Schemas for safe and efficient XML processing

Dario Colazzo

Université Paris Sud - INRIA

Ecole Thématique BDA 2010 - Les Houches

Plan

- XML \& XML schema
- Correctness and result analysis
- Schema based projection
- Constraint based approach for efficient subtyping and validation

Plan

- XML \& XML schema
- Correctness and result analysis
- Schema based projection

Informal,
examples, and main ideas
~ 15 minutes

- Constraint based approach for efficient subtyping and validation.

Plan

- XML \& XML schema
- Correctness and result analysis
- Schema based projection

Informal,
examples, and main ideas
~ 15 minutes

- Constraint based approach for efficient subtyping and validation

More formal,
examples + some defs
~ 30 minutes

What are XML schemas useful for?

- To define structural constraints over documents: this is usefeul in many contexts.
- How: mainly by means of regular expressions.
- Main schema languages: DTDs, XML Schema, Relax-NG.
- For all of them, methods for automatic validation exist.
- For XML queries over XML valid documents we can
- automatically check that the query correctly manipulate the input
- automatically infer a schema for data produced by the query

XML query type-checking

Query correctness

```
The quite famous biblio DTD
<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first )>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
.••••
```


Query:

<res>
for \(x\) in doc//(author | editor)
return <nom>x/last</nom>
</res>
Is it correct? Yes, intuitevely

Query correctness

```
The quite famous biblio DTD
```

```
<!ELEMENT bib (book* )>
```

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>

```
<!ELEMENT title (#PCDATA )>
```


Query:

<res>
for x in doc//(author | editor) return <nom>x/last</nom> </res>

Is it correct? Yes, intuitevely
Not according to the traditional \forall-correctness Problems with an \exists-notion

Query correctness

```
The quite famous biblio DTD
```

```
<!ELEMENT bib (book* )>
```

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>

```
<!ELEMENT title (#PCDATA )>
```


Query:

<res>
for x in doc//(author | editor) return <nom>x/last</nom> </res>

Is it correct? Yes, intuitevely
Not according to the traditional \forall-correctness Problems with an \exists-notion

```
We need \(\forall\) quantification on sub-queries and \(\exists\) quantification on instances
```


Query correctness

```
The quite famous biblio DTD
```

```
<!ELEMENT bib (book* )>
```

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>

```
<!ELEMENT title (#PCDATA )>
```


Query:

<res>
for x in doc//(author | editor) return <nom>x/last</nom> </res>

Is it correct? Yes, intuitevely
Not according to the traditional \forall-correctness Problems with an \exists-notion

We need \forall quantification on sub-queries and \exists quantification on instances
$\forall \exists$ correctness
[PhD Thesis, ICFP04]

Query correctness

```
The quite famous biblio DTD
```

```
<!ELEMENT bib (book* )>
```

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>

```
<!ELEMENT title (#PCDATA )>
```


Query:

<res>
for x in doc//(author | editor) return <nom>x/last</nom> </res>

Is it correct? Yes, intuitevely
Not according to the traditional \forall-correctness Problems with an \exists-notion

We need \forall quantification on sub-queries and \exists quantification on instances
$\forall \exists$ correctness
[PhD Thesis, ICFP04]

Query correctness

```
The quite famous biblio DTD
```

```
<!ELEMENT bib (book* )>
```

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>

```
<!ELEMENT title (#PCDATA )>
```


Query:

<res>
for \(x\) in doc//(author | editor) return <nom>x/last</nom> </res>

Is it correct? Yes, intuitevely
Not according to the traditional \(\forall\)-correctness Problems with an \(\exists\)-notion

We need \(\forall\) quantification on sub-queries and \(\exists\) quantification on instances
\(\forall \exists\) correctness
[PhD Thesis, ICFP04]

\section*{Main tools for \(\forall \exists\) correctness}
- A type system allowing to infer types of query paths:
- doc//(author | editor) : (author | author)+
- doc//(author | editor)/second : (second)+
- As a consequence, the type system allows to find types of elements never needed by the query (all XPath axes can be handled)
- This has been used for type-based projection: first types of needed nodes are inferred, and then this information is used to prune the input D in order to obtain a much smaller document D' such that
\[
Q(D)=Q\left(D^{\prime}\right)
\]

Type based projection

\section*{Example}
```
<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first )>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
.....
```

\section*{Query:}

\section*{<res>}
```
for \(x\) in doc//(author | editor) return <nom>x/last</nom>
</res>
```

\section*{Example}
```

<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first )>
<!ELEMENT editor (last, first, affiliation )>
<!ELEMENT title (#PCDATA )>
.....

```

\section*{Type projector \(\mathbf{T}=(\) bib, book, author, editor, last)}

Used at loading time: only T elements are kept, the other ones are not loaded

\section*{Much less memory consumption: we can query quite big documents!}
```

<bib>
<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
</book>
<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
</book>
<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>
</book>
<book year="1999">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>

```

\section*{Test results: space [VLDB06]}

\section*{Test results: time [VLDB06]}

XMark QMi
XPathMark QPj

\section*{What about updates?}
- Type-based projection still ensures optmizations
- Amine Baazizi will give you more details
- Marina Sahakyan can answer questions about efficient implementation of the technique

\section*{Let's go back to type inference}
- Very important problem, crucial for result anlaysis
- Given Q over a schema S, does Q produce values of another expected schema S'
\[
Q: S->S^{\prime} \quad ?
\]
- Method:
- automatic inference of a schema Sout for \(Q\) result values
- automatic checking of inclusion Sout \(\subseteq\) S'
- Problem: schema inclusion has high complexity.
- We found out that for a wide class of schemas it can be efficiently checked. Next subject.

Constraints based subtype checking and validation

\section*{REs and XML types}
- REs define element content models in XML schemas

\author{
DTD : <!ELEMENT book (title, (author | editor)*, price?)>
}

\section*{REs and XML types}
- REs define element content models in XML schemas

\author{
DTD : <!ELEMENT book (title, (author | editor)*, price?)>
}

\section*{REs and XML types}
- REs define element content models in XML schemas
```

DTD: <!ELEMENT book (title, (author | editor)*, price?)>

```
- Our syntax
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T} *
\]

\section*{REs and XML types}
- REs define element content models in XML schemas
```

DTD: <!ELEMENT book (title, (author | editor)*, price?)>

```
- Our syntax
\[
\begin{aligned}
& \mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*} \\
& \text { title } \cdot(\text { (author + editor)* } \cdot(\text { price }+\varepsilon)
\end{aligned}
\]

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]
- \(m \in N u\left\{{ }^{*}\right\}\)

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]
- \(m \in N u\{*\}\)
- \(\quad a=a[1 . .1] \quad a ?=a+\varepsilon \quad a *=a\left[1 . .{ }^{*}\right]\)

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]
- \(m \in N u\{*\}\)
- \(\quad a=a[1 . .1] \quad a ?=a+\varepsilon \quad a *=a\left[1 . .^{*}\right]\)
- \(L(b[1 . .4])=\{b, b b, b b b, b b b b\}\)
- \(L(a \& b)=\{a b, b a\}\)

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]
- \(m \in N u\{*\}\)
- \(\quad a=a[1 . .1] \quad a ?=a+\varepsilon \quad a *=a\left[1 . .^{*}\right]\)
- \(L(b[1 . .4])=\{b, b b, b b b, b b b b\}\)
- \(L(a \& b)=\{a b, b a\}\)

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]
- \(m \in N u\{*\}\)
- \(\quad a=a[1 . .1] \quad a ?=a+\varepsilon \quad a *=a\left[1 . .^{*}\right]\)
- \(L(b[1 . .4])=\{b, b b, b b b, b b b b\}\)
- \(L(a \& b)=\{a b, b a\}\)
- \(L((a \cdot b) \& c)=\{a b c, c a b, a c b\} \quad c b a \notin L((a \cdot b) \& c)\)

\section*{Interleaving and counting}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T}^{*}|\mathrm{~T} \& \mathrm{~T}| \mathrm{T}[\mathrm{n} . . \mathrm{m}]
\]
- \(m \in N u\{*\}\)
- \(\quad a=a[1 . .1] \quad a ?=a+\varepsilon \quad a *=a\left[1 . .^{*}\right]\)
- \(L(b[1 . .4])=\{b, b b, b b b, b b b b\}\)
- \(L(a \& b)=\{a b, b a\}\)
- \(L((a \cdot b) \& c)=\{a b c, c a b, a c b\} \quad c b a \notin L((a \cdot b) \& c)\)

\section*{Interleaving}
- Interleaving is used in XML type languages
- RELAX-NG <interleave> ... </interleave>
- The all group of XSD:
<xsd:complexType name="PurchaseOrderType">
<xsd:all>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:all>
</xsd:complexType>

\section*{The cost of Interleaving}
- Membership
- RE : PTime
- RE with \& : NP-complete
- Inclusion
- RE: PSPACE (EXPTIME for EDTDs) complete
- RE with \& : EXPSPACE complete
- Our conflict-free expressions:
- Inclusion: quadratic [IS09]
- Membership: linear [CIKM08]

\section*{Our conflict-free REs}
\[
\mathrm{T}::=\varepsilon|\mathrm{a}[\mathrm{~m} . . \mathrm{n}]| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T} \& \mathrm{~T}
\]

\section*{Our conflict-free REs}
\[
\mathrm{T}::=\varepsilon|a[m . . \mathrm{n}]| \mathrm{T}+\mathrm{T}|\mathrm{~T} \cdot \mathrm{~T}| \mathrm{T} \& \mathrm{~T}
\]
- Two restrictions:
1. repetition \(\mathrm{T}^{*}\) restricted to \(\mathrm{a}^{*}\) (denoting \(\mathrm{a}\left[1 . .{ }^{*}\right]+\varepsilon\))
2. single occurrence:
\((a+b \cdot a+a \cdot c): n o\)
(a•b?) : ok
- Are these restrictions acceptable?
[BexNevenSchwentickTuyls-VLDB06]: "An examination of 819 DTDs and XSDs ... more than \(99 \%\) of the REs occurring in practical schema's are CHAREs"

\section*{Types as constraints}
\(T=\left((a[1 . .3] \cdot b[2 . .2])+c\left[1 . .{ }^{*}\right]\right)\) and \(w\) in \(L(T)\)

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=S(T)\) is in \(w\);

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=S(T)\) is in \(w\);
- upper-bound: no symbol out of \(\{a, b, c\}\) is in \(w\);

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=S(T)\) is in \(w\);
- upper-bound: no symbol out of \(\{a, b, c\}\) is in \(w\);
- cardinality: if \(a\) is in \(w\), it appears 1,2 or 3 times; if \(b\) is there, it appears twice...

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=S(T)\) is in \(w\);
- upper-bound: no symbol out of \(\{a, b, c\}\) is in \(w\);
- cardinality: if \(a\) is in \(w\), it appears 1,2 or 3 times; if \(b\) is there, it appears twice...
- exclusion: any of \(\{a, b\}\) excludes \(c\) \(c\) excludes any of \(\{a, b\}\)

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=\mathrm{S}(\mathrm{T})\) is in \(w\);
- upper-bound: no symbol out of \(\{a, b, c\}\) is in \(w\);
- cardinality: if \(a\) is in \(w\), it appears 1,2 or 3 times; if \(b\) is there, it appears twice...
- exclusion: any of \(\{a, b\}\) excludes \(c\) \(c\) excludes any of \(\{a, b\}\)
- co-occurrence: a requires \(b ; b\) requires \(a\)

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=\mathrm{S}(\mathrm{T})\) is in \(w\);
- upper-bound: no symbol out of \(\{a, b, c\}\) is in \(w\);
- cardinality: if \(a\) is in \(w\), it appears 1,2 or 3 times; if \(b\) is there, it appears twice...
- exclusion: any of \(\{a, b\}\) excludes \(c\) \(c\) excludes any of \(\{a, b\}\)
- co-occurrence: a requires \(b ; b\) requires \(a\)
- order: any a comes before any b

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \quad \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound (nillability): at least one of \(\{a, b, c\}=\mathrm{S}(\mathrm{T})\) is in \(w\);
- upper-bound: no symbol out of \(\{a, b, c\}\) is in \(w\);
- cardinality: if \(a\) is in \(w\), it appears 1,2 or 3 times; if \(b\) is there, it appears twice...
- exclusion: any of \(\{a, b\}\) excludes \(c\) \(c\) excludes any of \(\{a, b\}\)
- co-occurrence: a requires \(b ; b\) requires \(a\)
- order: any a comes before any b

This is a complete characterization of T !

\section*{Types as constraints}
\[
\mathrm{T}=\left((\mathrm{a}[1 . .3] \cdot \mathrm{b}[2 . .2])+\mathrm{c}\left[1 . .^{*}\right]\right) \quad \text { and } \mathrm{w} \text { in } \mathrm{L}(\mathrm{~T})
\]
- lower-bound S(T)
- upper-bound: \(\operatorname{Upper}(\mathrm{S}(\mathrm{T}))\)
- cardinality: \(a ?[1 . .3] \wedge b ?[2 . .2] \wedge c ?\left[1 . .{ }^{*}\right]\)
- exclusion: \(\{a, b\}<>\{c\}\)
- co-occurrence: \(a \Rightarrow b \wedge b \Rightarrow a\) (abbreviated as \(a \Leftrightarrow b)\)
- order: \(a<b\)

\section*{Constraints}
\(F::=A|A \Rightarrow B| a ?[m . . n]|\operatorname{upper}(A)| A<B \mid F \wedge F^{\prime}\)

\section*{Constraints}
\[
\begin{aligned}
& F::=A|A \Rightarrow B| a ?[m . . n] \mid \text { upper }(A)|A<B| F \wedge F^{\prime} \\
& w \vDash A: w \downarrow A \neq \varnothing \\
& w \vDash A=>B: \text { if } w \vDash A \text { then } w \vDash B \\
& w \vDash A<B: \text { any } A \text { is before any } B \\
& w \vDash a ?[m . . n]: \text { if } a \text { in } w, \text { then } m \leq|w \downarrow a| \leq n \\
& w \vDash \text { upper }(A): S(w) \subseteq A
\end{aligned}
\]

\section*{DernMernernern}
- Double co-occurrence:
- \(A \Leftrightarrow B \Leftrightarrow\) def \(A \Rightarrow B\) and \(B \Rightarrow A\)
- Mutual exclusion
- \(\mathrm{A}<>\mathrm{B} \Leftrightarrow\) def \(\mathrm{A}<\mathrm{B}\) and \(\mathrm{B}<\mathrm{A}\)
- corresponds to c-f union types \(T_{A}+T_{B}\)
- Negation
- \(\neg A \Leftrightarrow_{\text {def }} A \Rightarrow \varnothing\)
- False \(\Leftrightarrow_{\text {def }} \varnothing\)
- True \(\Leftrightarrow_{\text {def }} \varnothing \Rightarrow \varnothing\)

\section*{Flat, order and co-occurrence constraints}
- Each c-f type can be associated to a conjunction
\[
F(T)=F \operatorname{lat}(T) \wedge O C(T) \wedge C C(T)
\]
- Theorem [IS09]: \(w \in T<=>w \vDash F(T)\)
- Theorem (subtyping)
\[
T \subseteq U \Leftrightarrow T \vDash \operatorname{Ffat}(U), T \vDash O C(T), T \vDash C C(T)
\]
- Each of the 3 above entailements can be checked: independently and in \(O\left(n^{\wedge} 2\right)\) time [IS09].
- In a recent work [ICDT09]: quadratic algorithm when only U is c-f
- Good news for result analysis: \(\quad\) Q :S --> S' via Sout \(\subseteq S^{\prime}\)

Constraints for efficient validation

\section*{Main points}
- XML schema validation \(\simeq\) RE membership
- Membership for RE+\{interleaving, counting\} is NP-complete
- Most of REs defined in real-life schemas are conflict-free
- Semantics of c-f REs can be captured by logical constraints (previous work at DBPL'07)
- Streaming RE membership checking via streaming constraint residuation
- Linear complexity!
- Extension to XML schema validation: immediate (see [CIKM08])

\section*{Constraints construction}
\[
\mathrm{T}=((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{~d}\left[1 . . .^{*}\right]\right)
\]

\section*{Constraints construction}
\[
\mathrm{T}=((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{~d}\left[1 . . .^{*}\right]\right)
\]

\section*{Constraints construction}
\[
\mathrm{T}=((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{~d}\left[1 . . .^{*}\right]\right)
\]

\section*{Constraints construction}
\[
T=((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right)
\]

\section*{Constraints construction}
\(T=((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right)\)
\(T\) is not nillable: \(\varepsilon \notin T\)

\[
C(T)=a b c d \wedge \quad
\]

\section*{Constraints construction}

\[
\mathrm{C}(\mathrm{~T})=\operatorname{abcd} \wedge \text { upper(abcd) } \ldots . . .
\]

\section*{Constraints construction}

\[
\mathbf{C}(\mathbf{T})=\operatorname{abcd} \wedge \operatorname{upper}(\operatorname{abcd}) \wedge a ?[1 . .1] \wedge \ldots \wedge d ?\left[1 . .{ }^{*}\right]
\]

\section*{Constraints construction}

\section*{Constraints construction}

Theorem : \(\quad w \in T \quad \Leftrightarrow \quad w \vDash C(T)\)

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion
\[
\mathrm{F} \xrightarrow{\mathrm{a}_{1}} \mathrm{~F} 1
\]

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion
\[
\mathrm{F} \xrightarrow{\mathrm{a}_{1}} \mathrm{~F} 1 \xrightarrow{\mathrm{a}_{2}} \mathrm{~F} 2
\]

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion
\[
F \xrightarrow{a_{1}} F 1 \xrightarrow{a_{2}} F 2 \xrightarrow{a_{3}} \ldots \ldots \xrightarrow{a_{n}} F n
\]

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion
\[
F \xrightarrow{a_{1}} F 1 \xrightarrow{a_{2}} F 2 \xrightarrow{a_{3}} \ldots \ldots \xrightarrow{a_{n}} F n
\]

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion

\[
\mathbf{w} \vDash C(T) \Leftrightarrow F n \cap\{\text { False }, A\}=\varnothing
\]

\section*{Constraint membership}
- We consider \(\mathrm{F}=\mathrm{C}(\mathrm{T})\) instead of T
- We build a tree representation of \(\mathrm{C}(\mathrm{T})\)
- We check \(w=a_{1} \cdot a_{2} \cdot \ldots . . \cdot a_{n} \vDash C(T)\) in a streaming fashion
- Important: flat constraints do not need residuation:
- counting constraints a?[m..n] : keep some counters updated during the visit
- lower and upper bound constraints: trivial.

\section*{Residuation}
\begin{tabular}{l|l|l}
\hline Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\hline\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
\(a_{i} \in A\) & \(A \Leftrightarrow B\) & \(B\) \\
\hline\(a_{i} \in A\) & \(A\) & true \\
\(a_{i} \in A\) & \(A<>B\) & \(\neg B\) \\
\hline\(a_{i} \in B\) & \(A<B\) & \(\neg A\) \\
\hline\(a_{i} \in A\) & \(\neg B\) & \(\neg B\) \\
\hline\(a_{i} \in A\) & \(\neg A\) & false \\
\hline
\end{tabular}

\section*{Residuation}
\begin{tabular}{l|l|l}
& Input & Constraint
\end{tabular} Residual after \(a_{i}\)

\section*{Residuation}
\begin{tabular}{l|l|l}
& Input & Constraint
\end{tabular} Residual after \(a_{i}\)

\section*{Residuation}
\begin{tabular}{l|l|l}
Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
& \(a_{i} \in A\) & \(A \Leftrightarrow B\)
\end{tabular}

\section*{Residuation}
\begin{tabular}{l|l|l|}
\hline Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\hline\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
\hline\(a_{i} \in A\) & \(A \Leftrightarrow B\) & \(B\) \\
\hline\(a_{i} \in A\) & \(A\) & true \\
\hline\(a_{i} \in A\) & \(A<>B\) & \(\neg B\) \\
\hline\(a_{i} \in B\) & \(A<B\) & \(\neg A\) \\
\hline\(a_{i} \in A\) & \(\neg B\) & \(\neg B\) \\
\hline\(a_{i} \in A\) & \(\neg A\) & false \\
\hline
\end{tabular}

\section*{Residuation}
\begin{tabular}{l|l|l|}
\hline Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\hline\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
\hline\(a_{i} \in A\) & \(A \Leftrightarrow B\) & \(B\) \\
\hline\(a_{i} \in A\) & \(A\) & true \\
\hline\(a_{i} \in A\) & \(A<>B\) & \(\neg B\) \\
\hline\(a_{i} \in B\) & \(A<B\) & \(\neg A\) \\
\hline\(a_{i} \in A\) & \(\neg B\) & \(\neg B\) \\
\hline\(a_{i} \in A\) & \(\neg A\) & false \\
\hline
\end{tabular}

\section*{Residuation}
\begin{tabular}{l|l|l}
Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
\(a_{i} \in A\) & \(A \Leftrightarrow B\) & \(B\) \\
\hline\(a_{i} \in A\) & \(A\) & true \\
\(a_{i} \in A\) & \(A<>B\) & \(\neg B\) \\
\(\longrightarrow a_{i} \in B\) & \(A<B\) & \(\neg A\) \\
\(a_{i} \in A\) & \(\neg B\) & \(\neg B\) \\
\(a_{i} \in A\) & \(\neg A\) & false
\end{tabular}

\section*{Residuation}
\begin{tabular}{l|l|l}
Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
\(a_{i} \in A\) & \(A \Leftrightarrow B\) & \(B\) \\
\hline\(a_{i} \in A\) & \(A\) & true \\
\(a_{i} \in A\) & \(A<>B\) & \(\neg B\) \\
\hline\(a_{i} \in B\) & \(A<B\) & \(\neg A\) \\
\(\longrightarrow a_{i} \in A\) & \(\neg B\) & \(\neg B\) \\
\(a_{i} \in A\) & \(\neg A\) & false
\end{tabular}

\section*{Residuation}
\begin{tabular}{l|l|l|}
\hline Input & Constraint & Residual after \(a_{i}\) \\
\hline\(a_{i} \in A\) & \(A \Rightarrow B\) & \(B\) \\
\hline\(a_{i} \in B\) & \(A \Rightarrow B\) & true \\
\(a_{i} \in A\) & \(A \Leftrightarrow B\) & \(B\) \\
\hline\(a_{i} \in A\) & \(A\) & true \\
\(a_{i} \in A\) & \(A<>B\) & \(\neg B\) \\
\hline\(a_{i} \in B\) & \(A<B\) & \(\neg A\) \\
\hline\(a_{i} \in A\) & \(\neg B\) & \(\neg B\) \\
& \(a_{i} \in A\) & \(\neg A\)
\end{tabular}

\section*{Linear residuation}
\[
\mathrm{d} \in((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{~d}\left[1 . . .^{*}\right]\right) ?
\]

\section*{Linear residuation}
\[
\mathrm{d} \in((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{~d}\left[1 . . .^{*}\right]\right) ?
\]

\section*{Linear residuation}

\(a_{i} \in B \quad A \Leftrightarrow B\)
A

\section*{Linear residuation}

\(a_{i} \in B \quad A \Leftrightarrow B\)
A

\section*{Linear residuation}

\(a_{i} \in A \quad A<B\)
ᄀB

\section*{Linear residuation}

\(\mathrm{a}_{\mathrm{i}} \in \mathrm{A} \quad \mathrm{A}<>\mathrm{B}\) ᄀB

\section*{Linear residuation}
\[
\mathrm{d} \in((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{~d}\left[1 . . .^{*}\right]\right) ?
\]

\section*{Linear residuation}
\[
d \oplus((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . . .^{*}\right]\right)
\]

Fail!

Failure : the final residual contains a formula \(A=c\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\(\mathrm{a}_{\mathrm{i}} \in \mathrm{A} \quad \mathrm{A} \Rightarrow \mathrm{B} \quad \mathrm{B}\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\(\mathrm{a}_{\mathrm{i}} \in \mathrm{A} \quad \mathrm{A}<>\mathrm{B} \quad \neg \mathrm{B}\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}
\(a \mathrm{bb} \in((\mathrm{a}+\varepsilon) \& \mathrm{~b}[1 . .5])+\left(\mathrm{c} \cdot \mathrm{d}\left[1 . .{ }^{*}\right]\right) ?\)

\section*{Linear residuation}

\section*{Linear residuation}

\section*{Linear residuation}

\section*{Linear residuation}
\(\mathrm{abb} \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

\(\mathrm{a}_{\mathrm{i}} \in \mathrm{A} \quad \neg \mathrm{B}\)
ᄀB

\section*{Linear residuation} \(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)

Nothing new!

\section*{Linear residuation}

\section*{\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)}

\section*{Linear residuation}

\section*{\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right) ?\)}

\(\mathrm{a} \in \mathrm{A} \quad \neg \mathrm{B} \quad \neg \mathrm{B}\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right)\)

No A or False in the final residual \(\Rightarrow\) Success!

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+\left(c \cdot d\left[1 . .{ }^{*}\right]\right)\)

Complexity : \(\mathrm{O}(|T|+|\mathrm{w}| \cdot \operatorname{depth}(\mathrm{T}))\)

\section*{Linear residuation}
\(a b b \in((a+\varepsilon) \& b[1 . .5])+(c \cdot d[1 . . *]) ?\)

Complexity : \(\mathrm{O}(|\mathrm{T}|+|\mathrm{w}| \cdot \operatorname{depth}(\mathrm{T}))\)
We can do better : \(\mathrm{O}(|\mathrm{T}|+|\mathrm{w}|)\) !

\section*{Avoiding redundant visits}

Remark : the operations made for the second \(b\) were redundant!

\section*{Avoiding redundant visits}

Remark : the operations made for the second \(b\) were redundant!
Once a symbol is met and processed, there is almost non reason to consider and process it if met again.

\section*{Stability}
- A node \(\mathbf{n}\) is visited each time a symbol in its left or right hand side sub-tree is met in \(w\)

\section*{Stability}
- A node \(\mathbf{n}\) is visited each time a symbol in its left or right hand side sub-tree is met in w

\section*{Stability}
\[
a \in A
\]

\section*{Stability}
\(a, a^{\prime} \in A\)

This is almost always true!
It is almost always true that n does not need to be visited more than once for symbols in A

\section*{Stability}
\(a, a^{\prime} \in A\)

\section*{Redundant transition!}

\section*{Stability - exception}
\(a, a^{\prime} \in A \quad w \cap B \neq \varnothing\)

Residuation stops!
Exeption : \(\mathrm{F}=\mathrm{A}<\mathrm{B}\) and \(\mathrm{w} \cap \mathrm{B} \neq \varnothing\)

\section*{The linear algorithm}
- B-stability always holds
- So during residuation each node needs to be processed/ visited at most three times.
- For the pattern \(A-B-A\) with \(F=A<B\)
- Complexity \(\mathrm{O}(|\mathrm{T}|+|\mathrm{w}|)\)

\section*{Some tests without residuation}

Figure 9: Scalability of Xelf.

\section*{Conclusions}
- We have seen some main ideas behind the use of XML schema:
- checking query correctness and result analysis
- efficient document validation
- query and update optimisation (time/space)
- Other interesting applications:
- schema mapping maintenance in XML data integration (based on result analysis and a notion of type-projection) [DBPL05, PPDP06, TOIT09]
- query-update independence: a technique derived from type-based projection can ensure highly precise analysis [work in progress, ask Federico Ulliana for details]

\section*{References}
- D. Colazzo, G. Ghelli, P. Manghi, C. Sartiani. Types for Path Correctness of XML queries. ACM-SIGPLAN International Conference on Functional Programming (ICFP), 2004.
- D. Colazzo and C. Sartiani. An Efficient Algorithm for XML Type Projection. ACM-SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP), 2006.
- V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-Based XML Projection. International Conference on Very Large Databases (VLDB), 2006
- G. Ghelli, D. Colazzo and C. Sartiani. Linear Time Membership for a Class of XML Types with Interleaving and Counting. ACM Conference on Information and Knowledge Management (CIKM), 2008.

\section*{References}
- D. Colazzo, G. Ghelli and C. Sartiani. Efficient asymmetric inclusion between regular expression types. International Conference on Database Theory (ICDT), 2009.
D. Colazzo, G. Ghelli and C. Sartiani. Efficient Inclusion for a Class of XML Types with Interleaving and Counting. Information Systems. Volume 34, Issue 7, Pages 577-670, November, 2009.
- D. Colazzo, G. Ghelli, L. Pardini and C. Sartiani. Linear Inclusion for XML Regular Expression Types. ACM Conference on Information and Knowledge Management (CIKM), 2009.
- D. Colazzo, G. Ghelli and C. Sartiani. Efficient asymmetric inclusion between regular expression types. International Conference on Database Theory (ICDT), 2009.
- D. Colazzo and C. Sartiani. Detection of Corrupted Schema Mappings in XML Data Integration Systems. ACM Transactions on Internet Technology (TOIT), 2009.

\section*{Merci ! Any questions?}```

