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What are XML schemas useful for ?

To define structural constraints over documents: this is
usefeul in many contexts.

How: mainly by means of regular expressions.

Main schema languages: DTDs, XML Schema, Relax-NG.
For all of them, methods for automatic validation exist.
For XML queries over XML valid documents we can

e automatically check that the query correctly manipulate the
iInput

e automatically infer a schema for data produced by the query




XML query type-checking




Query correctness

The quite famous biblio DTD

<!ELEMENT bib (book* )>

<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first )>

<!ELEMENT editor (last, first, affiliation )>

<!ELEMENT title (#PCDATA )>

s it correct? Yes, intuitevely

for x in doc//(author | editor)
return <nom>x/last</nom>
</res>
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Main tools for V3 correctness

A type system allowing to infer types of query paths:
e doc//(author | editor) : (author | author)+
« doc//(author | editor)/second : (second)+

As a consequence, the type system allows to find types of

elements never needed by the query (all XPath axes can be
handled)

This has been used for type-based projection: first types of
needed nodes are inferred, and then this information is used
to prune the input D in order to obtain a much smaller
document D’ such that

Q(D)=Q(D’)




Type based projection




Example

<!ELEMENT bib (book* )>
<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first )>

<!ELEMENT editor (last, first, affiliation )>

<!ELEMENT title (#PCDATA )>

Query:

<res>

for x in doc//(author | editor)
return <nom>x/last</nom>
</res>




Example

<!ELEMENT bib (book* )>

<!ELEMENT book (title, (author+ | editor+ ), publisher, price )>
<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first )>

<!ELEMENT editor (last, first, affiliation )>

<!ELEMENT title (#PCDATA )>

Type projector T=(bib, book, author; editor, last)

Used at loading time: only T elements are kept, the
other ones are not loaded




Much less memory consumption:
we can query quite big documents!

<bib>
<book >

<author><last>Stevens</last> </author>

</book>
<book >

<author><last>Stevens</last>< </author>

</book>

<book >
<author><last>Abiteboul</last> </author>
<author><last>Buneman</last> </author>
<author><last>Suciu</last>< </author>

</book>

<book

<editor>
<last>Gerbarg</last>

</editor>

</book>

</bib>
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What about updates ?

Type-based projection still ensures optmizations
Amine Baazizi will give you more details

Marina Sahakyan can answer questions about efficient
implementation of the technique




Let’'s go back to type inference

e \ery important problem, crucial for result anlaysis

e Given Q over a schema S, does Q produce values of another
expected schema S’

Q:S-->§%
e |Method:
e automatic inference of a schema Sout for Q result values

e automatic checking of inclusion Sout € S’

e Problem: schema inclusion has high complexity.

e \Ne found out that for a wide class of schemas it can be
efficiently checked. Next subject.




Constraints based subtype checking
__and validation
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REs and XML types

e REs define element content models in XML schemas
DTD : <!ELEMENT book (title, (author | editor)*, price?)>

e Qur syntax
T:=¢|a |T+T | TT|T"

title - (author + editor)* - (price+ €)
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Interleaving

Interleaving is used in XML type languages
RELAX-NG <interleave> ... </interleave>

The all group of XSD:

<xsd:complexType name="PurchaseOrderType">
<xsd:all>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:all>
</xsd:complexType>




The cost of Interleaving

e Membership

e RE:PTime
e RE with & : NP-complete

® |nclusion

e RE: PSPACE (EXPTIME for EDTDs) complete
e RE with & : EXPSPACE complete

e Our conflict-free expressions:

® |nclusion: quadratic [IS09]

e Membership: linear [CIKMO08]




Our conflict-free REs

T:=¢|am.n] | T+T | T-T | T&T




Our conflict-free REs

T:=¢|am.n] | T+T | T-T | T&T
e Two restrictions:
1. repetition T* restricted to a* ( denoting a[1..*]+¢€)
2. single occurrence:
(a+b-a+a-c) : no
(a-b?) : ok
Are these restrictions acceptable ?

[BexNevenSchwentickTuyls-VLDBO06]: “An examination of 819 DTDs and
XSDs ... more than 99% of the REs occurring in practical schema’s are
CHARES”
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Types as constraints

T = ((a[1..3]'b[2..2]) + ¢[1..*]) and win L(T)

lower-bound (nillability). at least one of {a,b,c}=S(T) is in w;
upper-bound: no symbol out of {a, b, c} is in w;

cardinality: if ais in w, it appears 1, 2 or 3 times; if b is there, it
appears twice...

exclusion: any of {a,b} excludes ¢
¢ excludes any of {a,b}

co-occurrence: a requires b; b requires a

order: any a comes before any b

This is a complete characterization of T !




Types as constraints

T=((a[1..3]'b[2..2]) + c[1..”]) and win L(T)
lower-bound S(T)
upper-bound: Upper(S(T))
cardinality: a?[1..3] A b?[2..2] A c?[1.."]

exclusion: {a,b} < >{c}

co-occurrence: a = b A b=a (abbreviated as a & b)

order: a < b




~ Constraints

F:= A| A=B | a?[m..n] | upper(A) | A<B| FAF'




~ Constraints

F:= A| A=B | a?[m..n] | upper(A) | A<B| FAF'

wEA: WAZJ

wEA=>B: : ifwrFA thenw*~=B
w = A<B : any A is before any B
wkEa?m..n]:ifainw,then ms<s|wlal <n

w = upper(A):S(w) € A




_ Derived operators

e Double co-occurrence:

o AseB o4 A=B and B=A
e Mutual exclusion
o A<>B <4« A<B and B<A

® corresponds to c-f union types Ta + Tz
e Negation

® A —def A=
e False &4

o True &g D=




Flat, order and co-occurrence
constraints

Each c-f type can be associated to a conjunction

F(T)=Flat(T) A OC(T) A CC(T)

Theorem [IS09]: w e T <=> wr F(T)

Theorem (subtyping)
TcUe T=Ffat(U), T=OC(T), T = CC(T)

Each of the 3 above entailements can be checked: independently
and in O(n”2) time [IS09].

In a recent work [ICDTO09]: quadratic algorithm when only U is c-f

Good news for result analysis: Q:S-->S via Sout € S




Constraints for efficient validation




Main points

XML schema validation = RE membership

Membership for RE+{interleaving, counting} is NP-complete
Most of REs defined in real-life schemas are conflict-free

Semantics of c-f REs can be captured by logical constraints
(previous work at DBPL'07)

Streaming RE membership checking via streaming constraint
residuation

Linear complexity!

Extension to XML schema validation: immediate (see [CIKMO08])
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Constraints construction

abcd

T = ((a+¢g)&b[1..5]) + (c-d[1..7]) +
T is not nillable: € €T K>
Q

+
/ \bb[1..5] c
ao &

C(T) = abcd A




Constraints construction

abcd A upper(abcd)
T = ((a+€)&b[1..5]) + (c-d[1..*]) +

T is not nillable; € & T 8

N

+
/O\b b[1..5] c
a O &

C(T) = abcd A upper(abcd)




Constraints construction

abcd A upper(abcd)

T = ((a+€)&b[1..5]) + (c-d[1..])

€21 ..1]\Od?[1 ]

d[1..*]

A d?[1.7]




Constraints construction

abcd A upper(abcd)

T = ((a+€)&b[1..5]) + (c-d[1..])

€21 ..1]\Od?[1 ]

d[1..*]

C(T) = abcd A upper(abcd) A a?[1..1] A A d?[1..7]
Aa=bAc&d




Constraints construction

abcd A upper(abcd)

T = ((a+€)&b[1..5]) + (c-d[1..])

€21 ..1]\Od?[1 ]

d[1..*]

C(T) = abcd A upper(abcd) A a?[1..1] A A d?[1..7]
A Aa=bAc&d

Theorem: weT & wkEC(T)
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Constraint membership

e \We consider F=C(T) instead of T
e \We build a tree representation of C(T)

e We check w=ai-az.....-an= C(T) in a streaming fashion

re5|duals

wFC(T) & Fn N{False, A}=




~ Constraint membership

We consider F=C(T) instead of T
We build a tree representation of C(T)

We check w=a1-az-.....-an= C(T) in a streaming fashion

Important: flat constraints do not need residuation:

® counting constraints a?[m..n] : keep some counters updated
during the visit

® |ower and upper bound constraints: trivial.
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Linear residuation

acA A<>B
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Linear residuation

d & ((a+€)&b[1..5]) + (c-d[1..7])

Failure : the final residual contains a formula A=c




| Linear residuation
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Linear residuation
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Linear residuation
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Linear residuation

e ((a+€)&b[1..5]) + (c-d[1..*]) ?

o”
*
*
o‘.
o
" .
*
.
o .
* .
.

b?[1..5 ?01..1 \ d?[1..”
[1.5] 62011 o011

+
,«O b[1--5]O d[1..]

Sa?l..

O




Linear residuation

abb e ((a+€)&b[1..5]) + (c-d[1..*])
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No A or False in the final residual =Success!




Linear residuation

abb e ((a+€)&b[1..5]) + (c-d[1..*])
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Complexity : O(|T|+|w|-depth(T))




Linear residuation

abb € ((a+¢)&Db[1..5]) + (c-d[1..7]) ?
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Complexity : O(|T|+|w|-depth(T))
We can do better : O(|T|+|w]) !
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Remark : the operations made for the second b were redundant !

Once a symbol is met and processed, there is almost non reason to
consider and process it if met again.




~ Stabillity

® A node n is visited each time a symbol in its left or right hand
side sub-tree is met in w




~ Stabillity

® A node n is visited each time a symbol in its left or right hand
side sub-tree is met in w




~ Stabillity




~ Stabillity

a, a2 €EA

This is almost always true !

It is almost always true that n does not need to be visited more than once for
symbols in A




~ Stabillity

a, a2 €EA

Redundant transition !

n_F a'w N n_ F a’ <) ngKF’
\_ A
A\ /B B A \ / B\




~ Stabillity - exception

a, A €A wNB#J

Residuation stops!

Exeption : F= A<B and wNB#J




The linear algorithm

e PB-stability always holds

e So during residuation each node needs to be processed/
visited at most three times.

e F[orthe pattern A-B-A with F=A<B
o Complexity O(|T|+|w]|)




~ Some tests without residuation

Scalability

Xelf ——
SAX
Validating SAX —x—

—~
9)
()]
wv

~
[}

£

}—

440 550 660 770

Size (MBytes) of XMark instances

9: Scalability of Xelf.




~ Conclusions

e \We have seen some main ideas behind the use of XML schema:
® checking query correctness and result analysis
o efficient document validation
e query and update optimisation (time/space)

e Other interesting applications:

schema mapping maintenance in XML data integration (based on result analysis and
a notion of type-projection) [DBPL05, PPDP06, TOITQ09]

query-update independence: a technique derived from type-based projection can
ensure highly precise analysis [work in progress, ask Federico Ulliana for details]
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Merci ! Any questions ?




