Schemas for safe and efficient
XML processing

Dario Colazzo

Universite Paris Sud - INRIA

Ecole Thematique BDA 2010 - Les Houches

Plan

XML & XML schema

Correctness and result analysis

Schema based projection

Constraint based approach for efficient subtyping and
validation

Plan

XML & XML schema

Informal,
examples,and main ideas

Correctness and result analysis

~ |5 minutes

Schema based projection

Constraint based approach for efficient subtyping and
validation.

Plan

XML & XML schema

Informal,
examples, and main ideas

Correctness and result analysis

~ |5 minutes

Schema based projection

More formal,
examples + some defs

Constraint based approach for efficient subtyping and
validation ~ 30 minutes

What are XML schemas useful for ?

To define structural constraints over documents: this is
usefeul in many contexts.

How: mainly by means of regular expressions.

Main schema languages: DTDs, XML Schema, Relax-NG.
For all of them, methods for automatic validation exist.
For XML queries over XML valid documents we can

e automatically check that the query correctly manipulate the
iInput

e automatically infer a schema for data produced by the query

XML query type-checking

Query correctness

The quite famous biblio DTD

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

s it correct? Yes, intuitevely

for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Query correctness

The quite famous biblio DTD

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

s it correct? Yes, intuitevely

_ _ Not according to the traditional V-correctness
for x in doc//(author | editor)

return <nom>x/last</nom> Problems with an d-notion
</res>

Query correctness

The quite famous biblio DTD

<!ELEMENT

<!ELEMENT

<!ATTLIST

<!ELEMENT

<!ELEMENT

<!ELEMENT

for x in doc//(author | editor)

bib (book*)>

book

(title, (author+ | editor+), publisher, price)>

book year CDATA #REQUIRED >

author

editor

title

(last, first)>
(last, first, affiliation)>

(#PCDATA)>

s it correct? Yes, intuitevely

Not according to the traditional V-correctness

return <nom>x/last</nom> Problems with an d-notion

</res>

We need V quantification on sub-queries

and 3 quantification on instances

Query correctness

The quite famous biblio DTD

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

s it correct? Yes, intuitevely

_ _ Not according to the traditional V-correctness
for x in doc//(author | editor)

return <nom>x/last</nom> Problems with an d-notion
</res>

We need V quantification on sub-queries V' correctness

and d quantification on instances [PhD Thesis, ICFP04]

Query correctness

The quite famous biblio DTD

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

s it correct? Yes, intuitevely

_ _ Not according to the traditional V-correctness
for x in doc//(author | editor)

return <nom>x/last</nom> Problems with an d-notion
</res>

We need V quantification on sub-queries V' correctness

and d quantification on instances [PhD Thesis, ICFP04]

Query correctness

The quite famous biblio DTD

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

s it correct? Yes, intuitevely

_ _ Not according to the traditional V-correctness
for x in doc//(author | editor)

return <nom>x/last</nom> Problems with an d-notion
</res>

We need V quantification on sub-queries V' correctness

and d quantification on instances [PhD Thesis, ICFP04]

Main tools for V3 correctness

A type system allowing to infer types of query paths:
e doc//(author | editor) : (author | author)+
« doc//(author | editor)/second : (second)+

As a consequence, the type system allows to find types of

elements never needed by the query (all XPath axes can be
handled)

This has been used for type-based projection: first types of
needed nodes are inferred, and then this information is used
to prune the input D in order to obtain a much smaller
document D’ such that

Q(D)=Q(D’)

Type based projection

Example

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

Query:

<res>

for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Example

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

Type projector T=(bib, book, author; editor, last)

Used at loading time: only T elements are kept, the
other ones are not loaded

Much less memory consumption:
we can query quite big documents!

<bib>
<book >

<author><last>Stevens</last> </author>

</book>
<book >

<author><last>Stevens</last>< </author>

</book>

<book >
<author><last>Abiteboul</last> </author>
<author><last>Buneman</last> </author>
<author><last>Suciu</last>< </author>

</book>

<book

<editor>
<last>Gerbarg</last>

</editor>

</book>

</bib>

XPathMark QP;

©
-
an
O
—
=,
O,
O
q
Q.
/p)
%
et
>
7p)
O
-
-
%
_I

(dN ut) ATowsN

XPathMark QP;

©
O
an
O
_
2.
®
=

Test results

_ _ _ _
O 5 O 5 O 5 O 5
LO < < o ™ N (Q\ —

(S UuTrt) SwWTI bursssooxdg

What about updates ?

Type-based projection still ensures optmizations
Amine Baazizi will give you more details

Marina Sahakyan can answer questions about efficient
implementation of the technique

Let’'s go back to type inference

e \ery important problem, crucial for result anlaysis

e Given Q over a schema S, does Q produce values of another
expected schema S’

Q:S-->§%
e |Method:
e automatic inference of a schema Sout for Q result values

e automatic checking of inclusion Sout € S’

e Problem: schema inclusion has high complexity.

e \Ne found out that for a wide class of schemas it can be
efficiently checked. Next subject.

Constraints based subtype checking
__and validation

REs and XML types

e REs define element content models in XML schemas

DTD : <!ELEMENT book (title, (author | editor)*, price?)>

REs and XML types

e REs define element content models in XML schemas

DTD : <!ELEMENT book (title, (author | editor)*, price?)>

REs and XML types

e REs define element content models in XML schemas
DTD : <!ELEMENT book (title, (author | editor)*, price?)>

e Qur syntax

Ti=ela |[T+T|TT|T

REs and XML types

e REs define element content models in XML schemas
DTD : <!ELEMENT book (title, (author | editor)*, price?)>

e Qur syntax
T:=¢|a |T+T | TT|T"

title - (author + editor)* - (price+ €)

Interleaving and counting

Tio=¢|a |T+T | TT | T¢|T&T| T[n.m]

Interleaving and counting

Tio=¢|a |T+T | TT | T¢|T&T| T[n.m]

e m e Nu{*}

Interleaving and counting

T:=¢|a | T+T | TT | T°|T&T| T[n..m]
e m e Nu{*}

e a=a[l1.1] a’=a+e a*=a[1..7]

Interleaving and counting

T:=¢|a | T+T | TT | T°|T&T| T[n..m]
m € NU{*}

a=all..1] a’=a+e a*=a[1..7]
L(b[1..4])={b, bb, bbb, bbbb}
L(a&b)={ab, ba}

Interleaving and counting

T:=¢|a | T+T | TT | T°|T&T| T[n..m]
m € NU{*}

a=all..1] a’=a+e a*=a[1..7]
L(b[1..4])={b, bb, bbb, bbbb}
L(a&b)={ab, ba}

Interleaving and counting

T=¢|a | T+T | TT | T°|T&T | T[n..m]
m € NU{"}

a=all..1] a’=a+e a*=a[1..7]
L(b[1..4])={b, bb, bbb, bbbb}
L(a&b)={ab, ba}
L((a'b) & c)={abc, cab,acb} cba<& L((a'b)&c)

Interleaving and counting

T=¢|a | T+T | TT | T°|T&T | T[n..m]
m € NU{"}

a=all..1] a’=a+e a*=a[1..7]
L(b[1..4])={b, bb, bbb, bbbb}
L(a&b)={ab, ba}
L((a'b) & c)={abc, cab,acb} cba<& L((a'b)&c)

Interleaving

Interleaving is used in XML type languages
RELAX-NG <interleave> ... </interleave>

The all group of XSD:

<xsd:complexType name="PurchaseOrderType">
<xsd:all>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:all>
</xsd:complexType>

The cost of Interleaving

e Membership

e RE:PTime
e RE with & : NP-complete

® |nclusion

e RE: PSPACE (EXPTIME for EDTDs) complete
e RE with & : EXPSPACE complete

e Our conflict-free expressions:

® |nclusion: quadratic [IS09]

e Membership: linear [CIKMO08]

Our conflict-free REs

T:=¢|am.n] | T+T | T-T | T&T

Our conflict-free REs

T:=¢|am.n] | T+T | T-T | T&T
e Two restrictions:
1. repetition T* restricted to a* (denoting a[1..*]+¢€)
2. single occurrence:
(a+b-a+a-c) : no
(a-b?) : ok
Are these restrictions acceptable ?

[BexNevenSchwentickTuyls-VLDBO06]: “An examination of 819 DTDs and
XSDs ... more than 99% of the REs occurring in practical schema’s are
CHARES”

Types as constraints

T =((a[1..3]b[2..2]) + ¢[1..*]) and win L(T)

Types as constraints

T =((a[1..3]b[2..2]) + ¢[1..*]) and win L(T)

e |ower-bound (nillability). at least one of {a,b,c}=S(T) is in w;

Types as constraints

T =((a[1..3]b[2..2]) + ¢[1..*]) and win L(T)

e |ower-bound (nillability). at least one of {a,b,c}=S(T) is in w;

e upper-bound: no symbol out of {a, b, c} is in w;

Types as constraints

T =((a[1..3]b[2..2]) + ¢[1..*]) and win L(T)

lower-bound (nillability). at least one of {a,b,c}=S(T) is in w;
upper-bound: no symbol out of {a, b, c} is in w;

cardinality: if ais in w, it appears 1, 2 or 3 times; if b is there, it
appears twice...

Types as constraints

T =((a[1..3]b[2..2]) + ¢[1..*]) and win L(T)

lower-bound (nillability). at least one of {a,b,c}=S(T) is in w;
upper-bound: no symbol out of {a, b, c} is in w;

cardinality: if ais in w, it appears 1, 2 or 3 times; if b is there, it
appears twice...

exclusion: any of {a,b} excludes ¢
¢ excludes any of {a,b}

Types as constraints

T =((a[1..3]b[2..2]) + ¢[1..*]) and win L(T)

lower-bound (nillability). at least one of {a,b,c}=S(T) is in w;
upper-bound: no symbol out of {a, b, c} is in w;

cardinality: if ais in w, it appears 1, 2 or 3 times; if b is there, it
appears twice...

exclusion: any of {a,b} excludes ¢
¢ excludes any of {a,b}

co-occurrence: a requires b; b requires a

Types as constraints

T = ((a[1..3]'b[2..2]) + ¢[1..*]) and win L(T)

lower-bound (nillability). at least one of {a,b,c}=S(T) is in w;
upper-bound: no symbol out of {a, b, c} is in w;

cardinality: if ais in w, it appears 1, 2 or 3 times; if b is there, it
appears twice...

exclusion: any of {a,b} excludes ¢
¢ excludes any of {a,b}

co-occurrence: a requires b; b requires a

order: any a comes before any b

Types as constraints

T = ((a[1..3]'b[2..2]) + ¢[1..*]) and win L(T)

lower-bound (nillability). at least one of {a,b,c}=S(T) is in w;
upper-bound: no symbol out of {a, b, c} is in w;

cardinality: if ais in w, it appears 1, 2 or 3 times; if b is there, it
appears twice...

exclusion: any of {a,b} excludes ¢
¢ excludes any of {a,b}

co-occurrence: a requires b; b requires a

order: any a comes before any b

This is a complete characterization of T !

Types as constraints

T=((a[1..3]'b[2..2]) + c[1..”]) and win L(T)
lower-bound S(T)
upper-bound: Upper(S(T))
cardinality: a?[1..3] A b?[2..2] A c?[1.."]

exclusion: {a,b} < >{c}

co-occurrence: a = b A b=a (abbreviated as a & b)

order: a < b

~ Constraints

F:= A| A=B | a?[m..n] | upper(A) | A<B| FAF'

~ Constraints

F:= A| A=B | a?[m..n] | upper(A) | A<B| FAF'

wEA: WAZJ

wEA=>B: : ifwrFA thenw*~=B
w = A<B : any A is before any B
wkEa?m..n]:ifainw,then ms<s|wlal <n

w = upper(A):S(w) € A

_ Derived operators

e Double co-occurrence:

o AseB o4 A=B and B=A
e Mutual exclusion
o A<>B <4« A<B and B<A

® corresponds to c-f union types Ta + Tz
e Negation

® A —def A=
e False &4

o True &g D=

Flat, order and co-occurrence
constraints

Each c-f type can be associated to a conjunction

F(T)=Flat(T) A OC(T) A CC(T)

Theorem [IS09]: w e T <=> wr F(T)

Theorem (subtyping)
TcUe T=Ffat(U), T=OC(T), T = CC(T)

Each of the 3 above entailements can be checked: independently
and in O(n”2) time [IS09].

In a recent work [ICDTO09]: quadratic algorithm when only U is c-f

Good news for result analysis: Q:S-->S via Sout € S

Constraints for efficient validation

Main points

XML schema validation = RE membership

Membership for RE+{interleaving, counting} is NP-complete
Most of REs defined in real-life schemas are conflict-free

Semantics of c-f REs can be captured by logical constraints
(previous work at DBPL'07)

Streaming RE membership checking via streaming constraint
residuation

Linear complexity!

Extension to XML schema validation: immediate (see [CIKMO08])

Constraints construction

T = ((a+€)&b[1..5]) + (c-d[1..])

Constraints construction

T = ((a+€)&b[1..5]) + (c-d[1..])

Constraints construction

T = ((a+€)&b[1..5]) + (c-d[1..])

Constraints construction

@
() dl I.. |

+
/ \bb[1..5] c[1..1
ao &

Constraints construction

abcd

T = ((a+¢g)&b[1..5]) + (c-d[1..7]) +
T is not nillable: € €T K>
Q

+
/ \bb[1..5] c
ao &

C(T) = abcd A

Constraints construction

abcd A upper(abcd)
T = ((a+€)&b[1..5]) + (c-d[1..*]) +

T is not nillable; € & T 8

N

+
/O\b b[1..5] c
a O &

C(T) = abcd A upper(abcd)

Constraints construction

abcd A upper(abcd)

T = ((a+€)&b[1..5]) + (c-d[1..])

€21 ..1]\Od?[1]

d[1..*]

A d?[1.7]

Constraints construction

abcd A upper(abcd)

T = ((a+€)&b[1..5]) + (c-d[1..])

€21 ..1]\Od?[1]

d[1..*]

C(T) = abcd A upper(abcd) A a?[1..1] A A d?[1..7]
Aa=bAc&d

Constraints construction

abcd A upper(abcd)

T = ((a+€)&b[1..5]) + (c-d[1..])

€21 ..1]\Od?[1]

d[1..*]

C(T) = abcd A upper(abcd) A a?[1..1] A A d?[1..7]
A Aa=bAc&d

Theorem: weT & wkEC(T)

~ Constraint membership

e \We consider F=C(T) instead of T

~ Constraint membership

e \We consider F=C(T) instead of T

e \We build a tree representation of C(T)

~ Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

~ Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

F—2i F 1

~ Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

F—2is F1 —25F2

Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

re5|duals

Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

re5|duals

wFC(T) & Fn N{False, A}=

~ Constraint membership

We consider F=C(T) instead of T
We build a tree representation of C(T)

We check w=a1-az-.....-an= C(T) in a streaming fashion

Important: flat constraints do not need residuation:

® counting constraints a?[m..n] : keep some counters updated
during the visit

® |ower and upper bound constraints: trivial.

Residuation

Residuation

Residuation

Residuation

Residuation

Residuation

Residuation

Residuation

Residuation

Linear residuation

d € ((a+£)&b[1..5]) + (c-d[1.."]) ? :

€21 ..1]\Od?[1]

d[1..*]

Linear residuation

d € ((a+£)&b[1..5]) + (c-d[1.."]) ? :

Linear residuation

Linear residuation

d e ((a+£)&b[1..5]) + (c-d[1..*]) ?

o d?[1..%]

Linear residuation

d e ((a+£)&b[1..5]) + (c-d[1..*]) ?

o d?[1..%]

Linear residuation

acA A<>B

Linear residuation

Linear residuation

d & ((a+€)&b[1..5]) + (c-d[1..7])

Failure : the final residual contains a formula A=c

| Linear residuation

abb € ((a+¢)&Db[1..5]) + (c-d[1..7]) ? +

€21 ..1]\Od?[1]

d[1..*]

| Linear residuation

abb & ((a+€)&b[1..5]) + (c-d[1..*]) ? "

€21 ..1]\Od?[1]

d[1..*]

| Linear residuation

abb & ((a+€)&b[1..5]) + (c-d[1..*]) ?

€21 ..1]\Od?[1]

d[1..*]

| Linear residuation

abb & ((a+€)&b[1..5]) + (c-d[1..*]) ?

€21 ..1]\Od?[1]

d[1..*]

| Linear residuation

abb & ((a+€)&b[1..5]) + (c-d[1..*]) ?

€21 ..1]\Od?[1]

d[1..*]

| Linear residuation

abb & ((a+€)&b[1..5]) + (c-d[1..*]) ?

€21 ..1]\Od?[1]

d[1..*]

Linear residuation

\ d?[1..”
o011

d[1..*]

Linear residuation

abb & ((a+€)&b[1..5]) + (c-d[1..*]) ?

0‘.
-
*
*
*
4
0‘.
o
*

b?[1..5] \ d2[1..%]
b[1..5] c d[1..4©

| Linear residuation

bb € ((a+£)&b[1..5]) + (c-d[1..]) ?

€21 ..1]\Od?[1]

d[1..*]

Linear residuation

bb € ((a+£)&b[1..5]) + (c-d[1..]) ?

s |
*. b?[1.5] c?[1..1]\ d?[1..4]
O

+
2 b[1..5]© c d[1..*]

Sa?l..

O

Linear residuation

bb € ((a+£)&b[1..5]) + (c-d[1..]) ?

s |
*. b?[1.5] c?[1..1]\ d?[1..4]
O

+
2 b[1..5]© c d[1..*]

Sa?l..

O

Linear residuation

bb € ((a+£)&b[1..5]) + (c-d[1..]) ?

’0
O‘."
‘0‘.”.
*
0"’
“. b?[1..5] \Od?m 5

b[1..5]© c d[1.."]

Linear residuation

bb € ((a+£)&b[1..5]) + (c-d[1..]) ?

o”
*
*
o‘.
o
" .
*
.
o .
* .
.

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
2 b[1..5]© d[1..*]

Sa?l..

O

Linear residuation

abb) € ((a+€)&b[1..5]) + (c-d[1.."]) ?

d[1..*]

Linear residuation

abb) € ((a+€)&b[1..5]) + (c-d[1.."]) ?

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
2 b[1..5]© c d[1..%]

Sa?l..

O

Linear residuation

e ((a+€)&b[1..5]) + (c-d[1..*]) ?

o”
*
*
o‘.
o
" .
*
.
o .
* .
.

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
,«O b[1--5]O d[1..]

Sa?l..

O

Linear residuation

abb e ((a+€)&b[1..5]) + (c-d[1..*])

o
0'.
o"
o
" .
o .
Q *
Q 3
3

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
,«O b[1--5]O c d[1..*]

Sa?l..

O

€

No A or False in the final residual =Success!

Linear residuation

abb e ((a+€)&b[1..5]) + (c-d[1..*])

R
0'.
o"
o
0' (3
o ®,
- .
* .
.

r *. b?[1..5]
2 b[1..5]9

Sa?[..

O

€

Complexity : O(|T|+|w|-depth(T))

Linear residuation

abb € ((a+¢)&Db[1..5]) + (c-d[1..7]) ?

o
0'.
o"
o
" .
o .
Q *
Q 3
3

v *. b?[1..5]
L o159

Sa?l..

O

€

Complexity : O(|T|+|w|-depth(T))
We can do better : O(|T|+|w]) !

~ Avoiding redundant visits

abb € ((a+¢)&Db[1..5]) + (c-d[1..7]) ?

|

o
0'.
o"
o
" .
o .
Q *
Q 3
3

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
2 b[1..5]9 c d[1..*]

Sa?l..

O

€

Remark : the operations made for the second b were redundant !

~ Avoiding redundant visits

abb € ((a+¢)&Db[1..5]) + (c-d[1..7]) ?

|

o
0'.
o"
o
* ' .
o .
o %
* .

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
2 b[1..5]© c d[1..%]

Sa?l..

O

a

Remark : the operations made for the second b were redundant !

Once a symbol is met and processed, there is almost non reason to
consider and process it if met again.

~ Stabillity

® A node n is visited each time a symbol in its left or right hand
side sub-tree is met in w

~ Stabillity

® A node n is visited each time a symbol in its left or right hand
side sub-tree is met in w

~ Stabillity

~ Stabillity

a, a2 €EA

This is almost always true !

It is almost always true that n does not need to be visited more than once for
symbols in A

~ Stabillity

a, a2 €EA

Redundant transition !

n_F a'w N n_ F a’ <) ngKF’
_ A
A\ /B B A \ / B\

~ Stabillity - exception

a, A €A wNB#J

Residuation stops!

Exeption : F= A<B and wNB#J

The linear algorithm

e PB-stability always holds

e So during residuation each node needs to be processed/
visited at most three times.

e F[orthe pattern A-B-A with F=A<B
o Complexity O(|T|+|w]|)

~ Some tests without residuation

Scalability

Xelf ——
SAX
Validating SAX —x—

—~
9)
()]
wv

~
[}

£

}—

440 550 660 770

Size (MBytes) of XMark instances

9: Scalability of Xelf.

~ Conclusions

e \We have seen some main ideas behind the use of XML schema:
® checking query correctness and result analysis
o efficient document validation
e query and update optimisation (time/space)

e Other interesting applications:

schema mapping maintenance in XML data integration (based on result analysis and
a notion of type-projection) [DBPL05, PPDP06, TOITQ09]

query-update independence: a technique derived from type-based projection can
ensure highly precise analysis [work in progress, ask Federico Ulliana for details]

References

D. Colazzo, G. Ghelli, P. Manghi, C. Sartiani. Types for Path Correctness
of XML queries. ACM-SIGPLAN International Conference on Functional
Programming (ICFP), 2004.

D. Colazzo and C. Sartiani. An Efficient Algorithm for XML Type
Projection. ACM-SIGPLAN Symposium on Principles and Practice of
Declarative Programming (PPDP), 2006.

V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-Based XML
Projection. International Conference on Very Large Databases (VLDB),
2006

G. Ghelli, D. Colazzo and C. Sartiani. Linear Time Membership for a Class
of XML Types with Interleaving and Counting. ACM Conference on
Information and Knowledge Management (CIKM), 2008.

References

» D. Colazzo, G. Ghelli and C. Sartiani. Efficient asymmetric inclusion
between reqular expression types. International Conference on Database
Theory (ICDT), 2009.

D. Colazzo, G. Ghelli and C. Sartiani. Efficient Inclusion for a Class of
XML Types with Interleaving and Counting. Information Systems. Volume
34, Issue 7, Pages 577-670, November, 2009.

D. Colazzo, G. Ghelli, L. Pardini and C. Sartiani. Linear Inclusion for XML
Regular Expression Types. ACM Conference on Information and
Knowledge Management (CIKM), 2009.

D. Colazzo, G. Ghelli and C. Sartiani. Efficient asymmetric inclusion
between reqular expression types. International Conference on Database
Theory (ICDT), 20009.

D. Colazzo and C. Sartiani. Detection of Corrupted Schema Mappings in
XML Data Integration Systems. ACM Transactions on Internet Technology
(TOIT), 2009.

Merci ! Any questions ?

