
1

Logic-based techniques for 
Information Integration

Marie-Christine ROUSSET

LIG 

University of Grenoble

2

Information Integration

Sciences

Enterprise

Distributed

Heterogeneous

Data

a difficult challenge !

Web

Administration 



2

Semantics: 
the glue between heterogeneous data sources

• Overview of some challenges and existing 
solutions for representing and exploiting the 
semantics 

– to describe and query heterogeneous pre-existing 
autonomous data sources

• Logic: 

– an appropriate formal background with associated 
automatic reasoning techniques 

Focus on the use of logic for two
primary challenges

(1) Describe and compare the content of pre-
existing data sources 

(2) Create single query interface over multiple and  
heterogeneous data sources



3

Illustration (Challenge1)

Source 1: Flights with atmost one Stop

Source 2: Direct Flights (without Stop) 

Source 3: Flights whose Stop(s) are in  AmericanCities only

Source 4: Flights with atleast one Stop  in  an AmericanCity

Only possible comparison resulting from the description in English:

Source 2 and Source 4 are disjoint

Other comparisons grounded on the logical semantics:

Source 1 ∩∩∩∩ Source 4  ⊆⊆⊆⊆ Source3  (under completeness assumption of Source 3)

Source 2  ⊆⊆⊆⊆ Source3 (under completeness assumption of Source 3                          

and depending on the logical interpretation of   « whose …only »)

Modeling in (description) logic

Source 1: The or Some Flights with atmost one Stop
Source1 ≡≡≡≡ Flight ∩∩∩∩ (≤≤≤≤ 1 Stop) versus Source1 ⊆⊆⊆⊆ Flight ∩∩∩∩ (≤≤≤≤ 1 Stop) 

Source 2: Flights without Stop 
Source2 ⊆⊆⊆⊆ Flight ∩∩∩∩ (≤≤≤≤ 0 Stop) 

Source 3: The Flights whose Stops are in AmericanCities only
Source3 ≡≡≡≡ Flight  ∩∩∩∩ ∀∀∀∀ Stop.AmericanCity

Source 4: Flights with atleast one Stop in an AmericanCity
Source4 ⊆⊆⊆⊆ Flight  ∩∩∩∩ ∃∃∃∃ Stop.AmericanCity

• Force  to solve ambiguities and/or to set clear hypotheses by a 

set of formulas and axioms

• Gain automatic reasoning on those formulas and axioms



4

Illustration (Challenge2)

Woody Allen ’s movies tonight in Paris, where, their reviews ?

Title actor director

Manhattan    Allen            Allen

…..               …….     …...

Police          Depardieu    Godart

…..               …….     …...

…..               …….     …...

…..               …….     …...

Internet Movie Data Base
Depart Arrivee Vol         Horaire

Paris         Toulon    AF655    6:30

…..               …….     …...

…..               …….     …...

…..               …….     …...

…..               …….     …...

Air France

<film>

<titre> à bout de souffle </titre>

<salles>

<nom> Utopia Stella </nom>

<adresse>

<rue> 1, place Pierre Mendès France </rue>

<ville> Saint Ouen (95) </ville> 

</adresse>

…..

</salles>

</film> ….

Pariscope

Sport

Pioline se fait battre en 4 sets par 
un jeune russe …..

Bla bla bla ….

Le Monde

The mediator approach

Mediated schema

on tourism

Description of

the AirFrance source

Description of

the Degriftour source

Description of

Relais&Chateaux

Mediated schema

on cinema

Description of

the Movie DB source

Description of

the Pariscope source

Query engine

query plans

…. ….….….…. …. ….
Movie DB Pariscope Air France Degriftour Relais&ChateauxLe Monde

tourismcinema



5

Modeling and algorithmic issues

• Define a mediated schema
– Structured vocabulary serving as a query

interface for users queries

• Model the content of the sources to integrate
in terms of the mediated schema

• Reformulate et decompose the users queries
in queries executable against the data 
sources 

• Combine the answers of local queries to build
the answers of the global queries

Le Monde

………….

…..……..

…………...

Relais&Chateaux

…………..

…………..

…………...AirFrance

…………..

…………..

…………...

Reformulation of the query: illustration

Film :        

Title :     ?

Actor :  Woody Allen

Cinema :

City : Paris

Address : ? 

MovieDB

Film :        

Title :     

Actor : 

Director :

Year ≥ 1980

Le Louvre

…………..

…………..

…………...Film :        

Title :     

Cinema :

Name : 

Address :

City : Paris

Pariscope

Query Engine

query plans

MovieDB Relais&Chateaux AirInter LeMonde PariscopeLeLouvre

MovieDB(?1, « Woody Allen », -) ∧∧∧∧ Pariscope(?1,-,?2)



6

The underlying machinery is logic-based

Film :        

Title :     ?

Actor :  Woody Allen

Cinema :

City : Paris

Address : ? 

Query Engine

MovieDB

Film :        

Title :     

Actor : 

Director :

Year ≥ 1980

Film :        

Title :     

Cinema :

Name : 

Address :

City : Paris

Pariscope

Qv(?1, ?2):- MovieDB( ?1, « Woody Allen », -) ∧∧∧∧ Pariscope( ?1,-, ?2)

Q(?1, ?2):- Film(X) ∧∧∧∧ Title(X,?1) ∧∧∧∧ Actor(X, « Woody Allen ») 

∧∧∧∧ Cinema(X,Y) ∧∧∧∧ City(Y, « Paris ») ∧∧∧∧ Address(Y, ?2)

Film(X) ∧∧∧∧ Title(X,X1) ∧∧∧∧ Actor(X,X2) ∧∧∧∧

Director(X,X3) ∧∧∧∧ Year(X,Z) ∧∧∧∧ Z ≥≥≥≥ 1980

MovieDB(X1,X2,X3):-

Film(X) ∧∧∧∧ Title(X,X1) ∧∧∧∧

Cinema(X,Y) ∧∧∧∧ Name(Y,X2) ∧∧∧∧

Address(Y,X3) ∧∧∧∧ City(Y, «Paris»)

Pariscope(X1,X2,X3):-

Plan 

• Logical foundations of databases

– for modeling schemas, constraints, queries, views

– for query containment and rewriting 

• Description logics in a nutshell for reasoning on 
data semantics

• Models and algorithms for (virtual) integration of 
heterogeneous data sources 



7

Logic: a unifying framework for 
posing and solving database

problems

Queries

• Open formula of first-order logic (FOL)

q(x): ∃ y Φ(x,y)
– x is a vector of free  (distinguished) variables

− Φ(x,y) is a formula the free variables of which are those
of x and y (with possibly constants and bound variables)

• Example (conjunctive query)
q(X) : ∃A,C Flight(X)∧ ArrivalAirport(X,A) ∧ Located(A,C) ∧ Capital(C)

Datalog notation :

q(X) ← Flight(X)∧ ArrivalAirport(X,A) ∧ Located(A,C) ∧ Capital(C)



8

Logical semantics

• Answers to a query q relatively to a KB K

Ans(q,K) = {a | K |= q(a)}
– K is a set of closed formulas 

• A DB extension (a set of facts R(a1, …,an) where R is a 
relation of the schema) + possibly contraints 

• Abox ∪ Tbox (a KB expressed in Description Logic)

– a is a vector of constants appearing in  K

– q(a): obtained from ∃ y Φ(x,y) by replacing variables of x
with constants of a

K |= q(a): the tuple a satisfies the query q in all the 
interpretations satisfying (models of) K 

Interpretations of formulas in logic

• an interpretation I of ϕ:
– A domain of interpretation ∆I

– A  function of interpretation mapping
• constants a in ϕ to elements aI of ∆I

• (functions f and relations R) in ϕ to (functions fI from ∆I to ∆I ) to relations 
RI on ∆I

– Rules of interpretation for interpreting any formula from the 
interpretation of its sub-formulas

• Interpretation of a closed formula: true or false
• Interpretation of an open formula with n free variables: an n-ary relation on 

∆I

• A model of a formula  ϕ: an interpretation I such that
– ϕ I = true (if ϕ is closed)
– ϕ I ≠ Ø (if ϕ is open)



9

Rules of interpretation for quantifiers

• Let ϕ be a closed formula of the form ∀x ψ

[∀x ψ(x) ]I = true iff for every e ∈ ∆I , ψI (e) is true

• Let ϕ be a closed formula of the form ∃x ψ

[∃ x ψ(x) ]I = true iff there exists e ∈ ∆I , ψI (e) is true

• Let ϕ(x1,…,xn) be a formula with n free variables l

[ϕ(x1,…,xn)]I = {(e1,…,en) ∈ ∆I x …x ∆I / ϕI(e1,…,en) is
true}

K |= q(a): particular case

K is a DB extension, q a positive formula
• K can be viewed as an Herbrand model

– ∆I = the set of all the constants in the DB extension
– aI = a for every constant a
– RI = R for every relation R

• K |= q(a) is reduced to evaluate q(a)  in K
• If q is a conjunctive query

– K |= q(a) is true iff there exists a mapping m from the constants 
and existential variables of q(a) to constants in K such that for 
every conjunct R(t1,…, tn) of q(a): R(m(t1), …, m(tn)) is in K

Homomorphism theorem in [Chandra-Merlin 77]: 
Optimal implementation of conjunctive queries in relational database

9th ACM symposium on Theory of Computing (STOC’77)



10

Reasoning problems in FOL

• Satisfiability checking of a formula or a set of formulas
– existence of a model

• Logical entailment: ϕ1, …, ϕn |= ϕ
– Every model of ϕ1, …, ϕn is a model of ϕ

– Can be reduced to satisfiability checking: 

ϕ1, …, ϕn, ¬ϕ is unsatisfiable

• Semi-decidable problems
– There does not exist an algorithm to decide whether any

formula is satisfiable or not (is entailed or not by a given set of 
formulas)

– Infinite number of interpretations of a FOL formula

Query evaluation

• A reasoning problem
q(x): ∃ y Φ(x,y)

Ans(q,K) = {a | K |= q(a)}

• Decidable case
K = DB extension
q : conjunctive query

q(X) : ∃∃∃∃A,C Flight(X)∧∧∧∧ ArrivalAirport(X,A) ∧∧∧∧ Located(A,C) ∧∧∧∧ Capital(C)

– polynomial in the size of the data, NP-complete in the size of the 
query

(results from the homomorphism theorem [Chandra-Merlin 77])

– Optimized algorithms for efficient computation of Ans(q,K) in 
DBMSs



11

Query containment

• Let q1(x): ∃ y1 Φ1(x,y1) and q2(x): ∃ y2 Φ2(x,y2)

q1⊆ q2 iff

Ans(q1, I(DB)) ⊆ Ans(q2, I(DB)) for every I(DB)

• Another reasoning problem: 

∃ y1 Φ1(x,y) |= ∃ y2 Φ2(x,y2) ?

Particular case: containment of 
conjonctive queries

• NP-complete problem

• Algorithm illustrated on an example : 
q1(X): R(X,Y), R(Y,Z), R(Z,Z)

q2(X’): R(X’,Y’), R(Y’,Z’1), R(Y,Z’2)

– q1 viewed as a DB extension by freezing its
variables : X , Y and  Z considered as constants

– evaluating q2 against this DB « extension »
• If X is an answer : YES

• If not: NO (q1 is not contained in q2)

– On the example: X is an answer and thus q1⊆ q2 



12

No containment: example

q1(X): R(X,Y), R(Y,Z), R(Z,Z)

q2(X’): R(X’,Y’), R(Y’,Z’1), R(Y’,Z’2)

– q2 ⊄⊄⊄⊄ q1

– Freezing the variables of q2: 

X’ , Y’ , Z’1 ,  Z’2 are distinct constants

– Evaluation of q1 against this D « extension »

• Ans(q1, freeze(q2)) =  ∅ thus: q2 ⊄ q1 

Query containment

• Central problem for the comparison of different data 
sources 

– A query : a formula that describes in a compact way the 
content of a data source

• Other decidable cases :

– When the queries are expressible in Description Logic

– Query containment = subsomption between two concept 
descriptions 

– Extended with constraints on the schema: inclusion statements
between concept expressions 



13

Description logics in a nutshell
for reasoning on data 

semantics

Description Logics

• Logic-based representation of classes  of objects
using a set of constructors (having a FOL 
semantics)

– Decidable fragments of FOL based on unary and binary
predicates

• Unary predicates: classes (called concepts)

• Binary predicates: properties (called roles)

• Many decidability and  complexity results for 
reasoning problems

• Implemented reasoners: RACER, PELLET



14

Description Logics by example

the description :

is subsumed by :

is disjoint with:

Paper ∩ (∃ Author PhDStudent) ∩ (∃ Author (¬ PhDStudent))

Paper ∩ (≥ 2 Author) 

Paper ∩ (∀ Author PhDStudent) 

Description Logics by example

the query / the source content  :

is contained in :

is disjoint with:

Paper ∩ (∃ Author PhDStudent) ∩ (∃ Author (¬ PhDStudent))

Paper ∩ (atleast 2 Author) 

Paper ∩ (∀ Author PhDStudent) 

{x| Paper(x) ∧∃∧∃∧∃∧∃y (Author(x,y) ∧∧∧∧ PhDStudent (y)) ∧∧∧∧ ∃∃∃∃z(Author (x,z) ∧∧∧∧ ¬¬¬¬ PhDStudent(z))}

{x| Paper(x) ∧∃∧∃∧∃∧∃y ∃∃∃∃z (Author(x,y) ∧∧∧∧ (Author (x,z) ∧∧∧∧ (y≠z)}

{x| Paper(x) ∧∧∧∧(∀∀∀∀y (Author(x,y)⇒⇒⇒⇒ PhDStudent (y)) }

(restricted) negation



15

FOL semantics of the main 
constructors

(C1 ∩ C2)(X) ≡ C1(X) ∧ C2(X)

(C1 ∪ C2)(X) ≡ C1(X) ∨ C2(X)

(∀ R C)(X) ≡ ∀Y (R(X,Y) ⇒ C(Y))

(∃ R C)(X) ≡ ∃Y (R(X,Y) ∧ C(Y))

(≥ n R)(X) ≡ ∃Y1 … Yn (R(X, Y1) ∧ … ∧ R(X, Yn) ∧

∧{i,j/i≠j} Yi ≠ Yj

(≤ n R)(X) ≡ ∀ Y1 … Yn+1 (R(X, Y1) ∧ … ∧ R(X, Yn+1) 

⇒ ∨ {i,j/i≠j} Yi = Yj )

A Description Logic KB

Abox A : a set of facts

Professor(Jim)    HasTutor(John, Mary)   TeachesTo(John, Bill)

Tbox T : a set of General Concept Inclusions (CGI)

Professor ⊆ ∃TeachesTo

Student ⊆ ∃HasTutor

∃TeachesTo- ⊆ Student

∃HasTutor- ⊆ Professor

Professor ⊆ ¬Student



16

Reasoning problems
• Subsumption checking

– Between two concept descriptions

– Between two concept descriptions given a set of GCIs
defined in a Tbox T: 

T |= C1 ⊆ C2 ?

• Membership checking of an instance to a concept
– Given a concept C, a constant a, a Tbox T, an Abox A (a set 

of facts of the form A(b) and P(b,c))

T ∪ A |= C(a) ?

• Many decidability and complexity results in 
function of the constructrors and the GCIs allowed
in T 

Some results of complexity

Constructors Complexity of subsumption checking

ALN (∩, ∀, ≥, ≤) P

ALE (∩, ∀, ∃) NP-complet

ALNE (∩, ∀, ∃, ≥, ≤) NP-complet

ALN + conjunction of roles co-NP-hard

ALC (∩, ∀, ¬) Pspace-complet

DL-Lite (GCIs with restriction on ¬¬¬¬, ∃∃∃∃) P



17

Example of constraints expressible in 
DL-Lite 

Professor ⊆ ∃TeachesTo PI

Student ⊆ ∃HasTutor PI

∃TeachesTo - ⊆ Student PI

∃HasTutor - ⊆ Professor PI

Professor ⊆ ¬Student NI

HasTutor - ⊆ TeachesTo PI

Expressivity of DL-Lite 
• Captures the main constraints used in DB and 

Software Engineering 
– Relation ISA  : A1 ⊆ A2

– Disjunction : A1 ⊆ ¬A2

– typing : 
• ∃P ⊆ A1 (the first attribute of P is typed by A1)

• ∃P - ⊆ A2 (the second attribute of  P is typed by A2)

– Mandatory or forbidden properties : 
• A ⊆ ∃P A ⊆ ∃P - A ⊆ ¬∃P A ⊆ ¬∃P –

• Extends RDFS and corresponds to a profile of 
OWL2
– Languages for describing metadata and ontologies

– W3C standards for the Semantic Web



18

DL used for reasoning on data 

• Comparing different data sources described using DL

– Inclusion, disjointness

• Checking query containment in presence of constraints on 
the schema

• Checking data consistency

• Checking that there exists an answer for a query without
evaluating it

• Reformulating queries (generalization, specialization)

• DL reasoning is « open-world »: the data are incomplete

– It is the case for Web data (in contrast with DBMS)

Close versus Open World

• Close World
– Constraints are used to check consistency but also the 

completeness of the DB
Professor ⊆⊆⊆⊆ ∃∃∃∃TeachesTo
Referential constraint: all the constants of the table Professor must appear in 

the table TeachesTo

– Constraints are then not used to compute the answers

• Open World
– Constraints are additional knowledge on the 

(incomplete) data declared in the DB
– They can be used in the reasoning underlying the query

evaluation



19

Example

Professor

Mary

Jim

Tom

TeachesTo

Mary Bill

John    Ann

q(x): TeachesTo(x,y)

Ans(q,K) = {Mary, John, Jim, Tom}

+  

Professor ⊆⊆⊆⊆ ∃∃∃∃TeachesTo

K:

Answering queries in Open World

• Problem in general as hard as reasoning in FOL 
or in fragments of FOL

– For each tuple a of constants, K |= q(a) ?

• Decidable fragments for which Ans(q,K) is
polynomial in the size of the data

– Deductive DB: K = DB + rules

– DL-Lite: K = Abox + Tbox

• Common approach: 

– reformulation of the query in a union of queries that are 
directly executable against a DB 



20

Illustration in DL-Lite

Conjunctive queries on concepts and atomic roles :

q0(x) ← TeachesTo(x,y)∧HasTutor(y,z)

Abox A :

Professor(Jim)    HasTutor(John, Mary)   TeachesTo(John, Bill)

Tbox T :

Professor ⊆ ∃TeachesTo

Student ⊆ ∃HasTutor

∃TeachesTo- ⊆ Student

∃HasTutor- ⊆ Professor

Professor ⊆ ¬Student

Query reformulation  

• Reformulation algorithm: illustration

q1(x) ← TeachesTo(x,y)∧Student(y)

q2(x) ← TeachesTo(x,y)∧TeachesTo(z’,y)

q3(x) ← TeachesTo(x,y’)

q4(x) ← Professor(x)

q5(x) ← HasTutor(u,x)

– For each i:     qi,T |= q0

– Ans(q0,T ∪∪∪∪ A) = ∪∪∪∪i  Ans(qi,A)

• Sound algorithm if T∪A is satisfiable



21

Illustration

Abox A :

Professor(Jim)    HasTutor(John, Mary)   TeachesTo(John, Bill)

Query:  q0(x) ← TeachesTo(x,y)∧HasTutor(y,z)

Reformulations:

q1(x) ← TeachesTo(x,y)∧Student(y)

q2(x) ← TeachesTo(x,y)∧TeachesTo(z’,y)

q3(x) ← TeachesTo(x,y’)

q4(x) ← Professor(x)

q5(x) ← HasTutor(u,x)

Ans(q,A∪∪∪∪T) = {Mary, Jim, John}

Satisfiability checking

• T ∪ A may be unsatisfiable
Abox A :

Professor(Jim)    HasTutor(John, Mary)   TeachesTo(John, Bill)

Tbox T :

Professor ⊆ ∃TeachesTo

Student ⊆ ∃HasTutor

∃TeachesTo- ⊆ Student

∃HasTutor- ⊆ Professor

Professor ⊆ ¬Student +  ∃∃∃∃TeachesTo ⊆⊆⊆⊆ ¬¬¬¬ Student

∃∃∃∃HasTutor ⊆⊆⊆⊆ Student



22

Satisfiability checking in DL-Lite
• Saturation of the Negative Inclusions (NIs) that

are translated in boolean conjunctive queries
evaluated against the Abox seen as a DBMS

– True iff A ∪ T unsatisfiable

Abox A :

Professor(Jim)    HasTutor(John, Mary)   TeachesTo(John, Bill)

Tbox T :

∃TeachesTo ⊆ ¬ Student

∃HasTutor ⊆ Student

∃TeachesTo ⊆ ¬ ∃HasTutor

Q: TeachesTo(X,Y)∧∧∧∧ HasTutor(X,Y’)

References

• Logic-based techniques in data integration. A. Halevy, in Logic Based
Artificial Intelligence, Ed. Jack Minker, Kluwer Publishers, 2000.

• Query Containment for Data Integration Systems, T. Millstein, A.Levy, M. 
Friedman, Proceedings PODS 2000

• Decidable reasoning in terminological knowledge representation systems,

Buccheit M., Donini, F., Schaerf A., 

Journal of Artificial Intelligence Research, Volume 1, 1993

• Reasoning in Description Logics,

Donini F., Lenzerini M., Nardi D., Schaerf A., 

Principles of Artificial Intelligence, G. Brewka editor, Springer Verlag, 1995

• D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-Lite: 
Tractable Description Logics for Ontologies, Proceedings of AAAI 2005.

• D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data 
Complexity of Query Answering in Description Logics, Proceedings of KR 
2006



23

Models and algorithms for (virtual) 
integration of heterogeneous data sources 

The mediator approach

Mediated schema

on tourism

Description of

the AirFrance source

Description of

the Degriftour source

Description of

Relais&Chateaux

Mediated schema

on cinema

Description of

the Movie DB source

Description of

the Pariscope source

Query engine

query plans

…. ….….….…. …. ….
Movie DB Pariscope Air France Degriftour Relais&ChateauxLe Monde

tourismcinema



24

Underlying principles

• Defining a mediated schema (also called a global 
schema) : serving as query interface for users

• Specifying schema mappings between the global 
schema and the schemas of the local data sources
– Global-As-Views (GAV) approach: the global relations 

are defined as  views over the local relations

– Local-As-Views (LAV) approach: the local relations are 
defined as views over the global relations

• Rewriting the users queries (expressed using global 
relations) in terms of local relations => logical query
plan

Views

• Named queries that can be re-used in other
queries
– Represents by a formula the answer set of a query or 

the content of a data source

• Example
Source1(X,Y1,Y2) : Flight(X) ∧∧∧∧ DepartureAirport(X,Y1) ∧∧∧∧ ArrivalAirport(X,Y2)

Source2(X,Y) : Place(X) ∧∧∧∧ Located(X,Y) ∧∧∧∧ Capital(Y)

• Can be materialized or virtual
– Their extension is stored (in memory or in a cache) or 

computed on demand (by querying a data source)



25

Different semantics

of the correspondance v(x) : def(x,y) between the view
and the query defining it:

– « exact» semantics

Ext(v) = Ans(def,K)

axiom : ∀∀∀∀x [v(x) ⇔⇔⇔⇔ ∃∃∃∃y def(x,y)] added to  K

– « sound » semantics

Ext(v) ⊆ Ans(def,K)

axiom : ∀∀∀∀x [v(x) ⇒⇒⇒⇒ ∃∃∃∃y def(x,y)] added to K

– « complete » semantics

Ans(def,K) ⊆ Ext(v)

axiom : ∀∀∀∀x [∃∃∃∃y def(x,y) ⇒⇒⇒⇒ v(x)] added to  K

The Global-As-Views approach



26

Illustration on 4 existing data sources

• S1: a catalogue of teaching programs of (some) French 
universities

S1.Catalogue(nomUniv, programme)

• S2: Erasmus students enrolled in courses of (some) 
European universities

S2.Erasmus(student, course, univ)

• S3: Foreign students enrolled in programs of (some) 
French universities

S3.CampusFrance(student, program, university)

• S4: the course content of (some) international master 
programs

S4.Mundus(programTitle,course)

GAV modeling of a mediated schema

University (U) : S1.Catalogue(U,P)  ∨∨∨∨ S2.Erasmus(N,C,U) 
∨∨∨∨ S3.CampusFrance(N’,P’,U) 

MasterStudent (N) : S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨∨∨∨ S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

MasterCourse (C): S4.Mundus(P,C)

MasterProgram(P): S4.Mundus(P,C)

EnrolledIn (N,P): S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨∨∨∨ S3.CampusFrance(N,P,U’),S4.Mundus(P,C’)

RegisteredTo(N,U): S3.CampusFrance(N,P,U), 



27

Logical semantics of GAV mappings

MasterStudent (N) : S2.Erasmus(N,C,U), S4.Mundus(P,C)

∨∨∨∨ S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

Exact semantics:

∀∀∀∀N [ (∃∃∃∃C∃∃∃∃U ∃∃∃∃P (S2.Erasmus(N,C,U) ∧∧∧∧ S4.Mundus(P,C))

∨∨∨∨ (∃∃∃∃C’∃∃∃∃U’ ∃∃∃∃P’ ( S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)))

⇔⇔⇔⇔ MasterStudent (N) ]

Sound semantics:

∀∀∀∀N [ (∃∃∃∃C∃∃∃∃U ∃∃∃∃P (S2.Erasmus(N,C,U) ∧∧∧∧ S4.Mundus(P,C))

∨∨∨∨ (∃∃∃∃C’∃∃∃∃U’ ∃∃∃∃P’ ( S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)))

⇒⇒⇒⇒ MasterStudent (N) ]

Query rewriting by unfolding

The two semantics express how to obtain tuples for 
the corresponding global relation

⇒The logical query plans are obtained by unfolding
each atom of the query, i.e., by replacing each atom
that can be matched with the head of atleast one 
view with the body of the corresponding view
(possiblly splitted in conjunctive views) 

MasterStudent (N) : S2.Erasmus(N,C,U), S4.Mundus(P,C)

MasterStudent (N) : S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)



28

Illustration 

Query: q(x): RegisteredTo(s,x), MasterStudent(s)

Conjunctive views:
RegisteredTo(N,U): S3.CampusFrance(N,P,U)

MasterStudent (N) : S2.Erasmus(N,C,U), S4.Mundus(P,C)

MasterStudent (N) : S3.CampusFrance(N,P’,U’),S4.Mundus(P’,C’)

2 rewritings by unfolding:
(existential variables in the view bodies are replaced by new variables)

u1(x): 
S3.CampusFrance(s,v1,x), S2.Erasmus(s,v2,v3),S4.Mundus(v4,v2)

u2(x): 
S3.CampusFrance(s,v5,x), S3.CampusFrance(s,v6,v7), 
S4.Mundus(v6,v8)

Illustration (ctd) 
Simplification of  u2(x): 

S3.CampusFrance(s,v5,x), S3.CampusFrance(s,v6,v7), 
S4.Mundus(v6,v8)

by unifying the two first atoms into S3.CampusFrance(s,v6,x)

with the substitution σ = {v5/v6, v7/x} where v5 and v7 are

unbounded existential variables

⇒equivalent query expression

2 resulting logical query plans:

u1(x):  
S3.CampusFrance(s,v1,x), S2.Erasmus(s,v2,v3),S4.Mundus(v4,v2)

u’2(x): S3.CampusFrance(s,v6,x), S4.Mundus(v6,v8)



29

Results and discussion

• The union U of the logical query plans obtained by 
unfolding the atoms of a query q using a set GV of  GAV 
mappings is complete : for every instance I of the source 

relations, ans(q, GV ∪ I) = ∪u ∈Uans(u,I)

• The evaluation of some query plans may lead to redundant
answers or to no answer at all

– It can be known in advance (before their execution)  if some
additional knowledge is provided

– Example: from the knowledge that the students found in S3. 
CampusFrance are non European Students, while those found in 
S2.Erasmus are European students, we can infere that the query
plan u1 will return an empty set of  answers

u1(x):  S3.CampusFrance(s,v1,x), S2.Erasmus(s,v2,v3),S4.Mundus(v4,v2)

Main limitation of the GAV approach

• Adding or removing data sources requires to revise
all the GAV mappings defining the global schema
– when a new data source arrives, we must consider how 

it may be combined with all the existing data sources to 
produce tuples of any global relation

⇒ In the Local-As-Views (LAV)  approach, the 
mediated schema is designed to remain stable even
when data sources join or leave the integration
system



30

The LAV approach

• The mediated schema is defined as a set of global 
relations in function of a given domain

• Example :

Student(studentName),…,  University(uniName)

Program(title), MasterProgram(title), Course(code)

EnrolledInProgram(studentName,title)

EnrolledInCourse(studentName,code), PartOf(code,title)

RegisteredTo(studentName, uniName)

OfferedBy(title, uniName)

LAV mappings

S1.Catalogue(U,P):  

FrenchUniversity(U), Program(P), 
OfferedBy(P,U), OffereBy(P’,U), MasterProgram(P’)

S2.Erasmus(S,C,U):

Student(S), EnrolledInCourse(S,C), PartOf(C,P),

OfferedBy(P,U), EuropeanUniversity(U), RegisteredTo(S,U’)

EuropeanUniversity(U’),  U≠≠≠≠U’

S3. CampusFrance(S,P,U):

NonEuropeanStudent(S), EnrolledInProgram(S,P),

Program(P), Offeredby(P,U), FrenchUniversity(U), 

RegisteredTo(S,U)

S4.Mundus(P,C):

MasterProgram(P), OfferedBy(P,U), OfferedBy(P,U’), 
EuropeanUniversity(U), NonEuropeanUniversity(U), 
PartOf(C,P)



31

Logical semantics of the LAV mappings

S1.Catalogue(U,P):  

FrenchUniversity(U), Program(P), 
OfferedBy(P,U), OffereBy(P’,U), MasterProgram(P’)

Exact semantics:

∀∀∀∀U ∀∀∀∀P [S1.Catalogue(U,P) 

⇒⇒⇒⇒ ∃∃∃∃P’ (FrenchUniversity(U), Program(P), 
OfferedBy(P,U), OffereBy(P’,U), MasterProgram(P’))]

Sound semantics:

∀∀∀∀U ∀∀∀∀P [S1.Catalogue(U,P) 

⇔⇔⇔⇔ ∃∃∃∃P’ (FrenchUniversity(U), Program(P), 
OfferedBy(P,U), OffereBy(P’,U), MasterProgram(P’))]

Discussion
• Allows a fine-grained description of the data 

sources, and a loose coupling between local and 
global relations
– Important for robustness and flexibility

• Illustration: if we are interested in Master students, we do 
not need to know in advance how to join the available data 
sources to obtain them like in the GAV approach ; we just
define them as a global query
MasterStudent(S): 

Student(S), EnrolledInProgram(S,P), MasterProgram(P)

• Price to pay flexibility and robustness: building the 
rewritings requires more work than the simple 
unfolding of the GAV approach
– Several algorithms: Bucket, Minicon, Inverse-rules



32

The Bucket algorithm
• Input  

– A conjonctive query (with comparison predicates) over a 
global schema

– A set of local relations defined as conjunctive views (with
comparison predicates) « sound» semantics)  over the 
global schema

• output : a set of conjunctive queries over the local 
relations

• Implemented in Information Manifold
A.Levy, A. Rajaraman, J.Ordille. Querying heterogeneous information 

sources using source descriptions. Proceedings of the Int.Conference on Very

Large Data bases (VLDB 96)

Principle: two steps

• Create a « bucket» for each atom g of the query

– Store each view atom with an atom in its definition being
unifiable with g (without violating comparison predicates) 

• Build the set of candidate rewritings

– Take one view-atom in each bucket and take their
conjunction

– For each candidate rewriting,  check if its expansion is
contained in the query

• If yes: return it in the output

• If no : try to add some comparison predicates to satisfy the 
containment



33

Creation of the buckets: illustration

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

• RegisteredTo(S,U’) is in the definition of S2.Erasmus(S,C,U)

but mapping the existential variable U’ in the view definition
to the distinguished variable x  in the query is not enough
to infer RegisteredTo(s,x) from S2.Erasmus(s,C,U)

S2.Erasmus(s,C,U) is not added to Bucket(RegisteredTo(s,x))

• RegisteredTo(S,U) in the definition of S3.CampuFrance(S,P,U)

has U as distinguished variable  to which the distinguished
variable x can be mapped

Bucket(RegisteredTo(s,x)) = {S3.CampusFrance(s, v1,x)}

Combination of the buckets

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

Bucket(RegisteredTo(s,x)) = {S3.CampusFrance(s, v1,x)}

Bucket(EnrolledInProgram(s,p)) = {S3.CampusFrance(s, p,v2)}

Bucket(MasterProgram(p)) = {S1.Catalogue(v3,v4), 
S4.Mundus(p,v5)}

⇒ 2 candidate rewritings :
r1(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2), 

S1.Catalogue(v3,v4)

r2(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2), 

S4.Mundus(p,v5)



34

Complexity

The creation of buckets:

O(NxMxV) 

N= size of the query, V= number of views, M = size of the views

⇒ N buckets containing each O(MxV) view atoms

⇒ The number of candidate rewritings : O((MxV)N)

Verification of each candidate rewriting

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

r1(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2), 

S1.Catalogue(v3,v4)

r1(x)  is a valid rewriting 

iff r1(x)  together with the LAV mappings logically entail q(x)

iff the expansion of (r1(x)) is contained in q(x)



35

Verification by expansion and 
containment checking

q(x): RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

r1(x): S3.CampusFrance(s, v1,x), S3.CampusFrance(s, p,v2), 

S1.Catalogue(v3,v4)

Expand(r1(x)): NonEuropeanStudent(s), EnrolledInProgram(s,v1),

Program(v1), Offeredby(v1,x), FrenchUniversity(x), 

RegisteredTo(s,x), EnrolledInProgram(s,p),

Program(p), Offeredby(p,v2), FrenchUniversity(v2), 

RegisteredTo(s,v2), FrenchUniversity(v3), Program(v4), 

OfferedBy(v4,v3), OffereBy(v5,v3), MasterProgram(v5)

Expand(r1(x)) is not contained in q(x)  :  r1 is not a valid rewriting

Minicon : optimization of Bucket

• Containment checking is avoided by a stricter
verification of the atoms to add to the buckets

– When the definition of a view V contains an  
atom g’ such that : σ( g’) = g

• If an existential  variable  Y of g appears in other
atoms g1, g2, …, gk of the query

• If Y’ = σ(Y) is also existential in the view definition

– σ(V) is added to Bucket(g) only if g1, g2, …, gk are also
covered by the definition of σ (V)



36

Illustration

V4(X) : cite(X,Y), cite(Y,X)

V5(X,Y) : sameTopic(X,Y)

V6(X,Y) : cite(X,Z) , cite(Z,Y) , sameTopic(X,Z)

Query : Q(U) : cite(U,V) , cite(V,U) , sameTopic(U,V)

Bucket (cite(U,V)) ?

- V4(U) is not added because sameTopic(U,V) is not covered by the definition of V4(U)

- V6 ? 

σ(X)=U et σ(Z)=V

Covering of  cite(V,U) by the definition of V6(U,Y) => σ(Y)=U

Covering of  sameTopic(U,V) by the definition of  σ (V6(X,Y)) ? yes

Bucket(cite(U,V)) = {V6(U,U)}

cover(V6(U,U)) = {cite(U,V), cite(V,U), sameTopic(U,V)}

=> r(U): V6(U,U) is a valid rewriting of q(U)

Advantages of Minicon

• The rewritings are directly obtained by taking the 
conjunction of the view-atoms in the « buckets »
which have pairwise disjoint coverings

• Results

– theoretical : 

• same worst-case complexity as Bucket (exponential in the 
size of the query)

– experimental : 

• Scalable when there are many views



37

The Inverse-rules algorithm

• Principle:

– The LAV mappings are splitted into GAV mappings
(called inverse rules)

independently of the query

• Existential variables are replaced by Skolem terms in order
to keep the binding of the different occurrences of existential 
variables

– At query time, the rewritings are obtained by unfolding

• The unfolding operation is a little trickier because of the 
Skolem functions

Illustration

V4(X) : cite(X,Y), cite(Y,X)

V5(X,Y) : sameTopic(X,Y)

V6(X,Y) : cite(X,Z) , cite(Z,Y) , sameTopic(X,Z)

Result of the Inverse-rules algorithm:

cite(X,f1(X)): V4(X)

cite(f1(X),X)): V4(X)

sameTopic(X,Y): V5(X,Y)

cite(X,f2(X,Y)): V6(X,Y)

cite(f2(X,Y),X)): V6(X,Y)

sameTopic(X,f2(X,Y)): V6(X,Y)



38

Query unfolding (illustration)

Q(U):

cite(U,V),cite(V,U),sameTopic(U,V)

σ={X/U, V/f1(U)}

Q’1(U):

V4(U),cite(f1(U),U),sameTopic(U,f1(U))

Q’2(U):

V4(U), V4(U),sameTopic(U,f1(U))

Q’3(U):

V4(U), V5(U,f1(U))

cite(X,f1(X)): V4(X)
cite(f1(X),X)): V4(X)
sameTopic(X,Y): V5(X,Y)
cite(X,f2(X,Y)): V6(X,Y)
cite(f2(X,Y),X)): V6(X,Y)
sameTopic(X,f2(X,Y)): V6(X,Y)

The evaluation of this query plan  will produce no answer: there is
no way to match V5(U,f1(U)) with a fact V5(a,b) in the data source

Query unfolding (illustration ctd)
Q(U):

cite(U,V),cite(V,U),sameTopic(U,V)

σ={X/U, V/f2(U,Y)}

Q’’1(U): V6(U,Y),cite(f2(U,Y),U),

sameTopic(U,f2(U,Y))

σ={X/U, Y/U}

Q’’2(U):

V6(U,U),V6(U,U),sameTopic(U,f2(U,U))

Q’’3(U): V6(U,U),V6(U,U), V6(U,U)

simplified in:

Q’’4(U): V6(U,U)

=> a valid query plan

cite(X,f1(X)): V4(X)
cite(f1(X),X)): V4(X)
sameTopic(X,Y): V5(X,Y)
cite(X,f2(X,Y)): V6(X,Y)
cite(f2(X,Y),X)): V6(X,Y)
sameTopic(X,f2(X,Y)): V6(X,Y)



39

Summary

• When the queries and the views are (unions of) 
conjonctive queries over simple relational
schemas, the number of (maximal) conjunctive
rewritings is finite and there are several
algorithms to compute them

• It is not necessary the case when constraints are 
added

– to the mediated schema

– to the views (to express constraints on their access)

DL-Lite (again)

• If the constraints on the schema are expressible in DL-Lite

– Consistency checking of the views:

• Saturation and translation of the NIs into boolean conjunctive queries

• Application of MiniCon for computing the rewritings of those boolean queries
into views

• Evaluation of those rewritings against the view extensions

– Rewriting of the query:

• Reformulation of the query using the PI

• Application of MiniCon for computing the rewritings of each reformulation

• The computation of all the answers is not possible when
the schema constraints requires (slight) extensions 

– The instance recognition (and thus the tuple recognition problem) 
is NP-complete in data complexity for slight extensions of DL-Lite



40

References
• Querying heterogeneous information sources using source descriptions. A.Levy, A. 

Rajaraman, J.Ordille. Proceedings of the Int.Conference on Very Large Data bases 
(VLDB 96)

• Information Integration Using Logical Views, J. Ullman, Proceedings ICDT ’97
• Logic-based techniques in data integration. A. Halevy, in Logic Based Artificial

Intelligence, Ed. Jack Minker, Kluwer Publishers, 2000.
• Query Containment for Data Integration Systems, T. Millstein, A.Levy, M. Friedman, 

Proceedings PODS 2000
• Complexity of Answering Queries Using Materialized Views, S. Abiteboul, O. Duschka, 

Proceedings PODS 1998
• Theory of Answering Queries Using Views, A. Halevy, Proceedings of SIGMOD 2000
• The Use of CARIN Language and Algorithms for Information Integration: the PICSEL 

System, F. Goasdoué, V. Lattès, -C. Rousset. International Journal of Cooperative
Systems, Vol 9, Number 4 (2000)

• Minicon: a scalable algorithm for answering queries using views. R. Pottinger, A. Halevy, 
VLDB Journal, Volume 10 (2-3), 2001.

• Query Rewriting and Answering under Constraints in Data Integration Systems, A. Cali, 
D. Lembo, and R. Rosati, Proceedings of IJCAI 2003

• D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-Lite: Tractable 
Description Logics for Ontologies, Proceedings of AAAI 2005.

• D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data Complexity of 
Query Answering in Description Logics, Proceedings of KR 2006


