
Schemas for safe and efficient
XML processing

Ecole Thématique BDA 2010 - Les Houches

Dario Colazzo

Université Paris Sud - INRIA

Plan

• XML & XML schema

• Correctness and result analysis

• Schema based projection

• Constraint based approach for efficient subtyping and
validation

Plan

• XML & XML schema

• Correctness and result analysis

• Schema based projection

• Constraint based approach for efficient subtyping and
validation.

Informal,
examples, and main ideas

~ 15 minutes

Plan

• XML & XML schema

• Correctness and result analysis

• Schema based projection

• Constraint based approach for efficient subtyping and
validation

More formal,
examples + some defs

~ 30 minutes

Informal,
examples, and main ideas

~ 15 minutes

What are XML schemas useful for ?

• To define structural constraints over documents: this is
usefeul in many contexts.

• How: mainly by means of regular expressions.

• Main schema languages: DTDs, XML Schema, Relax-NG.

• For all of them, methods for automatic validation exist.

• For XML queries over XML valid documents we can

• automatically check that the query correctly manipulate the
input

• automatically infer a schema for data produced by the query

XML query type-checking

Query correctness

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

The quite famous biblio DTD

Is it correct? Yes, intuitevely Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Query correctness

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

The quite famous biblio DTD

Is it correct? Yes, intuitevely

Not according to the traditional ∀-correctness

Problems with an ∃-notion

Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Query correctness

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

The quite famous biblio DTD

Is it correct? Yes, intuitevely

Not according to the traditional ∀-correctness

Problems with an ∃-notion

We need ∀ quantification on sub-queries

and ∃ quantification on instances

Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Query correctness

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

The quite famous biblio DTD

Is it correct? Yes, intuitevely

Not according to the traditional ∀-correctness

Problems with an ∃-notion

We need ∀ quantification on sub-queries

and ∃ quantification on instances

∀∃ correctness

[PhD Thesis, ICFP04]

Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Query correctness

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

The quite famous biblio DTD

Is it correct? Yes, intuitevely

Not according to the traditional ∀-correctness

Problems with an ∃-notion

We need ∀ quantification on sub-queries

and ∃ quantification on instances

∀∃ correctness

[PhD Thesis, ICFP04]

Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Query correctness

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

The quite famous biblio DTD

Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Is it correct? Yes, intuitevely

Not according to the traditional ∀-correctness

Problems with an ∃-notion

We need ∀ quantification on sub-queries

and ∃ quantification on instances

∀∃ correctness

[PhD Thesis, ICFP04]

Main tools for ∀∃ correctness

• A type system allowing to infer types of query paths:

• doc//(author | editor) : (author | author)+

• doc//(author | editor)/second : (second)+

• As a consequence, the type system allows to find types of
elements never needed by the query (all XPath axes can be
handled)

• This has been used for type-based projection: first types of
needed nodes are inferred, and then this information is used
to prune the input D in order to obtain a much smaller
document D’ such that

Q(D)=Q(D’)

Type based projection

Example

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

Query:

<res>
for x in doc//(author | editor)
return <nom>x/last</nom>
</res>

Example

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>
.....
......

Type projector τ=(bib, book, author, editor, last)

Used at loading time: only τ elements are kept, the
other ones are not loaded

Much less memory consumption:
we can query quite big documents!

<bib>
 <book year="1994">
 <title>TCP/IP Illustrated</title>
 <author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>

 <book year="1992">
 <title>Advanced Programming in the Unix environment</title>
 <author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>

 <book year="2000">
 <title>Data on the Web</title>
 <author><last>Abiteboul</last><first>Serge</first></author>
 <author><last>Buneman</last><first>Peter</first></author>
 <author><last>Suciu</last><first>Dan</first></author>
 <publisher>Morgan Kaufmann Publishers</publisher>
 <price>39.95</price>
 </book>

 <book year="1999">
 <title>The Economics of Technology and Content for Digital TV</title>
 <editor>
 <last>Gerbarg</last><first>Darcy</first>
 <affiliation>CITI</affiliation>
 </editor>
 <publisher>Kluwer Academic Publishers</publisher>
 <price>129.95</price>
 </book>

</bib>

Test results: space [VLDB06]

QM
03

QM
06

QM
07

QM
14

QM
15

QM
19

QP
01

QP
02

QP
03

QP
04

QP
05

QP
06

QP
07

QP
08

QP
09

QP
10

QP
11

QP
12

QP
13

QP
21

QP
23

Original Document Size (MB) 930 2048! 1100 202 2048! 964 112 313 258 291 123 190 168 123 459 123 369 134 79 224 403
Pruned Document Size(MB) 25 5,3 42 139 24 24 89 50 46 50 98 133 123 99 35 98 28 107 78 152 42
Main Memory Usage (MB) 374 90 380 512 245 512 391 399 433 434 418 485 467 466 466 483 456 460 504 459 465
Gain in Size (% of original) 2.5 0.3 3.4 69.6 1.15 2.5 80.4 15.7 17.5 16.8 80.4 69.6 73.2 80.4 7.5 80.4 7.5 80.4 98.2 67.9 10.4

Gain in Speed (× faster) 17.8 110.1 28.2 3.9 62.6 7.5 1.5 3.6 3.7 4.3 1.5 2.9 2.6 1.1 4.9 1.6 4.2 1.6 1.0 3.6 3.6
!: biggest file the XMark generator was able to produce.

Table 1: Sizes (in MBytes) of the biggest document processed thanks to pruning, size of its pruned version, and memory used to
process the latter. Percent of the pruned document and speedup of the execution time for a 56MB document.

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

5

10

15

20

25

30

35

40

45

50

55

60

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
i
n

s
)

Figure 4: Processing time of a query on original (56MB) and
pruned documents

similar.
These gains translate in practice into much faster executions and

the possibility to process much larger documents. The improve-
ment can be measured by looking at the first and last lines of Ta-
ble 1. The first line reports the size of the largest document it was
possible to process thanks to pruning. This must be compared with
the fact that, for all queries, the largest document that can be pro-
cessed without pruning is 68MBytes large. The last line reports
how many times the execution on a pruned document is faster than
the execution on the original document. It is important to note that,
depending on the nature of the query, the gain can be much higher
than the proportion given by the percent of the size of the prun-
ing. For instance, for queries such as QM14, QP6, and QP21 the
size of the pruned document is two-thirds of the size of the original
document, but they can then be processed from three to four times
faster and, as Figure 5 shows, using three times less memory than
when processed on the original. The latter is a huge gain when
one knows that memory usage is one of the main bottlenecks for
real life query processing (e.g., in DOM-based implementations of
XPath or XSLT processors).

Quite informative, as well, is the data in the second line of Ta-
ble 1 which reports, for each query, the size in MB of the maximum
pruned document. It is interesting to see that, while the maximum
size for an unpruned document is 68MB, we can process documents
for which the projection has a size of 152MB (on disk). This is
due to the fact that projecting a document not only reduces its size
but also its complexity by reducing the number of types of nodes.
This simplification of the document reduces the amount of extra-
information the query engine has to keep for each node and, conse-
quently, its memory usage. More precisely, the benefit of pruning

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

50

100

150

200

250

300

350

400

M
e
m
o
r
y

(
i
n

M
B
)

Figure 5: Memory used to process a query on original (56MB)
and pruned documents

out some (types of) nodes is twofold: first, the fan out of the docu-
ment is reduced and this may impact memory usage for engines that
chase sibling pointers and, second, the number of element names is
reduced, which may reduce memory occupation when shredding.

These results are a clear-cut improvement over current technol-
ogy. While we cannot directly compare processing performances
since no implementation of the other pruning approaches is pub-
licly available, we want to stress two points: (i) with one exception
(QM14) the amount of pruning on common experiments is always
equal or better with our approach than the others and (ii) perform-
ing pruning never is a bottleneck in our case thanks to fact that our
solution consists of a single bufferless one pass traversal of the in-
put document (on our 512MB machine we were able to efficiently
prune arbitrary large documents, while in case of [14] pruning can
end up using as much memory as the execution of the query).

7. CONCLUSION AND FUTURE WORK
The benchmarks show the clear advantages of applying our op-

timisation technique to query XML documents, and the charac-
teristics of our solution make it profitable in all application sce-
narios. We discussed several aspects for which our approach im-
proves the state of the art: for performances (better pruning, more
speedup, less memory consumption), for the analysis techniques
(linear pruning time, negligible memory and time consumption),
for its generality (handling of all axes and of predicates), and, last
but not least, for the formal foundation it provides (correctness for-
mally proved, limits of the approach formally stated).

Future work will be pursued in three distinct areas: formal de-
velopments, database integration, and implementation issues.

281

XMark QMi

XPathMark QPj

Test results: time [VLDB06]

QM
03

QM
06

QM
07

QM
14

QM
15

QM
19

QP
01

QP
02

QP
03

QP
04

QP
05

QP
06

QP
07

QP
08

QP
09

QP
10

QP
11

QP
12

QP
13

QP
21

QP
23

Original Document Size (MB) 930 2048! 1100 202 2048! 964 112 313 258 291 123 190 168 123 459 123 369 134 79 224 403
Pruned Document Size(MB) 25 5,3 42 139 24 24 89 50 46 50 98 133 123 99 35 98 28 107 78 152 42
Main Memory Usage (MB) 374 90 380 512 245 512 391 399 433 434 418 485 467 466 466 483 456 460 504 459 465
Gain in Size (% of original) 2.5 0.3 3.4 69.6 1.15 2.5 80.4 15.7 17.5 16.8 80.4 69.6 73.2 80.4 7.5 80.4 7.5 80.4 98.2 67.9 10.4

Gain in Speed (× faster) 17.8 110.1 28.2 3.9 62.6 7.5 1.5 3.6 3.7 4.3 1.5 2.9 2.6 1.1 4.9 1.6 4.2 1.6 1.0 3.6 3.6
!: biggest file the XMark generator was able to produce.

Table 1: Sizes (in MBytes) of the biggest document processed thanks to pruning, size of its pruned version, and memory used to
process the latter. Percent of the pruned document and speedup of the execution time for a 56MB document.

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

5

10

15

20

25

30

35

40

45

50

55

60

P
r
o
c
e
s
s
i
n
g

T
i
m
e

(
i
n

s
)

Figure 4: Processing time of a query on original (56MB) and
pruned documents

similar.
These gains translate in practice into much faster executions and

the possibility to process much larger documents. The improve-
ment can be measured by looking at the first and last lines of Ta-
ble 1. The first line reports the size of the largest document it was
possible to process thanks to pruning. This must be compared with
the fact that, for all queries, the largest document that can be pro-
cessed without pruning is 68MBytes large. The last line reports
how many times the execution on a pruned document is faster than
the execution on the original document. It is important to note that,
depending on the nature of the query, the gain can be much higher
than the proportion given by the percent of the size of the prun-
ing. For instance, for queries such as QM14, QP6, and QP21 the
size of the pruned document is two-thirds of the size of the original
document, but they can then be processed from three to four times
faster and, as Figure 5 shows, using three times less memory than
when processed on the original. The latter is a huge gain when
one knows that memory usage is one of the main bottlenecks for
real life query processing (e.g., in DOM-based implementations of
XPath or XSLT processors).

Quite informative, as well, is the data in the second line of Ta-
ble 1 which reports, for each query, the size in MB of the maximum
pruned document. It is interesting to see that, while the maximum
size for an unpruned document is 68MB, we can process documents
for which the projection has a size of 152MB (on disk). This is
due to the fact that projecting a document not only reduces its size
but also its complexity by reducing the number of types of nodes.
This simplification of the document reduces the amount of extra-
information the query engine has to keep for each node and, conse-
quently, its memory usage. More precisely, the benefit of pruning

Q
M
0
3

Q
M
0
6

Q
M
0
7

Q
M
1
4

Q
M
1
5

Q
M
1
9

Q
P
0
1

Q
P
0
2

Q
P
0
3

Q
P
0
4

Q
P
0
5

Q
P
0
6

Q
P
0
7

Q
P
0
8

Q
P
0
9

Q
P
1
0

Q
P
1
1

Q
P
1
2

Q
P
1
3

Q
P
2
1

Q
P
2
3

Query

0

50

100

150

200

250

300

350

400

M
e
m
o
r
y

(
i
n

M
B
)

Figure 5: Memory used to process a query on original (56MB)
and pruned documents

out some (types of) nodes is twofold: first, the fan out of the docu-
ment is reduced and this may impact memory usage for engines that
chase sibling pointers and, second, the number of element names is
reduced, which may reduce memory occupation when shredding.

These results are a clear-cut improvement over current technol-
ogy. While we cannot directly compare processing performances
since no implementation of the other pruning approaches is pub-
licly available, we want to stress two points: (i) with one exception
(QM14) the amount of pruning on common experiments is always
equal or better with our approach than the others and (ii) perform-
ing pruning never is a bottleneck in our case thanks to fact that our
solution consists of a single bufferless one pass traversal of the in-
put document (on our 512MB machine we were able to efficiently
prune arbitrary large documents, while in case of [14] pruning can
end up using as much memory as the execution of the query).

7. CONCLUSION AND FUTURE WORK
The benchmarks show the clear advantages of applying our op-

timisation technique to query XML documents, and the charac-
teristics of our solution make it profitable in all application sce-
narios. We discussed several aspects for which our approach im-
proves the state of the art: for performances (better pruning, more
speedup, less memory consumption), for the analysis techniques
(linear pruning time, negligible memory and time consumption),
for its generality (handling of all axes and of predicates), and, last
but not least, for the formal foundation it provides (correctness for-
mally proved, limits of the approach formally stated).

Future work will be pursued in three distinct areas: formal de-
velopments, database integration, and implementation issues.

281

XMark QMi

XPathMark QPj

What about updates ?

• Type-based projection still ensures optmizations

• Amine Baazizi will give you more details

• Marina Sahakyan can answer questions about efficient
implementation of the technique

Let’s go back to type inference

• Very important problem, crucial for result anlaysis

• Given Q over a schema S, does Q produce values of another
expected schema S’

• Method:

• automatic inference of a schema Sout for Q result values

• automatic checking of inclusion Sout ⊆ S’

• Problem: schema inclusion has high complexity.

• We found out that for a wide class of schemas it can be
efficiently checked. Next subject.

Q : S --> S’ ?

Constraints based subtype checking
and validation

REs and XML types

• REs define element content models in XML schemas

 DTD : <!ELEMENT book (title, (author | editor)*, price?)>

REs and XML types

• REs define element content models in XML schemas

 DTD : <!ELEMENT book (title, (author | editor)*, price?)>

REs and XML types

• REs define element content models in XML schemas

 DTD : <!ELEMENT book (title, (author | editor)*, price?)>

• Our syntax

 T ::= ε | a | T + T | T·T | T*

REs and XML types

• REs define element content models in XML schemas

 DTD : <!ELEMENT book (title, (author | editor)*, price?)>

• Our syntax

 T ::= ε | a | T + T | T·T | T*

 title · (author + editor)* · (price+ ε)

Interleaving and counting

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

• m ∈ N∪{*}

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

Interleaving and counting

Interleaving and counting

• m ∈ N∪{*}

• a = a[1..1] a?=a+ε a*=a[1..*]

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

Interleaving and counting

• m ∈ N∪{*}

• a = a[1..1] a?=a+ε a*=a[1..*]

• L(b[1..4])={b, bb, bbb, bbbb}

• L(a&b)={ab, ba}

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

Interleaving and counting

• m ∈ N∪{*}

• a = a[1..1] a?=a+ε a*=a[1..*]

• L(b[1..4])={b, bb, bbb, bbbb}

• L(a&b)={ab, ba}

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

Interleaving and counting

• m ∈ N∪{*}

• a = a[1..1] a?=a+ε a*=a[1..*]

• L(b[1..4])={b, bb, bbb, bbbb}

• L(a&b)={ab, ba}

• L((a·b) & c)={abc, cab, acb } cba ∉ L((a·b) & c)

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

Interleaving and counting

• m ∈ N∪{*}

• a = a[1..1] a?=a+ε a*=a[1..*]

• L(b[1..4])={b, bb, bbb, bbbb}

• L(a&b)={ab, ba}

• L((a·b) & c)={abc, cab, acb } cba ∉ L((a·b) & c)

 T ::= ε | a | T + T | T·T | T* | T&T | T[n..m]

Interleaving

• Interleaving is used in XML type languages

• RELAX-NG <interleave> … </interleave>

• The all group of XSD:

<xsd:complexType name="PurchaseOrderType">
 <xsd:all>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 </xsd:complexType>

The cost of Interleaving
• Membership

• RE : PTime

• RE with & : NP-complete

• Inclusion

• RE: PSPACE (EXPTIME for EDTDs) complete

• RE with & : EXPSPACE complete

• Our conflict-free expressions:

• Inclusion: quadratic [IS09]

• Membership: linear [CIKM08]

Our conflict-free REs

 T ::= ε | a[m..n] | T + T | T·T | T&T

• Two restrictions:

1. repetition T* restricted to a* (denoting a[1..*]+ε)

2. single occurrence:

(a+b·a+a·c) : no

(a·b?) : ok

• Are these restrictions acceptable ?

[BexNevenSchwentickTuyls-VLDB06]: “An examination of 819 DTDs and
XSDs … more than 99% of the REs occurring in practical schema’s are
CHAREs”

Our conflict-free REs

 T ::= ε | a[m..n] | T + T | T·T | T&T

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

• upper-bound: no symbol out of {a, b, c} is in w;

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

• upper-bound: no symbol out of {a, b, c} is in w;

• cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it
appears twice…

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

• upper-bound: no symbol out of {a, b, c} is in w;

• cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it
appears twice…

• exclusion: any of {a,b} excludes c
c excludes any of {a,b}

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

• upper-bound: no symbol out of {a, b, c} is in w;

• cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it
appears twice…

• exclusion: any of {a,b} excludes c
c excludes any of {a,b}

• co-occurrence: a requires b; b requires a

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

• upper-bound: no symbol out of {a, b, c} is in w;

• cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it
appears twice…

• exclusion: any of {a,b} excludes c
c excludes any of {a,b}

• co-occurrence: a requires b; b requires a

• order: any a comes before any b

Types as constraints
 T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound (nillability): at least one of {a,b,c}=S(T) is in w;

• upper-bound: no symbol out of {a, b, c} is in w;

• cardinality: if a is in w, it appears 1, 2 or 3 times; if b is there, it
appears twice…

• exclusion: any of {a,b} excludes c
c excludes any of {a,b}

• co-occurrence: a requires b; b requires a

• order: any a comes before any b

This is a complete characterization of T !

Types as constraints
T = ((a[1..3]·b[2..2]) + c[1..*]) and w in L(T)

• lower-bound S(T)

• upper-bound: Upper(S(T))

• cardinality: a?[1..3] ∧ b?[2..2] ∧ c?[1..*]

• exclusion: {a,b}⋏⋎{c}

• co-occurrence: a ⇒ b ∧ b⇒a (abbreviated as a ⇔ b)

• order: a ⋏ b

Constraints
 F::= A | A⇒B | a?[m..n] | upper(A) | A<B | F ∧ F'

Constraints
 F::= A | A⇒B | a?[m..n] | upper(A) | A<B | F ∧ F'

w ⊨ A : w↓A≠∅

w ⊨ A=>B : if w ⊨ A then w ⊨ B

w ⊨ A<B : any A is before any B

w ⊨ a?[m..n] : if a in w, then m≤ |w↓a| ≤ n

w ⊨ upper(A): S(w) ⊆ A

Derived operators
• Double co-occurrence:

• A⇔B ⇔def A⇒B and B⇒A

• Mutual exclusion

• A⋏⋎B ⇔def A⋏B and B⋏A

• corresponds to c-f union types TA + TB

• Negation

• ¬A ⇔def A ⇒ ∅
• False ⇔def ∅

• True ⇔def ∅⇒∅

Flat, order and co-occurrence
constraints

• Each c-f type can be associated to a conjunction

• Theorem [IS09]: w ∈ T <=> w⊨ F(T)

• Theorem (subtyping)

T⊆ U ⇔ T ⊨ Ffat(U), T ⊨ OC(T), T ⊨ CC(T)

• Each of the 3 above entailements can be checked: independently
and in O(n^2) time [IS09].

• In a recent work [ICDT09]: quadratic algorithm when only U is c-f

• Good news for result analysis: Q : S --> S’ via Sout ⊆ S’

F(T)=Flat(T) ∧ OC(T) ∧ CC(T)

Constraints for efficient validation

Main points

• XML schema validation ≃ RE membership

• Membership for RE+{interleaving, counting} is NP-complete

• Most of REs defined in real-life schemas are conflict-free

• Semantics of c-f REs can be captured by logical constraints
(previous work at DBPL’07)

• Streaming RE membership checking via streaming constraint
residuation

• Linear complexity!

• Extension to XML schema validation: immediate (see [CIKM08])

Constraints construction
T = ((a+ε)&b[1..5]) + (c·d[1..*])

Constraints construction

+

εa

T = ((a+ε)&b[1..5]) + (c·d[1..*])

Constraints construction

&

+
b[1..5]

εa

 T = ((a+ε)&b[1..5]) + (c·d[1..*])

Constraints construction

&

+

+
b[1..5]

εa

c[1..1] d[1..*]

·

 T = ((a+ε)&b[1..5]) + (c·d[1..*])

T = ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

abcd

T is not nillable: ε ∉ T

C(T) = abcd ∧

Constraints construction

T = ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

abcd ⋀ upper(abcd)

T is not nillable: ε ∉ T

C(T) = abcd ∧ upper(abcd)

Constraints construction

T = ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

abcd ⋀ upper(abcd)

C(T) = abcd ∧ upper(abcd) ∧ a?[1..1] ∧ ∧ d?[1..*]

Constraints construction

T = ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b c ⇔d

abcd ⋀ upper(abcd)

C(T) = abcd ∧ upper(abcd) ∧ a?[1..1] ∧ ∧ d?[1..*]
 ∧ a ⇒b ∧ c ⇔d

Constraints construction

T = ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d

abcd ⋀ upper(abcd)

c ⋏d

C(T) = abcd ∧ upper(abcd) ∧ a?[1..1] ∧ ∧ d?[1..*]
 ab ⋏⋎cd ∧ c ⋏d ∧ a ⇒b ∧ c ⇔d

Theorem : w∈ T ⇔ w ⊨ C(T)

Constraints construction

Constraint membership
• We consider F=C(T) instead of T

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

F F1

a1

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

F F1 F2

a1 a2

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

F F1 F2 Fn

a1 a2 a3 an

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

F F1 F2 Fn

a1 a2 a3 an

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

F F1 F2 Fn

a1 a2 a3 an

residuals

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

F F1 F2 Fn

a1 a2 a3 an

residuals

w⊨C(T) ⇔ Fn ∩{False, A}=∅

Constraint membership

• We consider F=C(T) instead of T

• We build a tree representation of C(T)

• We check w=a1·a2·.....·an⊨ C(T) in a streaming fashion

• Important: flat constraints do not need residuation:

• counting constraints a?[m..n] : keep some counters updated
during the visit

• lower and upper bound constraints: trivial.

Constraint membership

Residuation
Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Residuation
Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Residuation
Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Residuation

Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Residuation

Residuation
Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Residuation

Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Residuation

Residuation
Input Constraint Residual after ai

ai∈A A⇒B B
ai∈B A⇒B true
ai∈A A⇔B B
ai∈A A true
ai∈A A ⋏⋎ B ¬B

ai∈B A ⋏ B ¬A

ai∈A ¬B ¬B
ai∈A ¬A false

Linear residuation
d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

Linear residuation

d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

ai∈B A⇔B A

Linear residuation

d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c
c ⋏d

ai∈B A⇔B A

Linear residuation

d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c
¬c

ai∈A A ⋏ B ¬B

Linear residuation

d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b c
¬c

ab ⋏⋎cd

ai∈A A ⋏⋎ B ¬B

Linear residuation

d ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

¬ab

c
¬c

Linear residuation

d ∉ ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c
¬c

Fail!

Linear residuation

Failure : the final residual contains a formula A=c

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

a ⇒b

ab ⋏⋎cd

c ⇔d
c ⋏d

ai∈A A⇒B B

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

b

ab ⋏⋎cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

b

ab ⋏⋎cd

c ⇔d
c ⋏d

ai∈A A ⋏⋎ B ¬B

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

b

 ¬cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

b

 ¬cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

b

 ¬cd

c ⇔d
c ⋏d

Linear residuation

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

b

 ¬cd

c ⇔d
c ⋏d

ai∈A A true

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

Linear residuation

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

ai∈A A true

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

Linear residuation

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

ai∈A ¬B ¬B

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

Nothing new!

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

ai∈A ¬B ¬B

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

No A or False in the final residual ⇒Success!

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*])

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1]
d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

Complexity : O(|T|+|w|·depth(T))

depth(T)

Linear residuation

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1]
d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

Complexity : O(|T|+|w|·depth(T))

depth(T)

Linear residuation

We can do better : O(|T|+|w|) !

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

Remark : the operations made for the second b were redundant !

Avoiding redundant visits

abb ∈ ((a+ε)&b[1..5]) + (c·d[1..*]) ?

&

+

+
b[1..5]

εa

c d[1..*]

·

b?[1..5]

a?[1..1]

c?[1..1] d?[1..*]

TRUE

 ¬cd

c ⇔d
c ⋏d

Remark : the operations made for the second b were redundant !

Once a symbol is met and processed, there is almost non reason to
consider and process it if met again.

Avoiding redundant visits

• A node n is visited each time a symbol in its left or right hand
side sub-tree is met in w

Stability

• A node n is visited each time a symbol in its left or right hand
side sub-tree is met in w

Stability

A B

Fn

Stability

A B

Fn

A B

F’na∙w

a ∈ A

Stability

A B

Fn

A B

F’na∙w a’

A B

F’n

This is almost always true !

a, a’ ∈ A Stability

It is almost always true that n does not need to be visited more than once for
symbols in A

Stability

A B

Fn

A B

F’na∙w a’

A B

F’n

a, a’ ∈ A
Redundant transition !

Stability - exception

A B

A⋏Bn

A B

¬Ana∙w a’

A B

FALSEn

Residuation stops!

a, a’ ∈ A w∩B≠∅

Exeption : F= A⋏B and w∩B≠∅

The linear algorithm

• B-stability always holds

• So during residuation each node needs to be processed/
visited at most three times.

• For the pattern A-B-A with F= A⋏B

• Complexity O(|T|+|w|)

Some tests without residuation

Figure 9: Scalability of Xelf.

We evaluated our system on a dataset containing 10 in-
stances of XMark [15], ranging from 110 MBs to 1.09 GBs.

8.2 Experiments
The experimental results we obtained are shown in Figure

9. First of all, these results show a linear behavior, hence
confirming our complexity analysis. Furthermore, as illus-
trated by the diagram, our approach is extremely scalable,
while the validating SAX parser was unable to complete
the validation process on documents of size larger than 680
MBytes, due to memory consumption; this suggests that our
algorithm has a limited memory footprint and that it can
be profitably used for online validation.

This suggestion has been confirmed by further experi-
ments, where we measured the memory used by our ap-
proach during the validation of our dataset: in these exper-
iments our algorithm used no more than 301 KBytes during
validation, even on very big documents.

We do not precisely know why the validating SAX parser
fails in validating large XMark documents: we believe that
the deep nesting of XMark documents may have caused the
problem, but we have no real evidences.

As we expected, our prototype implementation is slower
than the validating SAX parser; however, our implemen-
tation is just a proof-of-concept, while Xerces is a long-
standing and highly optimized parser.

9. CONCLUSIONS
Membership checking is NP-hard for REs with interleav-

ing. We have presented here a subclass of these REs which
admits a simple polynomial membership algorithm. The al-
gorithm is based on the transformation of the RE into a
set of constraints, and on the parallel incremental residua-
tion of these constraints. We have discussed the practical
relevance of this class of extended REs, and have presented
some optimizations that make our algorithm linear in the
size of |T | + |w|. Apart from the practical motivations, we
believe that it is important to understand how far the ex-
pressive power of REs can be extended with“hard”operators
such as interleaving and counting before making member-
ship NP-hard. Our algorithm is not linear when used to
check m words {wi}i∈1..m against one type T , since T ap-
pears once in the input, but it is visited m times by the

algorithm. We have presented an optimization that makes
the algorithm almost linear for repeated checking, that is,
makes it linear in |T | + (

∑
i∈1..m |wi|) ∗ flatdepth(T), and

flatdepth(T) is very small in practice. Repeated checking
is at the heart of XML membership checking with respect
to DTDs and XSD schemas, hence the same quasi-linear
complexity is preserved when we use our approach for XML
membership checking. Finally, we experimentally validated
the scalability properties of our approach.

10. REFERENCES
[1] http://xerces.apache.org/.
[2] D. Barbosa, G. Leighton, and A. Smith. Efficient

incremental validation of XML documents after
composite updates. In XSym, volume 4156 of LNCS,
pages 107–121. Springer, 2006.

[3] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet,
and M. Arenas. Efficient incremental validation of
XML documents. In ICDE, pages 671–682. IEEE
Computer Society, 2004.

[4] G. J. Bex, F. Neven, and J. V. den Bussche. DTDs
versus XML schema: A practical study. In WebDB,
pages 79–84, 2004.

[5] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls.
Inference of concise DTDs from XML data. In VLDB,
pages 115–126, 2006.

[6] G. J. Bex, F. Neven, and S. Vansummeren. Inferring
XML schema definitions from XML data. In VLDB,
pages 998–1009, 2007.

[7] J. Brzozowski. Derivates of regular expression. Journal
of the ACM, 11:481–494, 1964.

[8] B. Choi. What are real DTDs like? In WebDB, pages
43–48, 2002.

[9] W. Gelade, W. Martens, and F. Neven. Optimizing
schema languages for XML: Numerical constraints and
interleaving. In ICDT, 2007.

[10] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient
inclusion for a class of XML types with interleaving
and counting. In DBPL, 2007.

[11] H. Hosoya and B. C. Pierce. XDuce: A statically
typed XML processing language. ACM Transactions
on Internet Technology, 3(2):117–148, May 2003.

[12] J.E. Hopcroft and J.D. Ullman. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[13] A. J. Mayer and L. J. Stockmeyer. Word problems —
this time with interleaving. Inf. Comput.,
115(2):293–311, 1994.

[14] M. Montazerian, P. T. Wood, and S. R. Mousavi.
XPath query satisfiability is in PTIME for real-world
DTDs. In XSym, volume 4704 of LNCS, pages 17–30.
Springer, 2007.

[15] A. Schmidt, F. Waas, M. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical report, Centrum voor
Wiskunde en Informatica, April 2001.

[16] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema Part 1: Structures
Second Edition. Technical report, World Wide Web
Consortium, Oct 2004. W3C Recommendation.

[17] P. T. Wood. Containment for xpath fragments under
DTD constraints. In ICDT, pages 300–314, 2003.

Conclusions

• We have seen some main ideas behind the use of XML schema:

• checking query correctness and result analysis

• efficient document validation

• query and update optimisation (time/space)

• Other interesting applications:

• schema mapping maintenance in XML data integration (based on result analysis and
a notion of type-projection) [DBPL05, PPDP06, TOIT09]

• query-update independence: a technique derived from type-based projection can
ensure highly precise analysis [work in progress, ask Federico Ulliana for details]

References

‣ D. Colazzo, G. Ghelli, P. Manghi, C. Sartiani. Types for Path Correctness
of XML queries. ACM-SIGPLAN International Conference on Functional
Programming (ICFP), 2004.

‣ D. Colazzo and C. Sartiani. An Efficient Algorithm for XML Type
Projection. ACM-SIGPLAN Symposium on Principles and Practice of
Declarative Programming (PPDP), 2006.

‣ V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-Based XML
Projection. International Conference on Very Large Databases (VLDB),
2006

‣ G. Ghelli, D. Colazzo and C. Sartiani. Linear Time Membership for a Class
of XML Types with Interleaving and Counting. ACM Conference on
Information and Knowledge Management (CIKM), 2008.

References

‣ D. Colazzo, G. Ghelli and C. Sartiani. Efficient asymmetric inclusion
between regular expression types. International Conference on Database
Theory (ICDT), 2009.

‣ D. Colazzo, G. Ghelli and C. Sartiani. Efficient Inclusion for a Class of
XML Types with Interleaving and Counting. Information Systems. Volume
34, Issue 7, Pages 577-670, November, 2009.

‣ D. Colazzo, G. Ghelli, L. Pardini and C. Sartiani. Linear Inclusion for XML
Regular Expression Types. ACM Conference on Information and
Knowledge Management (CIKM), 2009.

‣ D. Colazzo, G. Ghelli and C. Sartiani. Efficient asymmetric inclusion
between regular expression types. International Conference on Database
Theory (ICDT), 2009.

‣ D. Colazzo and C. Sartiani. Detection of Corrupted Schema Mappings in
XML Data Integration Systems. ACM Transactions on Internet Technology
(TOIT), 2009.

 Merci ! Any questions ?

