Data Management
and Ambient Intelligence

Thierry Delot
University of Valenciennes
Thierry.Delot@univ-valenciennes.fr

Sergio Ilarri
University of Zaragoza
silarri@unizar.es
General context

- **Mobile** Data Management & Query processing
- Communication infrastructure
 - Not always available
 - Direct interactions between mobile nodes
- Application to Vehicular Networks

- I don’t care! I’m driving in the opposite direction!
General context

- Recent development of:
 - Mobile devices
 - Sensors, smartphones, navigation devices, etc.
 - Wireless technologies with different ranges
 - Wi-Fi, 3G, etc.
 - Global Navigation Satellite Systems (GNSS)
 - GPS system

These mobile devices produce and/or store data!

« In 2014, the volume of mobile data sent and received every month by users around the world will exceed by a significant amount the total data traffic for all of 2008 » (ABI research)
Characteristics of mobile data

- Stamped data
 - Location-dependent, timestamped
- Personal data
- Uncertain data
- May be produced as streams
Impact on query processing

- New types of queries
 - Location-dependent queries (examples):
 - Continuous queries
 - Nearest neighbor queries
 - Range queries
 - Spatio-temporal queries
 - ...

- New processing techniques
 - Traditional techniques are no more suited
 - No placement schema as in distributed databases (example)
Impact on query processing

• Optimization objectives
 • Non classical optimization
 – Energy, financial cost, etc.
 • Local vs. global optimization

• Privacy and trust issues

• Even the notion of query result is different!
 – Open World Assumption vs. Close World Assumption
Constraints on query processing

- Different access models to consider
 - Pull vs. Push vs. Hybrid
- Different architectures to consider
 - (mobile) Client/Server
 - Hybrid P2P
 - Mobile P2P
Architectures: Mobile Client/Server
Possible issues

- Bandwidth limitations and scalability issues
- Connection not available everywhere
- Mobile telephony networks are not free
- Privacy preservation
Architectures: Alternative solutions

• Hybrid peer-to-peer architectures
 – Distinguishes mobile devices and traditional servers

• Mobile peer-to-peer architectures
 – Direct interactions between mobile devices
 – It does not require any fixed infrastructure
 – E.g., vehicular ad hoc networks (VANETs)
Mobile Query Processing
Vehicular Networks (VANETs)

Vehicle-to-vehicle (V2V) communications
Vehicle-to-infrastructure (V2I) communications

- GPS
- WIFI, UWB, IEEE 802.11p
- Storage card
- Smartphone, …
Using a push model

Where is the closest parking space?

Available parking spaces, traffic congestions, emergency brakings, ...

IEEE 802.11

Routing results towards a moving object is a (very) difficult task!
Delivery of query results

- How to route partial results towards the mobile recipient?
- Decentralized architectures with some fixed nodes:

What if no infrastructure (or only a partial one) is available?
Data dissemination

- **Objective:**
 - Push data towards (potentially interested) mobile nodes
Data dissemination

• Objective:
 – Push data towards (potentially interested) mobile nodes

• Challenges:
 – Avoid network flooding
 – Adapt the dissemination to the type of info (e.g., parking vs. accident)
The VESPA approach

• Objective: share any type of event between vehicles using vehicular ad hoc networks (unified solution)
 – Numerous events to share!!
 • Available parking spaces
 • Emergency braking
 • Obstacles on the road
 • Real-time traffic information
 • Emergency vehicles
 • Driver in state of hypovigilance / doing strange maneuvers
 • …

• The type of event considered has an incidence on its relevance (and so on its dissemination)
Representation of events

• Messages are exchanged between vehicles to describe physical events
• Different attributes. At least:
 – Identifier
 – Priority
 – Position (and reference positions)
 • GPS coordinates
 – Time
 • GPS time
 – Event type
 • e.g., available parking space, accident, etc.
 – Version
 • No invalidation message is considered!

Is this enough?
Content-based Dissemination

• Objectives:
 – Support different types of events
 – Inform all the potentially interested vehicles
 – Support a high number of vehicles and events

• Challenges:
 – Avoid network flooding
 • Limit the number of vehicles relaying
 – Only the k-farthest vehicle will relay the info
 – Adapt the dissemination area to the type of information carried
 • A vehicle will not further broadcast a message received if this message is not relevant anymore
Encounter Probability

- Objective: estimate whether a vehicle is likely to encounter an event or not
- Not trivial because the destination of the driver cannot be assumed
Encounter Probability

• Example of computation:
 (with maps, with geographic vectors)

\[
\text{EP} = \begin{cases}
1 & \text{if } \text{TTR} < \text{TTL} \\
0 & \text{otherwise}
\end{cases}
\]
Content-based Dissemination
Introduction of a latency in the dissemination process

\[t_i = D \times (1 - \frac{d_i}{r}) \]
Content-based Dissemination

Messages relayed are considered as acknowledgements

Diffusion canceled!

Relays the message

Diffusion canceled!
Experimental evaluation

- Prototype
- Simulator
 - With and without maps (roads and parking lots)
- More info: [TR-C’10, IEEE ITS’11, MIS’11a]
Push-based QP: Pros and cons

+ "Easy" to provide information to the vehicle
+ "Simple" query processing techniques can then be used to deliver relevant information to the driver
- Only popular data is diffused
- The set of queries processed remains limited
Alternative: GeoVanet

• **Goal:**
 – Provide a solution to enable pull-based data gathering in vehicular ad hoc networks

• **General principle:**
 – Disseminate queries in the network
 – Consider a stationary node as a mailbox to collect the partial results obtained on the remote (mobile) nodes
 – Use both node mobility and hops in the wireless network to route the partial results towards the mailbox

• **Queries with relaxed time requirements**
Main Steps

1. Query dissemination
 - Composition of disseminated queries:
 • Request: the core of the query
 - e.g., what are the interesting sites to visit in Aussois? where are the clients looking for a taxi located?
 • Exp-date: date by which the answer is expected
 • Key: determines the location where the answer should be sent and retrieved

2. Remote processing

3. Delivery of the partial query result(s)

4. Retrieval of the query result
GeoVanet: Delivery of the query result

Carry and forward approach

- Every Δt seconds, each vehicle checks whether it is driving towards the target (mailbox) or not.
- If not, it chooses the closest node (mobile node or infrastructure node) as the new carrier.
- The new carrier repeats the same algorithm until the carrier reaches the communication range of the mailbox or the expiry date is reached.

Related: use of mobile agents in VANETs
Experimental Evaluation

- Use of a simulator
 - Real road networks (TeleAtlas digital maps)
Experimental Evaluation

• Evaluation of the percentage of “interesting” nodes reached considering several strategies
 – Flooding
 – Contention-based forwarding
 – Dissemination using hotspots

• Main Results:
 – Between 60% and 70% of relevant vehicles receiving the query whatever the strategy used (considering that only 2% of the vehicles carry a query result)
 – 80% of the results are collected in the mailbox after one hour
 – 80% of the results are collected with less than 40 hops
 – More info: [MDM’11, MIS’11b]
Multi-scale mobile query processing
• We consider multi-scale query processing as any query processing that may need to access data sources of different types (e.g., local databases, remote web services, data streams, etc.) to compute the result.

• Objectives:
 – Exploit all relevant data sources, whatever their location
 – Benefit also from the information provided by Web Services
Examples

• Retrieve the list of petrol stations located in a radius of 10 Km around me where fuel prices are less than $1 (and update the result every 5 minutes)
• Retrieve the list of hotels with available rooms that I can reach in less than 30 minutes
Multi-scale query processing

Where should I refuel?

Which are the rest areas that will be near me in the next hour and offering a gas station, lodging facilities for two persons and a restaurant?

Available parking spaces, traffic congestions, emergency brakings, ...

Ecole Masses de Données - May 2012
Challenges

• Generation of query execution plans
 – No global schema
 – How to locate relevant data sources?
 – Need to compose several services
 • e.g., to convert GPS coordinates into the name of a city or region to match with the interface of the service providing the fuel prices

• How to select the best one?
 – Solution 1: compute the list of close petrol stations locally (POIs) and obtain the prices for those stations using a Web Service
 – Solution 2: retrieve the region where I am located (first service) and then retrieve the list of petrol stations (with fuel prices) located in that region (second service)
Query Optimization

- How to select the best query execution plan?
- Trade-off between different costs
 - Time, energy, financial cost, etc.
 - Estimating the costs:

\[
C_{\text{Time}}(Q) = C_{\text{QueryDelivery}}(Q) + C_{\text{Time Processing}}(Q) + C_{\text{ResultDelivery}}(Q)
\]

\[
C_{\text{Money}}(Q) = C_{\text{QueryDelivery}}(Q) + C_{\text{Money Processing}}(Q) + C_{\text{ResultDelivery}}(Q)
\]

\[
C_{\text{Energy}}(Q) = K \times n
\]

\[
C(Q) = \sum_{i=\text{Time,Money,Energy}} w_i \times C_i
\]

- Quality expectations for the query result
 - Minimizing the above costs may lead to a poor result quality!
 - More info: [IJAIHC’11]
Prediction & query processing
What if no information is provided?

Where is the nearest parking space?
Our Approach: Aggregation

- **Objective:**
 - Process queries such as “what is the area where the probability to find a parking space is the highest?”

- **Store, aggregate and exchange summaries**
 - Do not destroy them once used to warn the driver
 - Major difference with other works on data aggregation for vehicular networks

- **Use the summaries generated to extract additional knowledge usable by drivers**
 - Estimate the probability that an event (e.g., an accident) occurs in a spatio-temporal area
Two levels space model

Spatial Model

Ecole Masses de Données - May 2012
Data Structures

Flajolet-Martin sketches
Inter-vehicle exchanges

• The quality of the information produced depends on the amount of data aggregated
• Each car/driver decides what to exchange and his/her preferences
 – Publish/subscribe process with priorities
• Duplicate detection is important
 – I might have observed the same events as my neighbor!
 → Flajolet-Martin sketches
• Need to know the vehicles with which exchanges have been performed recently
• Experimental evaluation
• More info: [RAIRO’10]
Open Issues
Just one example: context-awareness

• Many parameters frequently change in ambient environments and may impact the query processing or data dissemination
 – Connectivity
 – Autonomy
 – Location
 – etc.

• Other challenges: management of multimedia, GUIs, etc.
Example (Context-awareness)

- Context changes strongly impact the best communication solution to use:

 - I had an accident
 - Accident in 100m
 - Accident in 200m
 - ???
 - Ok I will carry and forward the information?
 - Be careful! Accident ahead!
 - Node density very low
 - I don’t care!
 - I’m driving in the opposite direction!
Conclusion

• These are some of the problems addressed within the VESPA project
• Other contributions related to resource allocation in ad hoc networks
 – Competitive environment
 – First arrived, only served...
 – More info: [ACM Mobility’09]

• From the data management point of view, a lot of (very) interesting problems to tackle!
Acknowledgements

• C. Caloca (CICESE, Mexico)
• N. Cenerario (Univ. Valenciennes, France)
• B. Defude (Telecom Institute, France)
• J.A. Garcia Macias (CICESE, Mexico)
• T. Hien (Univ. Valenciennes, France)
• S. Lecomte (Univ. Valenciennes, France)
• N. Mitton (INRIA Lille, France)
• O. Urra (Univ. Zaragoza, Spain)
• D. Zekri (Telecom Institute, France)
• ...

Ecole Masses de Données - May 2012

Thank you for your attention!

Merci!