The GOSSPLE social network

Davide Frey INRIA, Rennes

Principal Investigator: Anne-Marie Kermarrec (INRIA) The team: X. Bai, M. Bertier, A. Boutet, D. Frey, K. Huguenin, V. Leroy, A. Moin, G. Tan, C. Thraves (INRIA) & R. Guerraoui (EPFL)

Web content is generated by you, me, your friends and millions of others

(Two faces of) social networking has taken off at an unexpected scale and speed

There is a gold mine of information out there

Are we all happy with Google?

A real-world example

What if Bob knew?

Personalization: explicit social connections do not help

 10/26/2009: Google Social Search (I finally found my friend's New York blog!)

- PeerSpective [MGD06]
- Network-Aware search [ABLS08]

Implicit social connections can help

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

7

Personalized query

Leveraging implicit connections

Query expansion English speaking baby sitter Query expansion English speaking baby sitter Teaching assistant

Google

Top-k

A case for personalization through **implicit** social connections

Personalized query expansion

Achieving personalization in large systems

Through decentralization

Personalisation calls for decentralization

Scalability/Reactivity

- Enable to manage metadata at a user's granularity
- Cope with dynamics

What else?

If you only knew the power of the Dark Side. – Darth Vader

Personalisation calls for decentralization (2)

Fighting the Big Brother is watching you's attitude

- e.g. New terms of uses of Facebook (2009), Beacon feature of Facebook (2007)
- Twitter

You retainyourrightsto any Content yousubmit, post or display on or through the Services. By submitting, posting or displaying Content on or through the Services, **yougrant us a worldwide, non-exclusive, royalty-freelicense**(with the right to sublicense) to use, copy, reproduce, process, adapt, modify, publish, transmit, display and distributesuch Content in any and all media or distribution methods (nowknown or laterdeveloped).

Complex without global knowledge

Personalizedapproach to favor individuals as opposed to large masses

Decentralized approach to provide scalability, reactivity and privacy

Applications: query expansion, top-k, search, recommendation, ...

The Gossple social network

The Gossple social network

Provide a node with the *c* << *N*"best friends"

- How to decide which nodes should befriends?
- How to discover such friends?

Which nodes should be "friends"?

- -Tagging similarity
- -Cosine similarity
- -Multi-interest similarity

Interest-based Web 2.0 applications

- Users characterized by a profile
- Collaborative tagging systems
- Model
 - *U*(sers) × *I*(tems) ×*T*(ags)
 - *Tagged*_{*u*}(*i*, *t*): User *u* annotates item *i* with tag*t*
 - Profile(u)={Tagged_u(i, t)}

1: Tagging similarity

- Efficient network-aware search in collaborative tagging sites [ABLS, VLDB'08]
- User score: common tagging actions

2: Item cosine similarity

Normalized overlap

- bigger overlap increases the score
- no shared interests decreases it
- directly takes into account the weight of items

$$\cos(\vec{v}_{1}, \vec{v}_{2}) = \frac{\vec{v}_{1}\vec{v}_{2}}{\|\vec{v}_{1}\|\|\vec{v}_{2}\|}$$

ItemCos(\vec{u}_{1}, \vec{u}_{2}) = $\frac{|Items(\{\vec{u}_{1}\})|\bigcap|Items(\{\vec{u}_{2}\})|}{\sqrt{|Items(\{\vec{u}_{1}\})|.|Items(\{\vec{u}_{2}\})|}}$

Individual rating might be too restrictive

Item cosine similarity: favours specific and dominant interests

Individual rating

3: Multi-Interest cosine similarity

- Rate the set of friends as a whole instead of each potential neighbor
- Choose a set of neighbors that covers the user's interests

How good are Gossple friends?

How to discover the **c**"best friends"?

Through gossip

Piling up gossipprotocols

Gossip-based computing

Parameter Space: Peer selection, Data exchanged, Data processing)

Active thread

Wait (T time units)
P <- selectPeer()
myDescriptor<- (my@,0)
buffer <- merge
 (dataExchanged(view),{myDescri
 ptor})
send buffer to p</pre>

receive buffer from p
 buffer <- merge(buffer, view)
view<- dataProcessing(buffer)</pre>

increaseage(view)

Passive Thread

(p,view_p) <- waitMessage()</pre>

myDescriptor<-(my@,0)
 buffer <-merge
 (dataExchanged(view),{myDescri
 ptor})
send buffer to p</pre>

-increaseage(view)
buffer <- merge(view_p, view)
view<-dataProcessing(buffer)</pre>

increaseage(view)

Overlay maintenance

Decentralized computations

31

INFORMATIQUE FT EN AUTOMATIQUE

Gossple social network

Fri	enc	st

@IP:port	132.154.8.5:2020	
Bloom Filter	010111011001	
Profile	<u>www.inria.fr</u> :inria, computer <u>www.assistants.fr</u> : baby-sitter, english 	
Update time	5	
c entries		

Jniform
sample

@IP: port	102.14.18.1:2110
Bloom Filter	10010000110
Update time	30
<	k entries

Uniform sampling

• O(n/k log n) iterations.

Building the social network

- Two gossip protocols
 - Similarity-based Peer Sampling
 - Random Peer Sampling

- When *p*encounters *q*
 - Evaluate distance betweenp
 - and q, based on individual **similarity** metric
 - and potential new view, based on set similarity metric
 - Use of Bloom filters to limit the communication overhead

Multi-interest protocol

- Score of any combination: NP hard
- Heuristic: Starting from en empty view, builds the best view of size one, then two etc.

```
DataProcessing ()
Bestview ={}
For setSize from 1 to viewSize do
Foreach candidate in candidateSet do
candidateView=bestview U {candidate}
viewScore=SetScore(candidateView}
bestCandidate = candidate that got the highest viewScore
bestView= best View U {bestCandiate}
```


Set item cosine similarity

43

Illustration

Collaborative top-k query

Top-k Processing
 Query q = {t₁, ..., t_n}
 Score(i) = f (Score_{t1}(i), ..., Score_{tn}(i))
 kitems with highest scores as results

Personalized top-k query

- Considered only similar users (threshold on the tagging similarity metric)
- Centralized approach [ABLS 08] do not scale
- Distributed local processing

Partitioned processing [BBGKL, EDBT10]

Collaborative top-k processing

Partial Result List B

Personalized top-k processing

Collaborative top-kprocessing

Stop condition

- the Gossple social network has been exhausted OR
- the user is happy

Evaluation (100,000 delicious users)

Impact of the number of stored profiles

A case for personalization:

- implicit social connections
- efficient gossip protocol

Applications

- **Query expansion**: harvest the personalized information, compute locally
- **Top-k processing**: discover the right helpers, compute remotely
- Recommendation/search

What I did not talk about

- Privacy
 - Gossip on behalf
- Arbitrary behaviors
 - Bombing
- Large-scale indexing

SNDS Workshop. July 29, 2010, Zurich, Switzerland. Co-located with PODC 2010. Submission Deadline: May 20, 2010

