

(EXTEND-NEW)
s, e ⇓ v′ v′ : s, e′ ⇓ v

s, e n k 7→ e′ ⇓ v′ n (k 7→ v)

(EXTEND-EMPTY)
s, e ⇓ ∅

s, e n ∗.q 7→ e′ ⇓ ∅

(EXTEND-ALL)
s, e ⇓ v1 n (• 7→ v2) s, v1 n ∗.q 7→ e′ ⇓ v′

1 v′
1 : s, v2 n q 7→ v′

2

s, e n ∗.q 7→ e′ ⇓ v′
1 n (• 7→ v′

2)

(EXTEND-SKIP)
s, e ⇓ v1 n (x 7→ v2) s, v1 n ∗.q 7→ e′ ⇓ v′

1

s, e n ∗.q 7→ e′ ⇓ v′
1 n (x 7→ v2)

(EXTEND-PROP1)
s, e ⇓ v1 n (x 7→ v2) v1 : s, v2 n q 7→ e′ ⇓ v′

2

s, e n x.q 7→ e′ ⇓ v1 n (x 7→ v′
2)

(EXTEND-PROP2)
s, e ⇓ v1 n (x′ 7→ v2) x 6= x′ s, v1 n x.q 7→ e′ ⇓ v′

1

s, e n x.q 7→ e′ ⇓ v′
1 n (x′ 7→ v2)

(LAM)
s, λ(x0 . . . xn).e ⇓ (s, λ(x0 . . . xn).e)

(APP)
s, e ⇓ (v′ : s′, λ(x0 . . . xn).e′′)

s, e′ ⇓ v′′ (x0 7→ v′′′
0) ∈ v′′ . . . (xn 7→ v′′′

n) ∈ v′′ (v′ n (x0 7→ v′′′
0)) n . . . n (xn 7→ v′′′

n))) : s′, e′′ ⇓ v

s, e(e′) ⇓ v

(THIS)
v : s, this ⇓ v

(VAR)
(x 7→ v) ∈ v′

v′ : s, x ⇓ v

(FIELD)
(x 7→ v′′) ∈ v′ v′′ : v′ : s, p ⇓ v

v′ : s, x.p ⇓ v

(INEXPR)
s, e ⇓ v′ v′ : s, p ⇓ v

s, e.p ⇓ v

(PARENT)
s, p ⇓ v

v′ : s, !.p ⇓ v

Figure 7. Operational semantics for strict MashMaker evaluation

number of other tricks (not discussed in this paper) to minimize the
number of requests that need to be made to external web servers.

3.8 When Websites turn Bad
One limitation of MashMaker, as with most other mashup creation
tools, is that mashups can break if the underlying websites change.
If a website changes the structure of the data it produces, or changes
its HTML such that the current scraper no longer understands it,
then mashups that depend on this data will no longer function
correctly. In the long term, we hope this this problem will become
less severe as websites increasingly publish semantic information
in well defined data formats.

More generally, MashMaker is not intended to be used for
“mission critical” applications where data integrity is essential.
Instead, its focus is on applications where in is more important that
one be able to produce interesting data than that be certain that the
data is correct.

4. Evaluating Usability
Following Peyton Jones et al (Peyton Jones et al. 2003), we evaluate
the usability of MashMaker using the Cognitive Dimensions of
Notations (CDs) framework (Blackwell et al. 2001). CDs provide
a vocabulary that enumerates concepts important to users who are
engaged in programming tasks. While evaluation against cognitive
dimensions is subjective, and is not a substitute for thorough user
testing, these concepts have been shown over time to be important
to human problem solving and it is important to consider each when
designing a usable interface. We list the cognitive dimensions in
Figure 8 and evaluate MashMaker against these dimensions below:

• Abstraction Gradient: MashMaker can be used at a number
of different levels of abstraction, allowing use by users rang-
ing from complete beginner to experienced programmer (Sec-
tion 2.5).

Abstraction gra-
dient

What are the minimum and maximum lev-
els of abstraction? Can fragments be encap-
sulated?

Consistency When some of the language has been learnt,
how much of the rest can be inferred?

Error-proneness Does the design of the notation induce
‘careless mistakes’?

Hidden depen-
dencies

Is every dependency overtly indicated in
both directions? Is the indication perceptual
or only symbolic?

Premature com-
mitment

Do programmers have to make decisions
before they have the information they need?

Progressive
evaluation

Can a partially-complete program be exe-
cuted to obtain feedback on “how am I do-
ing”?

Role-
expressiveness

Can the reader see how each component of
a program relates to the whole?

Viscosity How much effort is required to perform a
single change?

Visability and
juxtaposability

Is every part of the code simultaneously vis-
ible (assuming a large enough display), or
is it at least possible to compare any two
parts side-by-side at will? If the code is dis-
persed, is it at least possible to know in what
order to read it?

Figure 8. Cognitive Dimensions (taken from (Peyton Jones et al.
2003))

• Consistency: New widgets are created using the same mecha-
nism as creating simple expressions. All work in MashMaker
is done using the same simple mechanism of applying widgets
and setting form parameters.

• Error Proneness: Unlike normal spreadsheets, MashMaker
automatically ensures that when a user adds a property to a set
of children the defining expression is identical for all children.

• Hidden Dependencies and Role Expressiveness: When a
node is selected, all dependent or source nodes are automat-
ically highlighted to make it clear that there is a dependency.

• Premature Commitment: Users do not have to decide in ad-
vance what they are looking for, but instead can wander aim-
lessly, looking for something useful. If they find something they
like, they can bookmark it as a new function widget, but they
need not decide in advance that this is what they are going to
do.

• Progressive Evaluation: There is no requirement that a pro-
gram be in any sense “complete” in order for the user to look at
it’s result. Similarly, like a spreadsheet, if some evaluations fail
then this does not affect the behavior of non-dependent parts of
the program.

• Viscosity: MashMaker’s support for user-defined functions, au-
tomatic synchronization of property definitions across multiple
children, and its general preference for linking of data rather
than copying, make it easy to make widespread changes.

• Visibility and Juxtaposability: Unlike conventional program-
ming languages, MashMaker juxtaposes program and data to-
gether, so the programmer can easily see the effects of evaluat-
ing their expressions. While MashMaker does not allow one to
view multiple forms or multiple view panels in the same win-
dow, MashMaker does allow one to view the same data store
with multiple browser windows, allowing one to put arbitrary
information side-by-side.

Based on this analysis, and also our personal experiences using
MashMaker, we believe that our design is fundamentally sound.
However, in order to demonstrate this objectively, we need to per-
form a proper user study, and indeed we intend to do this in the near
future. /

5. Related Work
In this section, we explain how MashMaker relates to previous
work on Mashup creation and end-user programming in general.

We have previously presented a demo of MashMaker in a
database conference (Anonymized). The accompanying three-page
demo overview paper briefly described the database aspects of
MashMaker and outlines a similar demo to Section 2.1, but does
not discuss the underlying language or core programming model.
In addition, that paper describes an earlier version of MashMaker,
with a number of design differences.

5.1 Mashup Creation Tools
Mashups are an increasingly hot topic, and thus there have been
many efforts to simplify their creation. Relative to MashMaker,
these previous tools generally fall into two groups: those which
are easy to use, but can only create a limited family of mashups;
and those which are relatively difficult to use, but can create a wide
range of mashups.

Google MyMaps (goo a) and MapCruncher (map) make it easy
for end users to create mashups involving maps. Swivel.com makes
it very easy for end users to create graph mashups from multiple
data tables. However, while each of these tools is easy to use, and
excellent at producing mashups of a specific type, none of them is
as general purpose as MashMaker.

Yahoo Pipes (pip) is a powerful tool that allows users to process
data from RSS feeds. While, at the time of writing, the small
set of operations available in Pipes makes it less flexible than

MashMaker, it seems likely that the tool will be extended to give it
equivalent expressive power. The key difference between Pipes and
MashMaker is that, unlike MashMaker, pipes presents the program
as an explicit graphical dataflow graph, rather than mixing it with
the data being browsed.

Marmite (Wong and Hong 2006) takes a pipeline-based ap-
proach, similar to Apple’s Automator (aut). The data from a web
site is routed through a sequence of pipeline stages, each of which
is configurable, and can produce data of a different type. Like Ya-
hoo Pipes, the program is separated from the data and presented as
a graph, rather than being embedded in the data like a spreadsheet.
Like MashMaker, Marmite will automatically suggest operations to
apply to data. Unlike MashMaker, these suggestions are based on
the type of the data (similar to Jungloids (Mandelin et al. 2005)),
rather than based on the behavior of previous users. Anthracite (ant)
is similar to Marmite, but requires that the user be familiar with
complex concepts such as HTML and regular expressions.

Creo (Faaborg and Lieberman 2006) augments web pages with
additional links that can obtain additional information about items
on a web page. Like MashMaker, Creo will automatically make
suggestions and can learn by example from things that users do
with their data. Unlike MashMaker, Creo is limited to adding addi-
tional hyperlinks to web pages and cannot perform bulk data pro-
cessing tasks.

Plagger.org, Ning.com, Javascript Dataflow Architecture (Lim
and Lucas 2006), and Web Mashup Scripting Language (Sabbouh
et al. 2007) are powerful tools for creating mashups, but they
require that the user write code.

ClearSpring.com, Widsets.com, WidgetBox.com, and Apple’s
Dashboard (das) allow users to write small graphical web widgets
and then lay them out together on a screen. DataMashups.com
additionally allows users to connect these widgets together (e.g.
the output of this widget is the input to that widget), but complex
task require considerable programmer skill.

HunterGatherer (Schraefel et al. 2002) and Internet Scrap-
book (Sugiura and Koseki 1998) allow users to extract parts of
multiple web sites and composite them together, but are not able to
perform complex processing on these sites and extract collections
of data.

Like MashMaker, C3W (Fujima et al. 2004) uses a spreadsheet
metaphor. C3W uses a standard flat two-dimensional spreadsheet
to connect web sites together. If a user defines values for a web
site’s input cells, then it will produce results in its output cells,
clipped from the web page. Unlike MashMaker, C3W uses a flat
two dimensional grid, rather than a tree. This prevents one writing
mashups that produce nested data, such as producing a list of
restaurants for each of several apartemnts.

TreeSheet (Leonard 2004) represents data as an XML tree, but
unlike MashMaker, programming is done using imperative scripts,
rather than functional overlays.

Within the database community, SEMEX (Cai et al. 2005) and
DataSpaces (Franklin et al. 2005) have looked at data-integration –
how to get transform various data sources into a suitable structure
so that they can be combined with queries.

5.2 End-User Programming Tools
MashMaker also bears considerable similarity to a number of end-
user programming tools that have not been used for creating web
mashups:

Programmable Structured Documents (PSDs) (Takeichi et al.
2003; Hu et al. 2004; Liu et al. 2005) allow one to extend a stan-
dard XML document by embedding elements in the tree that are
computed from other elements. An expression defining an XML
node can refer to other nodes using XPath expressions and then pro-
cess the nodes using arbitrary Haskell functions. Like MashMaker,

PSDs are based on a functional language (in this case Haskell) and
are evaluated lazily. Unlike MashMaker PSDs deal with static XML
documents, rather than live data. Indeed, since PSDs include ex-
pressions directly in a document, rather that overlaying changes on
top of generated data in a way that can be automatically re-applied,
they could not be used to add additional properties to live data with-
out changes to the model (Section 3.6).

Subtext (Edwards 2005) is a programming tool that allows one
to look at a program together with the results of its evaluation. In
Subtext, every node in the data tree corresponds to the execution of
a single program line with specific data and is annotated with the
value produced. Function calls are expanded as subtrees and func-
tion definitions contain example arguments that the programmer
can adjust to interactively see how their program will behave. Like
MashMaker, subtext allows programmers to easily see how their
program will behave when applied to particular arguments. Unlike
MashMaker, the Subtext interface is program-centric, rather than
data-centric — meaning that data is layered on top of a program,
rather than overlaying a program on top of data.

MashMaker’s function creation system is influenced by the
work of Peyton Jones et al (Peyton Jones et al. 2003) in extend-
ing Microsoft Excel to support user-defined functions. Like Mash-
Maker, they allow one to define a new function by selecting a result
cell and then using a graphical interface to specify which other
cells are arguments.

MashMaker’s suggestion system is influenced by Jungloids (Man-
delin et al. 2005) and Google Suggest (goo b). Like Jungloids,
MashMaker suggests operations that are appropriate to the data
one has at hand. Like Google Suggest, MashMaker learns from the
behavior of other users.

More generally, MashMaker draws on past work on Program-
ming by Example (Cypher et al. 1993; pro 2001), and previous
work on programming approaches for beginners (Kelleher and
Pausch 2005).

6. Conclusions
We have presented MashMaker, a tool that allows end-users to
easily create web mashups. While MashMaker is, at its core, a
functional language, it contains a number of deviations from the
standard functional paradigm. By taking ideas from such popular
tools as file systems, spreadsheets, and web browsers, we have
produced a tool that we believe is well suited to the task of mashup
creation.

This project is interesting as a programming language research
project both because it approaches an application domain for which
programming languages have not historically been seen as the solu-
tion, and also because, in the process of fitting our language to this
domain, we have produced a language that has many differences
from previous functional languages.

We have implemented MashMaker as an AJAX web applica-
tion, currently made available within our organization. We plan to
make it publically available within the near future. In the long term,
the success of MashMaker will be judged based on the extent to
which real users adopt it, and the scale of the benefit they are able
to obtain from it.

Acknowledgements
Ommitted for double-blind version.

References
Anthracite. http://www.metafly.com/products/anthracite.

Apple Automator. http://www.apple.com/.

Apple Dashboard. http://www.apple.com/.

Google Maps. http://maps.google.com, a.

Google Suggest. http://labs.google.com/suggest/, b.

MapCruncher. http://research.microsoft.com/mapcruncher.

Yahoo Pipes. http://pipes.yahoo.com.

Your wish is my command: programming by example. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001. ISBN 1-55860-688-2.

Anonymized. Mashmaker : Mashups for the masses (demo paper). In
Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data (SIGMOD’2007.

Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G. Green,
Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes, Chrysto-
pher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan Wong,
and Richard M. Young. Cognitive dimensions of notations: Design tools
for cognitive technology. In CT ’01: Proceedings of the 4th Interna-
tional Conference on Cognitive Technology, pages 325–341, London,
UK, 2001. Springer-Verlag. ISBN 3-540-42406-7.

Yuhan Cai, Xin Luna Dong, Alon Halevy, Jing Michelle Liu, and
Jayant Madhavan. Personal information management with semex.
In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD inter-
national conference on Management of data, pages 921–923, New
York, NY, USA, 2005. ACM Press. ISBN 1-59593-060-4. doi:
http://doi.acm.org/10.1145/1066157.1066289.

Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman,
David Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch
what I do: programming by demonstration. MIT Press, Cambridge, MA,
USA, 1993. ISBN 0-262-03213-9.

Jonathan Edwards. Subtext: uncovering the simplicity of programming. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object oriented programming, systems, languages, and applica-
tions, pages 505–518, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-031-0. doi: http://doi.acm.org/10.1145/1094811.1094851.

Alexander Faaborg and Henry Lieberman. A goal-oriented web
browser. In CHI ’06: Proceedings of the SIGCHI conference
on Human Factors in computing systems, pages 751–760, New
York, NY, USA, 2006. ACM Press. ISBN 1-59593-372-7. doi:
http://doi.acm.org/10.1145/1124772.1124883.

Michael Franklin, Alan Halevy, and David Maier. From databases to datas-
paces: A new abstraction for information management. In SIGMOD
Record, 2005.

Jun Fujima, Aran Lunzer, Kasper Hornbæk, and Yuzuru Tanaka.
Clip, connect, clone: combining application elements to build custom
interfaces for information access. In UIST ’04: Proceedings of the 17th
annual ACM symposium on User interface software and technology,
pages 175–184, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
957-8. doi: http://doi.acm.org/10.1145/1029632.1029664.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable
editor for developing structured documents based on bidirectional trans-
formations. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manip-
ulation, pages 178–189, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-835-0. doi: http://doi.acm.org/10.1145/1014007.1014025.

Caitlin Kelleher and Randy Pausch. Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers. ACM Comput. Surv., 37(2):83–137, 2005. ISSN 0360-
0300. doi: http://doi.acm.org/10.1145/1089733.1089734.

Thomas Leonard. Tree-Sheets and Structured Documents. PhD thesis,
University of Southampton, 2004.

Seung Chan Slim Lim and Peter Lucas. Jda: a step towards
large-scale reuse on the web. In OOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, pages 586–601, New
York, NY, USA, 2006. ACM Press. ISBN 1-59593-491-X. doi:
http://doi.acm.org/10.1145/1176617.1176631.

Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. An environment for main-
taining computation dependency in xml documents. In DocEng ’05:

Proceedings of the 2005 ACM symposium on Document engineering,
pages 42–51, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-
240-2. doi: http://doi.acm.org/10.1145/1096601.1096616.

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. Jun-
gloid mining: helping to navigate the api jungle. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 48–61, New
York, NY, USA, 2005. ACM Press. ISBN 1-59593-056-6. doi:
http://doi.acm.org/10.1145/1065010.1065018.

Simon Peyton Jones. Wearing the hair shirt: a retrospective on haskell (in-
vited talk). In ACM SIGPLAN Conferenge on Principles of Program-
ming Languages (POPL’03), 2003a.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: the
Revised Report. Cambridge University Press, may 2003b.

Simon Peyton Jones, Alan Blackwell, and Margaret Burnett. A user-centred
approach to functions in excel. In ICFP ’03: Proceedings of the eighth
ACM SIGPLAN international conference on Functional programming,
pages 165–176, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-
756-7. doi: http://doi.acm.org/10.1145/944705.944721.

Marwan Sabbouh, Jeff Higginson, Danny Gagne, and Salim Semy. Web
mashup scripting language (poster). In 16th International World Wide
Web Conference, 2007.

M. C. Schraefel, Daniel Wigdor, Yuxiang Zhu, and David Modjeska. Hunter
gatherer: within-web-page collection making. In CHI ’02: CHI ’02
extended abstracts on Human factors in computing systems, pages 826–
827, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-454-1. doi:
http://doi.acm.org/10.1145/506443.506617.

Michael Schrenk. Webbots, Spiders, and Screen Scrapers. No Starch Press,
2007.

Atsushi Sugiura and Yoshiyuki Koseki. Internet scrapbook: automating web
browsing tasks by demonstration. In UIST ’98: Proceedings of the 11th
annual ACM symposium on User interface software and technology,
pages 9–18, New York, NY, USA, 1998. ACM Press. ISBN 1-58113-
034-1. doi: http://doi.acm.org/10.1145/288392.288395.

Masato Takeichi, Zhenjiang Hu, Kazuhiko Kakehi, Yashushi Hayashi, Shin-
Cheng Mu, and Keisuke Nakano. TreeCalc: towards programmable
structured documents. In Japan Society for Software Science and Tech-
nology, 2003.

Jeffrey Wong and Jason Hong. Marmite: end-user programming
for the web. In CHI ’06: CHI ’06 extended abstracts on Hu-
man factors in computing systems, pages 1541–1546, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-298-4. doi:
http://doi.acm.org/10.1145/1125451.1125733.

