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In previous chapters, we presented algorithms for evaluating XPath queries on XML

documents in PTIME with respect to the combined size of the XML data and of the query. In
this context, the entire document is assumed to fit within the main memory. However, very
large XML documents may not fit in the memory available at runtime to the query processor.
Since access to disk-resident data is orders of magnitude slower than access to the main
memory, this dramatically changes the problem. When this is the case, performance-wise,
the goal is not so much in reducing the algorithmic complexity of query evaluation, but in
designing methods reducing the number of disk accesses that are needed to evaluate a given
query. The topic of this chapter is the efficient processing of queries of disk-resident XML
documents.

We will use extensively depth-first tree traversals in the chapter. We briefly recall two
classical definitions:

preorder To traverse a non-empty binary tree in preorder, perform the following operations
recursively at each node, starting with the root node: 1. Visit the root; 2. Traverse the
left subtree; 3. Traverse the right subtree.

postorder To traverse a non-empty binary tree in postorder, perform the following operations
recursively at each node, starting with the root node: 1. Traverse the left subtree; 2.
Traverse the right subtree; 3. Visit the root.

Figure 1 illustrates the issues raised by the evaluation of path queries on disk-resident
XML documents. The document represents information about some auctions. It contains a
list of items for sale, as well as a collection of the currently open auctions. See Figure 1. A
page size has been chosen, typically reasonably small so that one can access some small unit
of information without having to load too much data. A very simple method has been used
to store the document nodes on disk. A preorder traversal of the document, starting from
the root, groups as many nodes as possible within the current page. When the page is full, a
new page is used to store the nodes that are encountered next, etc. Each thick-lined box in
the figure represents a page. Observe, that a node may be stored in a different page than its
parent. When this is the case, the “reference” of the child node in the parent page may consist
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auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 1: Simple page-based storage of an XML tree.

of (i) the ID of the page that stores the child node and (ii) the offset of the child node in that
separate page.

We now consider the processing of simple queries on the document in Figure 1:

• /auctions/item requires the traversal of two disk pages;

• /auctions/item/description and
/auctions/open_auctions/auction/initial
both require traversing three disk pages;

• //initial requires traversing all the pages of the document.

These examples highlight the risk of costly disk accesses even when the query result is
very small. As a consequence, there is a risk of very poor performance on documents stored
in such a naïve persistent fashion. Indeed, the example was meant to illustrate that navigation
on disk-resident structures may be costly and should be avoided. This is indeed a well-known
principle since the days of object-oriented databases.

How can one avoid navigation? Two broad classes of techniques have been proposed.

Smart fragmentation. Since XML nodes are typically accessed by a given property (most
often, their names and/or their incoming paths), fragmentation aims at decomposing
an XML tree into separate collections of nodes, grouped by the value of interesting,
shared property. The goal is to group nodes that are often accessed simultaneously, so
that the number of pages that need to be accessed is globally reduced. We present the
main approaches for fragmentation in Section 1.

Rich node identifiers. Even on a well-fragmented store, some queries may require combin-
ing data from more than one the stored collections. This can be seen as “stitching” back
together separated fragments, and amounts to performing some joins on the identifiers
of stored nodes. (The node identifiers for Figure 1 consist of (page, offset) pairs.) To
make stitching efficient, sophisticate node identifier schemes have been proposed. We
present some in Section 2 and discuss interesting properties they provide. We present
XML query evaluation techniques exploiting node identification schemes in Section 3.
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Figure 2: Sample XML document with simple node identifiers.

pid cid clabel
- 1 auctions
1 2 item
2 5 comment
2 6 name
2 7 description
1 3 open_auctions
3 8 auction
· · · · · · · · ·

Figure 3: Partial instance of the Edge relation for the document in Figure 2.

1 Fragmenting XML documents on disk

A set of simple alternatives have been explored for fragmenting XML documents, and they
can all be conceptualized with the help of some set of relations. The evaluation of XML queries
then turns into a sequence of two steps: translating the XML query into a relational (XML)
query, and evaluating the relational query on the tables representing the XML document
content.

To illustrate fragmentation approaches, we will rely on the sample auction document in
Figure 2, where next to each node, we show an integer that allows identifying the node.

The simplest approach considers a document to be a collection of edges, stored in a single
Edge(pid, cid, clabel) relation. Here, cid is the ID of some node (child node), pid stands for
the ID of its parent, and label is its label (the label of the child node). For instance, part of the
document in Figure 2 is encoded by the relation shown in Figure 3.

Let us now explain the processing of XPath queries relying on such a store. Here and
throughout the section, we consider the evaluation of an XPath query up to the point where
the identifiers of the result nodes are known. It is then usually straightforward to retrieve the
full XML elements based on their identifiers.
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• The query //initial can now be answered by evaluating the expression:

πcid(σclabel=initial(Edge))

The Edge storage is quite beneficial for queries of this form, i.e., //a for some node label
a, since, with the help of an appropriate index on Edge.clabel, one can evaluate such
queries quite efficiently.

• The query /auctions/item translates to the expression:

πcid((σclabel=auctions(Edge)) ./cid=pid (σclabel=item(Edge)))

Observe that the two nodes in the query translate to two occurrences of the Edge relation.
Similarly, queries such as

/auctions/item/description and
/auctions/open_auctions/auction/initial

require joining several instances of the Edge table. Such queries become problematic
when the size of the query increases.

• Now consider a query such as //auction//bid. In the absence of schema informa-
tion, the distance between the XML nodes matching auction and their descendants
matching bid is unknown. Therefore, such queries lead to a union of different-lengths
simpler queries, where the // has been replaced with chains of / steps, introducing
nodes with unconstrained labels (using *):

//auction/bid πcid(A ./cid=pid B)
//auction/*/bid πcid(A ./cid=pid Edge ./cid=pid B)
//auction/*/*/bid · · ·

where A = σclabel=auctions(Edge) and B = σclabel=bid(Edge).

In principle, there is no bound on the number of intermediate nodes, so we have to
evaluate an infinite union of XPath queries. In practice, some bound may be provided
by the schema or the maximum depth of the document may be recorded at the time the
document is loaded. This limits the number of queries to be evaluated. However, it is
clear that the processing of such queries, featuring // at non-leading positions, is very
costly in such an setting.

Tag-partitioning A straightforward variation on the above approach is the tag-partitioned
Edge relation. The Edge relation is partitioned into as many tag-based relations as there are
different tags in the original document. Each such relation stores the identifiers of the nodes,
and the identifiers of their respective parents. (There is no need to repeat the label that is the
same for all nodes in such a collection.) Figure 4 illustrates tag-partitioning for the document
in Figure 2.

Clearly, the tag-partitioned Edge store reduces the disk I/O needed to retrieve the identi-
fiers of elements having a given tag, since it suffices to scan the corresponding tag-partitioned
relation. However, the partitioning of queries with // steps in non-leading position remains
as difficult as it is for the Edge approach.
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auctionsEdge
pid cid

- 1

itemEdge
pid cid

1 2
1 4

open_auctionsEdge
pid cid

1 3

auctionEdge
pid cid

3 8
3 9

Figure 4: Portions of the tag-partitioned Edge relations for the document in Figure 2.

/auctions
pid cid

- 1

/auctions/item
pid cid

1 2
1 4

/auctions/item/name
pid cid

2 6
4 14

Paths
path
/auctions
/auctions/item
/auctions/item/comment
/auctions/item/name
· · ·

Figure 5: Relations resulting from the path-partitioned storage of the document in Figure 2.

Path-partitioning The Path-partitioning fragmentation approach aims at solving the problem
raised by // steps at arbitrary positions in a query. The idea is roughly to encode the
Dataguide (see page ??) of the XML data set in a set of relations. There is one relation for each
distinct parent-child path in the document, e.g., /auctions/item/name. There is also an
extra table, namely path containing all the unique paths. Figure 5 illustrates the resulting
relations for the document in Figure 2.

Based on a path-partitioned store, a linear query such as //item//bid can be evaluated
in two steps:

• Scan the path relation and identify all the parent-child paths matching the given linear
XPath query;

• For each of the paths thus obtained, scan the corresponding path-partitioned table.

On a path-partitioned store, the evaluation of XPath queries with many branches will still
require joins across the relations. However, the evaluation of // steps is simplified, thanks
to the first processing step, performed on the path relation. For very structured data, this
relation is typically small, much smaller than the data set itself. Thus, the cost of the first
processing step is likely negligible, while the performance benefits of avoiding numerous
joins are quite important. However, for some data, the path relation can quite large, and in
pathological cases, even larger than the data itself.
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<a>
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... <b>

30

... </b>
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... </a>

90

Offsets in the XML file

Figure 6: Region-based identifiers.

2 XML node identifiers

We have seen that, within a persistent XML store, each node must be assigned a unique
identifier (or ID, in short). Such an identifier plays the role of a primary key to the node,
that allows distinguishing it from other nodes even if they have the same label and pairwise
identical children. In a fragmented store, moreover, these identifiers are essential to be able to
reconnect nodes according to their relationships and reconstruct the original XML document.

Going beyond these simple ID roles, we show next that it is very useful to encapsulate in
identifiers some knowledge of the element’s position within the original document. Indeed,
with particular node identifiers, it even becomes possible, just by considering two XML node
IDs, to decide how the respective nodes are related in the document. We will see how this can
be exploited to efficiently process queries.

2.1 Region-based identifiers

Typically, the identifiers we consider exploit the tree structure of XML. First, we present an
identification scheme that is based on the tags signaling the beginning and the end of XML
elements. We assume that the tags are properly nested (just like parentheses in arithmetical
expressions), i.e., that the document is well-formed.

Figure 6 shows an example. This document is the serialization of an XML tree with a
root labeled a, that includes some text, a child labeled b that only includes text, followed by
some text. On the horizontal axis, we show the offset, within the XML file, at which begin
tags, such as <a>, respectively, end tags, such as </a>, are encountered. In the figure, the a
element is the root of the document, thus its begin tag starts at offset 0. The b element starts
at offset 30 in the file, and finishes at offset 50. Observe that due to the well-formedness of an
XML document, an element’s begin tag must follow the begin tags of its ancestors. Similarly,
an element’s end tag must precede the end tags of its ancestors.

The so-called region-based identifier scheme simply assigns to each XML node n, the pair
composed of the offset of its begin tag, and the offset of its end tag. We denote this pair by
(n.begin,n.end). In the example in Figure 6:

• the region-based identifier of the <a> element is the pair (0, 90);

• the region-based identifier of the <b> element is pair (30, 50).

Comparing the region-based identifiers of two nodes n1 and n2 allows deciding whether
n1 is an ancestor of n2. Observe that this is the case if and only if:

• n1.start < n2.start, and

• n2.end < n1.end.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.
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Thus, by considering only the identifiers n1 = (0,90) and n2 = (30,50), and without
having to access the respective nodes or any other data structures, one can decide that the
element identified by n1 is an ancestor of the element identified by n2. Contrast this simple
decision procedure with the costly navigation required to answer a similar question on the
page-fragmented storage shown in Figure 1!

Region-based node identifiers are the simplest and most intuitive structural XML IDs. The
simple variant presented above, using offsets in the serialized XML file, can be implemented
easily, since one only needs to gather offsets inside the file corresponding to the serialized
document. However, for the purpose of efficiently evaluating tree pattern queries, one does
not need to count all characters in the file, but only the information describing how elements
are structurally related in the XML tree. Popular variants of region-based identifiers based on
this observation include the following:

(Begin tag, end tag). Instead of counting characters (offsets), count only opening and closing
tags (as one unit each) and assign the resulting counter values to each element. Follow-
ing this scheme, the <a> element in Figure 6 is identified by the pair (1,4), while the
<b> element is identified by the pair (2,3).

The pair (Begin tag, end tag) clearly allows inferring whether an element is an ancestor
of another by simple comparisons of the ID components.

(Pre, post). The (pre, post) identifiers are computed as follows:

• Perform a preorder traversal of the tree. Count nodes during the traversal and
assign to each node its corresponding counter value. This would assign the so-
called pre number of 1 to the a-node, and the pre number of 2 to the b-node.

• Perform a post-order traversal of the tree. Count nodes during the traversal and
assign to each node its corresponding counter value, called post number. For
instance, the post number of <a> in Figure 6 is 2, and the post number of <b> is 1.

The (pre, post) IDs still allow inferring whether an element n1 is an ancestor of another
one n2, i.e., if n1.pre ≤ n2.pre and n2.post ≤ n1.post.

It is also useful to be able to decide whether an element is a parent of another. The following
variant allows to do so:

(Pre, post, depth). This scheme adds to the (pre, post) pair an integer representing the depth,
or distance from the document root, at which the corresponding individual node is
found. An element identified by n1 is the parent of an element identified by n2, if and
only if the following conditions hold:

• n1 is an ancestor of n2 and

• n1.depth = n2.depth− 1.

For illustration, Figure 7 shows the XML document of the running example, with nodes
adorned with (pre, post, depth) identifiers.

Region-based identifiers are quite compact, as their size only grows logarithmically with
the number of nodes in a document.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.
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(1,15,1)

(2,4,2) (3,11,2) (4,14,2)

(5,1,3)

(6,2,3)

(7,3,3)

(8,7,3) (9,10,3)

(10,5,4) (11,6,4) (12,8,4) (13,9,4)

(14,12,3) (15,13,3)

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 7: Sample XML document with (pre, post, depth) node identifiers.

1

1.1 1.2 1.3

1.1.1

1.1.2

1.1.3

1.2.1 1.2.2

1.2.1.1 1.2.1.2 1.2.2.1 1.2.2.2

1.3.1 1.3.2

auctions

item open_auctions item

comment

name

description

auction auction

initial bids initial bids

name description

Figure 8: Sample XML document with Dewey node identifiers.

2.2 Dewey-based identifiers

Another family of identifiers borrows from the well-known Dewey classification scheme,
widely used, for example, in libraries long before computers and databases took over the
inventories. The principle of Dewey IDs is quite simple: the ID of a node is obtained by
adding a suffix to the ID of the node’s parent. The suffix should allow distinguishing each
node from all its siblings that are also constructed starting from the same parent ID. For
instance, the root may be numbered 1, its first child 1.1, its second child 1.2 and so on. For
example, Figure 8 shows our sample XML document with the nodes adorned with Dewey
node IDs.

Dewey IDs encapsulate structural information in a much more explicit way than region
IDs. We illustrate some aspects next. Let n1 and n2 be two identifiers, of the form n1 =
x1.x2. . . . .xm and n2 = y1.y2. . . . .yn. Then:

• The node identified by n1 is an ancestor of the node identified by n2 if and only if n1 is a
prefix of n2. When this is the case, the node identified by n1 is the parent of the node
identified by n2 if and only if n = m + 1.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.
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• Dewey IDs also allow establishing other relationships such as preceding-sibling and be-
fore (respectively, following-sibling, and after). The node identified by n1 is a preceding
sibling of the node identified by n2 if and only if (i) x1.x2. . . . .xm−1 = y1.y2. . . . .yn−1; and
(ii) xm < yn.

• Given two Dewey IDs n1 and n2, one can find the ID of the lowest common ancestor (LCA)
of the corresponding nodes. The ID of the LCA is the longest common prefix of n1 and
n2. For instance, in Figure 8, the LCA of the nodes identified by 1.2.1.1 and 1.2.2.2 is
1.2. Determining the LCA of two nodes is useful, for instance, when searching XML
documents based on a set of keywords. In this context, the user does not specify the size
or type of the desired answer, and the system may return the smallest XML subtrees
containing matches for all the user-specified keywords. It turns out that such smallest
XML subtrees are exactly those rooted at the LCA of the nodes containing the keywords.

As just discussed, Dewey IDs provide more information than region-based IDs. The main
drawback of Dewey IDs is their potentially much larger size. Also, the fact that IDs have
lengths that may vary a lot within the same document, complicates processing.

2.3 Structural identifiers and updates

Observe that identifier of a node for all the forms mentioned above may change when the
XML document that contains this node is updated. For instance, consider a node with Dewey
ID 1.2.2.3. Suppose we insert a new first child to node 1.2. Then the ID of node 1.2.2.3 becomes
1.2.3.3.

In general, offset-based identifiers need to change even if a simple character is added to
or removed from a text node in the XML document, since this changes the offsets of all nodes
occurring in the document after the modified text node. Identifiers based on the (start, end)
or (pre, post) model, as well as Dewey IDs, are not impacted by updates to the document’s
text nodes. One may also choose to leave them unchanged when removing nodes even full
subtrees from the document. If we do that (leave the identification unchanged when subtrees
are removed), we introduce gaps in the use of identifiers in all three methods, but these gaps
do not affect in any way the computation of structural joins.

The management of insertions, on the other hand, is much more intricate. When inserting
an XML node nnew, the identifiers of all nodes occurring after nnew in the preorder traversal of
the tree, need to change. Depending on the ID model, such changes may also affect the IDs
of nnew’s ancestors. The process of re-assigning identifiers to XML nodes after a document
update is known as re-labeling.

In application scenarios where XML updates are expected to be frequent, re-labeling may
raise important performance issues.

3 XML query evaluation techniques

We present in the next section, techniques for the efficient evaluation of XML queries, and in
particular for tree pattern queries.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.
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3.1 Structural join

The first techniques concern structural joins and can be seen as foundational to all the others.
Structural joins are physical operators capable of combining tuples from two inputs, much in
the way regular joins in the relation case do, but based on a structural condition (thus the
name). Formally, let p1 and p2 be some partial evaluation plans in an XML database, such that
attribute X in the output of p1, denoted p1.X, and attribute Y from the output of p2, denoted
p2.Y, both contain structural IDs. Observe that the setting is very general, that is, we make
no assumption on how p1 and p2 are implemented, which physical operators they contain
etc. Let ≺ denote the binary relationship “isParentOf” and ≺≺ denote the binary relationship
“isAncestorOf”. Formally then, the structural join of p1 and p2 on the condition that p1.X be
an ancestor of p2.Y is defined as:

p1 ./X≺≺Y p2 = {(t1, t2) | t1 ∈ p1, t2 ∈ p2, t1.X≺≺ t2.Y}
and the structural join on the parent relation ≺ is similarly defined by:

p1 ./X≺Y p2 = {(t1, t2) | t1 ∈ p1, t2 ∈ p2, t1.X ≺ t2.Y}
We have seen that expressive node IDs allow deciding just by comparing two IDs whether

the respective nodes are related or not. Now, what is needed is an efficient way of establishing
how the nodes from sets of tuples are related, i.e., how to efficiently evaluate a join of the form
p1 ./X≺≺Y p2. Efficiency for a join operator means reducing its CPU costs, and avoiding to
incur memory and I/O costs. For our discussion, let |p1| denote the number of tuples output
by p1, and |p2| the number of tuples output by p2.

One can consider different kinds of joins:

Nested loop join The simplest physical structural join algorithms could proceed in nested
loops. One iterates over the output of p1 and for each tuple, one iterates over the output
of p2. However, this leads to CPU costs in O(|p1| × |p2|), since each p1 tuple is compared
with each p2 tuple.

Hash join As in traditional relational database settings, one could consider hash joins that are
often called upon for good performance, given that their CPU costs are in O(|p1|+ |p2|).
However, hash-based techniques cannot apply here, because the comparisons that need
to be carried are of the form “is id1 an ancestor of id2?” which do not lead themselves to
a hash-based approach.

Stack-based join To efficiently perform this task, Stack-based structural joins operators have
been proposed originally for (start, end) ID scheme. They can be used for other labeling
schemes as well. We discuss these joins next.

To be able to use stack-based joins, the structural IDs must allow efficiently answering the
following questions:

1. Is id1 the identifier of the parent of the node identified by id2? The same question can
be asked for ancestor.

2. Does id1 start after id2 in preorder traversal of the tree? Or in other words, does the
opening tag of the node identified by id1 occur in the document after the opening tag of
the node identified by id2?

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.
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<root(1,5)> <list(2,4)> <list(3,3)> <para(4,2)> <para(5,1)/> </para> </list> </list>
</root>

Ordered by ancestor ID (list ID) Ordered by descendantID (para ID)
(2,4) (4,2)
(2,4) (5,1)
(3,3) (4,2)
(3,3) (5,1)

(2,4) (4,2)
(3,3) (4,2)
(2,4) (5,1)
(3,3) (5,1)

Figure 9: Sample XML snippet and orderings of the (list ID, para ID) tuples.

3. Does id1 end after id2? Or in other words, does the closing tag of the node identified by
id1 occur in the document after the closing tag of the node identified by id2?

Assuming each of these questions can be answered fast, say in constant time, based on the
values of id1 and id2, stack-based structural joins can be evaluated in Ω(|p1|+ |p2|), which
is very efficient. Intuitively, we start with the two lists of identifiers. Condition (1) allows
deciding whether a pair (i, j) with i from one list and j from the other is a solution. Because of
Conditions (2) and (3), we can just scan the two lists (keeping some running stacks) and do
not have to consider all such (i, j) pairs.

More precisely, two algorithms have been proposed, namely, StackTreeDescendant (or
STD in short) and StackTreeAncestor (or STA in short). The algorithms are quite similar. They
both require the inputp1 tuples sorted in the increasing order1 of p1.X, and the input p2 tuples
in the increasing order of p2.Y. The difference between STD and STA is the order in which
they produce their output: STD produces output tuples sorted by the ancestor ID, whereas
STA produces them sorted by the descendant ID.

To see why the two orders do not always coincide, consider the XML snippet shown in
Figure 9, with the (start, end) IDs appearing as subscripts in the opening tags. In the figure,
we show the (ancestor, descendant) ID pairs from this snippet, where the ancestor is a list,
and the descendant is a paragraph (labeled “para”).

Observe that the second and third tuples differ in the two tuple orders. This order issue is
significant, since both STD and STA require inputs to be ordered by the IDs on which the join
is to be made. Thus, when combining STD and STA joins in larger query evaluation plans, if
the order of results in one join’s output is not the one required by its parent operator, Sort
operators may need to be inserted, adding to the CPU costs, and delaying the moment when
the first output tuple is built. We now introduce the STD algorithm by means of an example,
leaving STA as further reading.

Figure 10 shows a sample XML document with (start, end) IDs shown as subscripts of the
nodes. In this example, the structural join to be evaluated must compute all pairs of (ancestor,
descendant) nodes such that the ancestors are labeled b and the descendants are labeled g.

Figure 10 shows a sequence of snapshots during STD execution, with arrows denoting
transitions from one snapshot to the next one.

In each snapshot, the first table shows the inputs, i.e., the ordered lists of IDs of the b
nodes, respectively, of the g nodes. The algorithm’s only internal data structure is a stack, in

1This is the lexicographical order, i.e., (i, j) < (i′, j′) if i < i′ or if i = i′ and j < j′.
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(2,5), (5,2) ⇒
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Stack Output
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(2,5), (5,2) ⇒
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(10,7)
(13,10)
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(11,12)
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(3,3), (5,2)
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(14,11)

Stack

(11,12)
(7,14)

Output
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⇒

b IDs g IDs Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(13,10), (11,12)
(13,10), (7,14)
(14,11), (11,12)
(14,11), (7,14)

Figure 10: Sample XML tree, and successive snapshots of the inputs and stack during the
execution of a StackTreeDescendant (STD) structural join.

which ancestor node IDs are all successively pushed, and from which they are popped later
on.

STD execution starts by pushing the ancestor (that is, b node) ID on the stack, namely
(2,5). Then, STD continues to examine the IDs in the b ancestor input. As long as the current
ancestor ID is a descendant of the top of the stack, the current ancestor ID is pushed on the
stack, without considering the descendant IDs at all. This is illustrated by the second b ID,
(3,3) pushed on the stack, since it is a descendant of (2,5). The third ID in the b input, (7,14), is
not a descendant of current stack top, namely (2,5). Therefore, STD stops pushing b IDs on
the stack and considers the current descendant ID, to see if it has matches on the stack. It turns
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out that the first g node, namely (5,2), is a descendant of both b nodes on the stack, leading to
the first two output tuples. Observe that the stack content does not change when output is
produced. This is because there may be further descendant IDs to match these ancestor IDs
on the stack.

Importantly, a descendant ID which has been compared with ancestor IDs on the stack and has
produced output tuples, can be discarded after the comparisons. In other words, we are certain that
this descendant has encountered all its ancestors from the ancestor stream. This is because of the
way in which ancestor IDs are pushed on the stack (push as long as they are ancestors of each
other). Indeed, all the ancestors of a given g node, for instance, are on a single vertical path in
the document, and therefore, they are guaranteed to be on the stack at once. In our example,
once the (5,2) node ID has lead to producing output, it is discarded.

As the STD execution continues, the g ID (10,7) encounters no matches on the stack.
Moreover, (10,7) occurs in the original document after the nodes on the stack. Therefore, no
descendant node ID yet to be examined can have ancestors on this stack. This is because the input g
IDs are in document order. Thus, if the current g ID is after the stack nodes, all future g IDs
will also occur “too late” to be descendants of the nodes in the current stack. Therefore, at
this point, the stack is emptied. This explains why once an ancestor ID has transited through the
stack and has been popped away, no descendant ID yet to be examined could produce a join result with
this ancestor ID.

The previous discussion provides the two reasons for the efficiency of STD:

• a single pass over the descendants suffices (each is compared with the ancestor IDs on
the stack only once);

• a single pass over the ancestors suffices (each transits through the stack only once).

Thus, the STD algorithm can apply in a streaming fashion, reading each of its inputs only
once and thus with CPU costs in Ω(|p1|+ |p2|).

Continuing to follow our illustrative execution, the ancestor ID (7,14) is pushed on the
stack, followed by its descendant (in the ancestor input) (11, 12). The next descendant ID is
(10,7) which produces a result with (7,14) and is then discarded. The next descendant ID is
(13,10), which leads to two new tuples added in the output, and similarly the descendant ID
(14,11) leads to two more output tuples.

Observe in Figure 10 that, true to its name, the STD algorithm produces output tuples
sorted by the descendant ID.

3.2 Optimizing structural join queries

Algorithm STD allows combining two inputs based on a structural relationship between an
ID attribute of one plan and an ID attribute of the other. Using STD and the similar Stack-
TreeAncestor (STA), one can compute matches for larger query tree patterns, by combining
sets of identifiers of nodes having the labels appearing in the query tree pattern.

This is illustrated in Figure 11 which shows a sample tree pattern and a corresponding
structural join plan for evaluating it based on collections of identifiers for a, b, c and d nodes.
The plan in Figure 11 (b) is a first attempt at converting the logical plan into a physical
executable plan. In Figure 11 (b), the first logical structural join is implemented using the STD
algorithm, whose output will be sorted by b.ID. The second structural join can be implemented
by STD (leading to an output ordered by c.ID) or STA (leading to an output ordered by b.ID),

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 15

(a)

a

b d

c

a IDs b IDs c IDs d IDs

./

./

./

a.ID≺b.ID

b.ID≺≺ c.ID

a.ID≺≺d.ID

(b)

a IDs b IDs c IDs d IDs

STD

STD or STA

STD or STA

a.ID≺b.ID

b.ID≺≺ c.ID

a.ID≺≺d.ID

Sorta.ID

(c)

a IDs b IDs c IDs d IDs

STA

Sortb.ID

Sorta.ID

STD or STA

STD or STA

a.ID≺b.ID

b.ID≺≺ c.ID

a.ID≺≺d.ID

(d)

a IDsb IDs c IDs d IDs

STA

STA

STD or STA

b.ID≺≺ c.ID

a.ID≺b.ID

a.ID≺≺d.ID
(e)

TwigStack

a IDs b IDs c IDs d IDs

Figure 11: Tree pattern query and a corresponding logical structural join plan (a); possible
physical plans (b)-(e).

but in both cases, the output of this second structural join is not guaranteed to be sorted by
a.ID. Therefore, a Sort operator is needed to adapt the output of the second join to the input
of the third join, which requires its left-hand input sorted by a.ID.

The plan in Figure 11 (c) uses STA instead of STD for the first structural join (between a.ID
and b.ID). This choice, however, is worse than the one in Figure 11 (b), since a Sort operator is
needed after the first join to re-order its results on b.ID, and a second Sort operator is needed
to order the output of the second physical join, on a.ID. The Sort operators are blocking,
i.e., they require completely reading their input before producing their first output tuple.
Therefore, they increase the time to the first output tuple produced by the physical plan, and
the total running time.

In contrast to the plans in Figure 11 (b) and (c), the plan in Figure 11 (d) allows evaluating
the same query and does not require any Sort operator. Observe however that the plan does
not apply joins in the same order as the other ones in Figure 11. In general, it turns out that
for any tree pattern query, there exist some plans using the STD and STA physical operators,
and which do not require any Sort (also called fully pipelined plans). However, one cannot
ensure a fully pipelined plan for a given join order. For instance, in Figure 11, the reader can
easily check that no fully pipelined plan exists for the join order a ≺ b, b≺≺ c, a≺≺d.

This complicates the problem of finding an efficient evaluation plan based on structural
joins, because two optimization objectives are now in conflict:

• avoiding Sort operators (to reduce the time to the first output, and the total running
time) and

• choosing the join order that minimizes the sizes of the intermediary join results.
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Algorithms for finding efficient, fully-pipelined plans are discussed in [WPJ03].

3.3 Holistic twig joins

The previous Section showed how, in a query evaluation engine including binary structural
join operators, one can reduce the total running time by avoiding Sort operators and reduce
the total running time and/or the size of the intermediary join results, by chosing the order
in which to perform the joins.

A different approach toward the goals of reducing the running time and the size of the
intermediary results consists in devising a new (logical and physical operator), more precisely,
an n-ary structural join operator, also called a holistic twig join. Such an operator builds the
result of a tree pattern query in a single pass over all the inputs in parallel. This eliminates
the need for storing intermediary results and may also significantly reduce the total running
time.

Formally, let q be a tree pattern query having n nodes, such that for 1 ≤ i ≤ n, the i-th
node of the pattern is labeled ai. Without loss of generality, assume that q’s root is labeled a1.
For each node labeled ai, 2≤ i ≤ n, we denote by ap

i is the parent of ai in q.
We first define the logical holistic twig join operator. Assume available a set of logical

sub-plans lp1, lp2, . . ., lpn such that for each i, 1≤ i ≤ n, the plan lpi outputs structural IDs of
elements labeled ai. The logical holistic structural join of lp1, lp2, . . ., lpn based on q, denoted
./q (lp1, lp2, . . . , lpn), is defined as:

σ(ap
2≺≺ a2)∧(ap

3≺≺ a3)∧...∧(ap
n≺≺ an)

(lp1 × lp2 × . . .× lpn)

In the above expression, we assumed that all edges in q correspond to ancestor-descendant
relationship. To account for the case where the edge between ai and ap

i is parent-child, one
needs to replace the atom ap

i ≺≺ ai in the selection, by ap
i ≺ ai.

We now turn to discussing efficient physical holistic twig join operators. For ease of
explanation, we first present an algorithm called PathStack, for evaluating linear queries only,
and then generalize to the TwigStack algorithm for the general case.
Algorithm PathStack The algorithm uses as auxiliary data structures one stack Si for each
query node ni labeled ai. During execution, PathStack pushes IDs of nodes labeled ai in the
corresponding stack Si. At the end of the execution, each stack Si holds exactly those IDs of
nodes labeled ai, which participate to one or more result tuples.

PathStack works by continuously looking for the input operator (let’s call it iopmin, cor-
responding to the query node nmin labeled amin) whose first ID has the smallest pre number
among all the input streams. This amounts to finding the first element (in document order)
among those not yet processed, across all inputs. Let’s call this element emin.

Once emin has been found, PathStack inspects all the stacks, looking for nodes of which it
can be guaranteed that they will not contribute to further query results. In particular, this is
the case for any nodes preceding emin, i.e., ending before the start of emin. It is easy to see that
such nodes cannot be ancestors neither of emin, nor of any of the remaining nodes in any of
the inputs, since such nodes have a starting position even bigger than emin’s. PathStack pops
all such entries, from all stacks.

PathStack then pushes the current nmin entry on Samin , if and only if suitable ancestors of
this element have already been identified and pushed on the stack of ap

min, the parent node
of amin in the query. If this is the case and a new entry is pushed on Samin , importantly, a
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b(3,13)

a(4,12)

b(6,9)

c(7,7) c(8,8) c(10,10)

b(11,11) b(15,17)

c(16,16)

d(5,5)

a stack b stack c stack

aID b ID c ID
(2,14) (3,13) (7,7)
(4,12) (6,9) (8,8)

(11,11) (10,10)
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(3,13)
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aID b ID c ID
(6,9) (7,7)

(11,11) (8,8)
(15,17) (10,10)

(16,16)

(2,14)

(4,12)

a stack b stack
(3,13)

(6,9)

c stack
(7,7)

aID b ID c ID
(11,11) (8,8)
(15,17) (10,10)

(16,16)

Figure 12: Sample tree pattern, XML document, and stacks for the PathStack algorithm.

pointer is stored from the top entry in Sap
min

, to the new (top) entry in Samin . Such pointers record
the connections between the stack entries matching different query nodes, and will be used
to build result tuples out (see below). Finally, PathStack advances the input operator iopmin
and resumes its main loop, identifying again the input operator holding the first element (in
document order) not yet processed etc.

When an entry is pushed on the stack corresponding to the query leaf, we are certain that
the stacks contain matches for all its ancestors in the query, matches that are ancestors of the
leaf stack entry. At this point, two steps are applied:

1. Result tuples are built out of the entries on the stacks, and in particular of the new entry
on the stack of the query leaf;

2. This new entry is popped from the stack.

Figure 12 illustrates the algorithm through successive snapshots of the input streams and
stacks, for the sample document shown at left in the Figure. The first execution snapshot is
taken at the start: all stacks are empty and all streams are set to their first element. The search
for the iopmin operator is done by comparing the top elements in all the streams. In this case,
the smallest element ID is (2,14) in the stack of a, therefore nmin is set to this node, and nmin
is pushed on the correspondint stack Sa. The stream of a advances to the next position and
we seek again for the new iopmin, which turns out to be the stream of b IDs. The new value
of nmin is the b node identified by (4, 13); this node is therefore pushed on the b stack and
the pointer from (2,14) to (3,13) records the connection between the two stack entries (which
corresponds to a structural connection in the document). The b stream is advanced again, and
then iopmin is found to be the a stream, leading to pushing (4, 12) on the a stack.

At this point, we must check the entries in the stacks corresponding to descendants of a,
and possibly prune “outdated” entries (nodes preceding the newly pushed a in the document).
In our case, there is only one entry in the b stack. Comparing its ID, (3, 13) with the ID (4, 12)
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of the newly pushed a element, we decide that the (3, 13) entry should be preserved in the b
stack for the time being.

After advancing the a stream, PathStack’s data structures take the form shown in the
middle snapshot at right in Figure 12.

The process is repeated and pushes the (6, 9) identifier on the b stack. No entry is
eliminated from the c stack since it is still empty. The algorithm then pushes the identifiers
(7,7) on the c stack and connects it to the current to p of the b stack, namely (6, 9). This is the
situation depicted at the bottom right of Figure 12.

Observe that (7, 7) is a match of the c node which is a leaf in the query. Thus, at this point,
the following result tuples are built out of the stacks, based on the connections between stack
entries:

aID bID cID
(2,14) (3,13) (7,7)
(2,14) (6,9) (7,7)
(4,12) (6,9) (7,7)

The (7,7) entries is then popped from its stack, and (8,8) takes its place, leading similarly
to the result tuples:

aID bID cID
(2,14) (3,13) (8,8)
(2,14) (6,9) (8,8)
(4,12) (6,9) (8,8)

Now, the smallest element not yet processed is identified by (10, 10) in the stream of c
elements. This element is not pushed in the c stack, because it is not a descendant of the
current top of the b stack (namely, (6, 9)).

Continuing execution, the b element identified by (11, 11) is examined. It leads to expung-
ing from the stacks all entries whose end number is smaller than 11, and in particular, the b
entry (6,9). (11,11) is then pushed on the b stack. When (15,1) is read from the b stream, all
existing a and b entries are popped, however (15, 1) is not pushed due to the lack of a suitable
ancestor in the a stack. Finally, (16,16) is not pushed, by a similar reasoning.

The algorithm has two features of interest.

• No intermediary result tuples: results are built directly as n-tuples, where n is the size
of the query. This avoids the multiplication, say, of every a element by each of its b
descendants, before learning whether or not any of these bs had a c descendant:

• Space-efficient encoding of results: Thanks to the pointer structures and to the way
the algorithm operates, the total size of the entries stored on the stacks at any point
in times is bound by |d| × |q|, however, such stack entries allow encoding up to |d||q|
query results, a strong saving in terms of space (and thus, performance).

Algorithm TwigStack This algorithm generalizes PathStack with support for multiple branches.
The ideas are very similar, as the main features (no intermediary results and space-efficient
encoding of twig query results) are the same. Figure 13 shows a twig (tree) pattern query
derived from the linear query of Figure 12 by adding a lateral c branch. The document is the
same in both Figures.
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Figure 13: Sample tree pattern, XML document, and stacks for the TwigStack algorithm.

At right in Figure 13 we show the input streams at the beginning of the execution (top
right) as well as a snapshot of the stacks at the moment during execution when (7,7) has been
pushed on the c stack. Now that there is a match for each query leaf node, the following
tuples are output:

aID bID cID dID
(2,14) (3,13) (7,7) (5,5)
(2,14) (6,9) (7,7) (5,5)
(4,12) (6,9) (7,7) (5,5)

One can show [BKS02] that if the query pattern edges are only of type ancestor/descen-
dant, TwigStack is I/O and CPU optimal among all sequential algorithms that read their
inputs in their entirety.

4 Further reading

The XML storage, indexing, and query processing area is still very active and has witnessed a
wide variety of techniques and algorithms.

Interval-based node IDs were first proposed in the context of efficient relational storage
for XML documents in XRel [YASU01] and XParent [JLWY02]. As pointed out in the original
structural join paper [AKJP+02], they are however inspired by known works in information
retrieval systems, which assign positional identifiers to occurrences of words in text, and
closely related to the Dietz numbering scheme [Die82]. Dewey-style XML identifiers were
used for instance in [SSB+00].

Compact labeling of trees is now a mature topic, see [AAK+06, KMS07].
Simple region and Dewey-based ID schemes suffer when the document is updated, since

this may require extensive node re-labeling. ORDPATH IDs [OOP+04] remedy to this problem.
An ORDPATH ID is a dot-separated sequence of labels, in the style of Dewey, but using integer
labels and playing on the odd/even character of the numbers to allow inserting nodes at
any place without re-labeling any existing node. ORDPATHs were implemented within the
Microsoft SQL Server’s XML extension. Other interesting node identifier schemes, trading
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between compactness, efficient query evaluation and resilience to updates, are described
in [WLH04], [LLCC05] and among the most recent works, in [XLWB09].

Stack-based structural joins operators have been proposed in [AKJP+02]. Heuristics for
selecting the best join order in this context are presented in [WPJ03]. The TwigStack algorithm
is presented in [BKS02]. Numerous improvements have been subsequently brought to
TwigStack, mainly by adding B-Tree style indexes on the inputs. This enables skipping some
of the input IDs, if it can be inferred that they will not contribute to the query result.

Given the robustness of relational database management systems, many works have
considered using relational DBMSs to store and query XML documents. The first works in this
area are [FK99, STZ+99]. An interesting line of works starting with [Gru02, GvKT03, GST04]
considered the efficient handling of XML data in relational databases relying on (start, end)
identifiers. The special properties satisfied by such IDs (and which are due to the nested
nature of XML documents) is exploited in these works to significantly speed up the processing
of XPath queries and more generally, of (XQuery) tree pattern queries. These works also
provide an extensive approach for faithfully translating XML queries expressed in XPath
and XQuery, into relational algebra (endowed with minimal extensions). In a more recent
development, this algebraic approach has been compiled to be executed by the MONETDB
column-based relational store [BGvK+06].

Manipulating XML documents within relational databases and jointly with relational data
has been considered quite early on in the industrial world. The ISO standard SQL/XML [ISO03]
is an extension to the SQL language, allowing a new elementary data type xml. A relation can
have columns of type xml, which can be queried using XPath/XQuery invoked by a built-in
function, within a regular SQL query. SQL/XML also provides facilities for declaratively
specifying a mapping to export relational data in an XML form.

5 Exercises

The following exercises will allow you to derive a set of results previously established in the
literature, which have been used to efficiently implement tree pattern query evaluation.

Exercise 5.1 (inspired from [GvKT04])
Recall the notions of pre, post and level numbers assigned to nodes in an XML document:

• the pre number of node n, denoted n.pre, is the number assigned to n when n is first reached by
a pre-order traversal of the document;

• the post number of node n, denoted n.post, is the number assigned to n when n is first reached
by a post-order traversal of the document;

• the level number of node n is 0 if n is the root element of the document, otherwise, it is the
number of edges traversed on the path from the root element to n.

Moreover, we denote by size(n) the number of descendants of a node n. We denote the height of a
document d by h(d).

1. Prove that for any XML node n:

n.pre− n.post + size(n) = n.level

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 21

2. Let n be an XML node and nrl be the rightmost leaf descendant of n. In other word, nrl is
attained by navigating from n to its last child r1 (if it exists), from r1 to its last child r2 (if its
exist) and so on, until we reach a childless node, i.e. the leaf nrl . Prove that:

nrl .pre ≤ h(d) + n.post

3. Using point 2. above, show that for any descendant m of a node n:

n.pre ≤ m.pre ≤ h(d) + n.post

4. Let nll be the leftmost leaf descendant of n. Node nll is attained from n by moving to the first
child l1 of n (if such a child exists), then from l1 to its first child l2 (if such a child exists) and so
on, until we reach a leaf (which is nll). Show that:

nll .post ≥ n.pre− h(d)

5. Using the answer to point 4. above, show that for any node m descendant of a node n:

n.pre− h(d) ≤ m.post ≤ n.post

6. Assume an XML storage system based on the following relations:

Doc(ID, URL, h) For each document, its internal ID, its URL,
and its height

Node(docID, pre, post, level,

label)

For each XML node, the ID of its document,
its pre, post and level numbers, and its label

Let dID be the identifier of a document d, and npre, npost and nlevel be the pre, post
and level numbers of an XML node n ∈ d. Write the most restrictive (selective) SQL query
retrieving the pre numbers and labels of all n descendants in d.

Exercise 5.2 (inspired from [WPJ03]) We consider a tree pattern query evaluation engine based on
structural identifiers and binary structural joins (implemented by the STA and STD operators). For
any node label l, we denote by lID a relation storing the structural identifiers of all nodes labeled l.
Recall that a physical plan without any Sort operator is termed a fully pipelined plan. For instance,
STAa≺≺b(aID, STAb≺c(bID, cID)) is a fully pipelined plan for the query //a[//b/c].

1. Let q f lat be a “flat” XPath query of the form /r[.//a1][.//a2] . . . //ak. Propose a fully pipelined
plan for evaluating q f lat.

2. For the same query q f lat, consider the following the join order ω1: first verify the predicate
r≺≺ a1, then the predicate r≺≺ a2, then r≺≺ a3 and so on, until the last predicate r≺≺ ak. Is there
a fully pipelined plan for evaluating q f lat respecting the join order ω1?

3. Let qdeep be a “deep” XPath query of the form /r//a1//a2 . . . //ak. Propose a fully pipelined
plan for evaluating qdeep.
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4. For the query qdeep introduced above, let ω2 be a join order which starts by verifying the r≺≺ a1
predicate, then the predicate a1≺≺ a2, then the predicate a2≺≺ a3 and so on, until the last predicate
ak−1≺≺ ak. Is there a fully pipelined plan for evaluating qdeep respecting the join order ω2? If
yes, provide one. If not, explain why.

5. For the same query qdeep, now consider the join order ω3 which starts by verifying the predicate
ak−1≺≺ ak, then the predicate ak−2≺≺ ak−1 and so on, until the predicate r≺≺ a1. Is there a fully
pipelined plan for evaluating qdeep respecting the join order ω3? If yes, provide one. If not,
explain why.

6. Show that for any XPath query q, there is at least a fully pipelined plan for evaluating q.

7. Propose an algorithm that, given a general XPath query q and a join order ω, returns a fully
pipelined plan respecting the join order ω if such a plan exists, and returns failure otherwise.

Exercise 5.3 (Inspired from [BKS02]) Consider a tree pattern query q and a set of stacks such as those
used by the PathStack and TwigStack algorithms. Propose an algorithm which, based on stack entries
containing matches for all nodes in q, computes the tuples corresponding to the full answers to q:

• in the case where q is a linear path query (algorithm PathStack);

• in the general case where q is a twig pattern query (algorithm TwigStack).
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