
http://webdam.inria.fr/

Web Data Management

Web Search

Serge Abiteboul Ioana Manolescu
INRIA Saclay & ENS Cachan INRIA Saclay & Paris-Sud University

Philippe Rigaux
CNAM Paris & INRIA Saclay

Marie-Christine Rousset Pierre Senellart
Grenoble University Télécom ParisTech

Copyright @2011 by Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,
Pierre Senellart;

to be published by Cambridge University Press 2011. For personal use only, not for distribution.

http://webdam.inria.fr/Jorge/

http://webdam.inria.fr/
http://webdam.inria.fr/Jorge/

For personal use only, not for distribution. 2

Contents

1 The World Wide Web 3

2 Parsing the Web 5
2.1 Crawling the Web . 6
2.2 Text Preprocessing . 9

3 Web Information Retrieval 11
3.1 Inverted Files . 12
3.2 Answering Keyword Queries . 16
3.3 Large-scale Indexing with Inverted Files . 18
3.4 Clustering . 24
3.5 Beyond Classical IR . 26

4 Web Graph Mining 26
4.1 PageRank . 27
4.2 HITS . 31
4.3 Spamdexing . 32
4.4 Discovering Communities on the Web . 33

5 Hot Topics in Web Search 34

6 Further Reading 35

With a constantly increasing size of dozens of billions of freely accessible documents,
one of the major issues raised by the World Wide Web is that of searching in an effective
and efficient way through these documents to find those that best suit a user’s need. The
purpose of this chapter is to describe the techniques that are at the core of today’s search
engines (such as Google1, Yahoo!2, Bing3, or Exalead4), that is, mostly keyword search in very
large collections of text documents. We also briefly touch upon other techniques and research
issues that may be of importance in next-generation search engines.

This chapter is organized as follows. In Section 1, we briefly recall the Web and the
languages and protocols it relies upon. Most of these topics have already been covered earlier
in the book, and their introduction here is mostly intended to make the present chapter
self-contained. We then present in Section 2 the techniques that can be used to retrieve pages
from the Web, that is, to crawl it, and to extract text tokens from them. First-generation search
engines, exemplified by Altavista5, mostly relied on the classical information retrieval (IR)
techniques, applied to text documents, that are described in Section 3. The advent of the Web,
and more generally the steady growth of documents collections managed by institutions
of all kinds, has led to extensions of these techniques. We address scalability issues in
Section 3.3, with focus on centralized indexing. Distributed approaches are investigated
in Chapter ??. The graph structure of the Web gives rises to ranking techniques that very

1http://www.google.com/
2http://www.yahoo.com/
3http://www.bing.com/
4http://www.exalead.com/
5http://www.altavista.com/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/
http://www.exalead.com/
http://www.altavista.com/

For personal use only, not for distribution. 3

effectively complement information retrieval. We conclude with a brief discussion of currently
active research topics about Web search in Section 5.

1 The World Wide Web

Whereas the Internet is a physical network of computers (or hosts) connected to each other
from all around the world, the World Wide Web, WWW or Web in short, is a logical collection
of hyperlinked documents shared by the hosts of this network. A hyperlinked document
is just a document with references to other documents of the same collection. Note that
documents of the Web may refer both to static documents stored on the hard drive of some
host of the Internet and to dynamic documents that are generated on the fly. This means that
there is a virtually unlimited number of documents on the Web, since dynamic documents
can change at each request. When one speaks of the Web, it is mostly about the public
part of the Web, which is freely accessible, but there are also various private Webs that are
restricted to some community or company, either on private Intranets or on the Internet, with
password-protected pages.

Documents and, more generally, resources on the Web, are identified by a URL (Uniform
Resource Locator) which is a character string that follows a fixed format illustrated on the
imaginary URL below, with basic components, described next.

https︸ ︷︷ ︸
scheme

://www.example.com︸ ︷︷ ︸
hostname

:443︸ ︷︷ ︸
port

/path/to/document︸ ︷︷ ︸
path

?name=foo&town=bar︸ ︷︷ ︸
query string

#first-para︸ ︷︷ ︸
fragment

scheme: Describes the way the resource can be accessed; on the Web, it is generally one of
the Web protocols (http, https) that are described further.

hostname: This is the domain name of a host, as given by the domain name system (DNS).
Frequently on the Web, the hostname of a Web site will start with www., but this is only
a common convention, not a rule.

port: TCP port where the server listens on the host; it defaults to 80 for the http scheme and
443 for the https scheme and is rarely present.

path: The logical path of the document; for simple cases, this corresponds to a path leading
to the static document in the filesystem of the host.

query string: Additional parameters identifying the resource, mostly used with dynamic
documents.

fragment: Identifies a specific part of the document.

Query strings and fragments are optional (and, most of the time, absent) and the path can
be omitted, in which case the URL refers to the root of the Web host. URLs can also be relative
(by opposition to the absolute URL shown here), when both the scheme and hostname portions
are omitted. A relative URL is to be interpreted in a given URL context (for instance, the
URL of the current document) and is resolved in a straightforward way: if the context is that
of the URL above, the relative URLs /images6 and data would be resolved, respectively,

6Note that here /images is considered as a relative URL, because it lacks the scheme and hostname part; the
path /images, however, is an absolute path.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

data
/images

For personal use only, not for distribution. 4

as https://www.example.com:443/images and https://www.example.com:443/
path/to/data in a way similar to (UNIX) relative paths resolution.

The usual format for documents (or, in this case, pages) on the Web is HTML (the HyperText
Markup Language), though one can find many documents, including hyperlinked documents,
in other formats. This is the case for PDF documents (another kind of hyperlinked structure),
documents from word-processing softwares, and non-textual, multimedia documents such as
images and audio files.

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
lang="en" xml:lang="en">

<head>
<meta http-equiv="Content-Type"

content="text/html; charset=utf-8" />
<title>Example XHTML document</title>

</head>
<body>

<p>This is a
link to the
W3C!</p>

</body>
</html>

Figure 1: Example XHTML document

HTML is originally a dialect of SGML, the ancestor of XML, but is hardly ever parsed as
such. The most common versions found on today’s Web are HTML 4.01 and XHTML 1.0,
which is a direct XMLization of HTML 4.01, with minor differences. An example XHTML
document is given in Figure 1. As it is an SGML or XML file, an (X)HTML document is
made out of elements, attributes, and text content. Elements carry, between other things,
meta-information about the document (e.g., <meta>, <title>), structural information at
the document level (e.g., <table>, , <p>), structural information at the character level
(e.g., ,) or references to other media (e.g., , <object>). An element
of importance is <a>, which defines a hyperlink to another resource on the Web identified
by the URL given as the href attribute. Both relative and absolute links are allowed here.
The context of resolution is the URL of the current page, unless it contains a <base> element
that indicates another context. HTML pages can also contain other disguised hyperlinks in
the form of JavaScript code that loads other URLs, of redirection after a timeout with some
specific use of the <meta> element, or of Flash or Java applets; all these links are less easy to
identify and then less accessible to users and Web robots.

Although HTML pages are primarily seen thanks to a browser (and, most of the time, a
graphical browser as Microsoft Internet Explorer or Mozilla Firefox), the HTML code is not
supposed to describe the way the page will appear in a browser (it is the role of a styling
language like CSS) but the core structure and content of the document in a way accessible to

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

https://www.example.com:443/images
https://www.example.com:443/path/to/data
https://www.example.com:443/path/to/data

For personal use only, not for distribution. 5

Request
GET /myResource HTTP/1.1
Host: www.example.com

Response

HTTP/1.1 200 OK
Content-Type: text/html; charset=ISO-8859-1

<html>
<head><title>myResource</title></head>
<body><p>Hello world!</p></body>

</html>

Figure 2: HTTP request and response examples

all kind of browsers and a wide variety of user agents such as the crawlers that we describe
in Section 2.1. For this reason, it is important that HTML documents be valid against the
W3C specifications; tools like the W3C validator available at http://validator.w3.org/
can be of help. Sadly, because of a history of browser wars, browser limitations, browser
permissiveness, and author laziness, most of the (X)HTML pages on the Web are far from
being valid, or even well-formed in the sense of XML well-formedness, accounting for what
has been called tag soup.

Pages of the Web are accessed using the usual client-server architecture of the Internet: a
Web server on a remote host accepts requests from a client for a given resource, and provides
it to him. Two communication protocols are mainly used for this exchange: HTTP and
HTTPS. The latter allows for encryption, authentication and advanced features such as
session tracking; it is essential for e-commerce on the Web and all other sensitive applications,
but rarely used for regular documents and will not be discussed further. HTTP, or HyperText
Transfer Protocol, is a quite simple protocol built on top of the Internet protocols IP (Internet
Protocol, for addressing) and TCP (Transmission Control Protocol, for transportation) that is
widely used on the World Wide Web. Figure 2 shows an example request and response from,
respectively, a Web client and a Web server. The request asks for the resource identified
by the path /myResource on host www.example.com and the server answers that the
document was found (code 200 OK; other common codes are 404 NOT FOUND or 500
SERVER ERROR) and provides it. The reason why the hostname is given, whereas the server
has already been contacted, is that a given server may have several different domain names,
with different content (thus, www.google.com and www.google.fr point to the same
machine). This virtual hosting is one of the novel features of HTTP/1.1 with respect to previous
versions. Other features of the HTTP protocol include login and password protection, content
negotiation (the content served for a given URL is not fixed and depends on the preference
indicated by the client, in terms of file formats or languages), cookies (persistent chunks of
information that are stored on the client, e.g., for session management purpose), keep-alive
requests (several requests can be made to the same server without closing the connection),
and more.

2 Parsing the Web

The first task to build a search engine over the Web is to retrieve and index a significant
portion of it. This is done by collecting Web documents through a navigation process called

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://validator.w3.org/

For personal use only, not for distribution. 6

Web crawling. These documents are then processed to extract relevant information. In case of
text documents, sets of words or tokens are collected. Web crawling is introduced in Section 2.1.
We describe in Section 2.2 general text preprocessing techniques that turn out to be useful for
document retrieval.

2.1 Crawling the Web

Crawling is done by user agents that are called crawlers, (Web) spiders or (Web) robots. Their
design raises a number of important engineering issues that will be discussed here.

Discovering URLs

Crawling the Web is basically just starting from a given URL or set of URLs, retrieving and
indexing this document, discovering hyperlinks (mostly from the <a> elements of the HTML
content) on the document and repeating the process on each link. There is no real termination
condition here, as it is vain to try to retrieve the entire Web (which is actually virtually infinite,
as already discussed), but the crawl can be terminated after some delay or after some number
of URLs have been discovered or indexed. This is essentially a graph browsing problem,
which can be tackled by either breadth-first (all pages pointed by a page are indexed before
the links they contain are analyzed) or depth-first (a referred page is indexed, and its links
are extracted in turn, as soon as a link to it is discovered) techniques. Obviously, because of
the non-existence of termination conditions, and the possibility of being lost in robot traps
(infinite paths in the graph), a breadth-first approach is preferred here; actually, a mix of a
breadth-first browsing with depth-first browsing of limited depth of each discovered site can
be a good compromise.

There are other sources of URLs for Web crawlers than the ones found on Web pages. Web
search engines have access to information about the Web page that a Web user comes from
when she reaches the Web site of the search engine, thanks to the Referrer HTTP header. It
can be used to discover pages that are not referenced anywhere. Finally, Web masters can
provide search engines with sitemaps, a file, in XML format, that can be used to list all URLs in
a given Web site, along with some meta-information (date of last modification, refresh rate).
When this is available and properly used, for example automatically generated by a content
management system, the situation is ideal: a Web crawler can get the list of all URLs of a Web
site with a single HTTP request.

Deduplicating Web Pages

An important subtask of Web crawling is the identification of duplicate pages in the Web, in
order to avoid browsing them multiple times. Trivial duplicates are documents that share the
same URL, though it can be written in slightly different ways: this means that a canonization of
URLs has to be performed, to detect for instance that http://example.com:80/foo and
http://example.com/foo/../bar are actually the same resource. The identification of
other kind of duplicates, that do not have the same URL, is more intricate but also crucial,
since it would not be very interesting for a user to get a list of identical pages as a result to a
search engine query. Identical duplicates are easy to identify by hashing, but there are often
some little differences between two pages (for instance, a date that is automatically generated

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://example.com:80/foo
http://example.com/foo/../bar

For personal use only, not for distribution. 7

at each request by the server, or random content such as Tips of the day) that present essentially
the same content.

The first approach to detect such near-duplicates is simply to compute the edit distance
between two documents, that is, the minimal number of basic modifications (additions or
deletions of characters or words, etc.) to obtain a document from another one. This is a good
notion of similarity between textual documents, and edit distance can be computed with
dynamic programming in O(m · n), where m and n are the size of the documents. This does
not scale to a large collection of documents, since it is definitely unreasonable to compute the
edit distance between every pair of documents found on the Web. An alternative is the use of
shingles: a shingle is a sequence of tokens (say, words) of a fixed length k (for instance, three
consecutive words), as found in a document. Consider the following two simple documents:

d = I like to watch the sun set with my friend.
d′ = My friend and I like to watch the sun set.

One can compute the set of shingles of length k = 2, disregarding punctuation and putting all
tokens in lowercase:

S ={i like, like to, to watch,watch the, the sun,sun set,set with,with my,my friend}
S′ ={my friend, friend and,and i, i like, like to, to watch,watch the, the sun,sun set}

The similarity between two documents can then be computed as the proportion of common
shingles, using the Jaccard coefficient:

J(S,S′) =
|S ∩ S′|
|S ∪ S′| =

7
11
≈ 0.64

For a value of k between 2 to 10 depending on the applications, this gives a reasonable way
to compare two textual documents (the markup of a HTML page can be either considered
as part of the tokens, or disregarded altogether, depending on the granularity wished in the
comparison). However, this is still costly to compute, since one has to compute the similarity
between every two pair of documents. It is however possible to approximate J(S,S′) by
storing a summary (or sketch) of the shingles contained in a document of a fixed size. Let N be
a fixed integer, which is the size of the summary that will be kept for each document. The
following algorithm can be shown to approximate in an unbiased way the Jaccard similarity
between sets of shingles:

1. Choose N different and independent hash functions;

2. For each hash function hi and set of shingles Sk = {sk1 . . . skn}, store φik = minj hi(skj);

3. Approximate J(Sk,Sl) as the proportion of φik’s and φil’s that are equal:

J(Sk,Sl) ≈
|{i : φik = φil}|

N
.

Then, in order to test if a document is a near-duplicate of one that has already been found,
it is enough to compute its sketch of hashed shingles, and to make N accesses into a hash
table. The larger N is, the better the approximation, but the costlier the computation. It is
also possible to repeat the hashing on the set of hashed shingles to obtain a set of hashed
super-shingles, when one is only interested in very similar documents, as is the case for finding
near-duplicates.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8

User-agent: *
Allow: /searchhistory/
Disallow: /search

Figure 3: Example robots.txt robot exclusion file

Crawling Ethics

Going back to crawling per se, there are also some crawling ethics to abide to. A standard
for robot exclusion has been proposed to allow Webmasters to specify some pages not to be
crawled by Web spiders (the reasons can be varied: for confidentiality purposes, in order not
to put too heavy a load on a resource-intensive Web application, to help robots not to fall
into robot traps, etc.). This standard is followed by all major search engines and consists in a
/robots.txt file that can be put at the root of every Web server and contains restrictions on
what part of the Web site spiders are allowed to crawl.

An example of such a file is given in Figure 3. It disallows the crawling of all URLs whose
path starts with /search, with the exception of those starting with /searchhistory/, to
any robots. Another way of expressing such limitations, at the level of a HTML page this
time (which can be useful if a Webmaster does not have control over the document root), is
through a <meta name="ROBOTS"> directive in the header of the document, such as

<meta name="ROBOTS" content="NOINDEX,NOFOLLOW">

which disallows robots to either index or follow links from the current Web page. Available
keywords are INDEX, FOLLOW, NOINDEX, NOFOLLOW, with a default of INDEX,FOLLOW. Yet
another way of influencing robot crawling and indexing is discussed in Section 4.3. A last
rule that a spider programmer should respect is to avoid too many requests in a short time to
a given host, since that could result in DOS (Denial Of Service) from the host. A good rule of
thumb is to wait between 100 ms and 1 s between two successive requests to the same Web
server.

Design Issues

Because of this last rule, and because network delays are typically much higher than the time
needed to process a Web page, it is crucial to send in parallel a large number of requests
to different hosts; this also means that a per-host queue of URLs to be processed has to be
managed. This parallel processing is typically performed using a multi-threaded environment,
although asynchronous input and outputs (with for instance the select POSIX C function)
provide the same functionality without the overhead introduced by threads. The keep-alive
feature of HTTP/1.1 can also be used to chain requests (after some delay) to the same host. In
large-scale crawlers for general Web search, the crawling itself will be run in parallel on a
number of machines, that have to be regularly synchronized, which raises further issues not
discussed here.

Another aspect of crawling is the refreshing of URLs. Though we stated earlier that we
did not want to crawl the same URL twice, it can be very important to do so in the context of
perpetually changing Web content. Furthermore, it is also important to identify frequently
changing Web pages in order to crawl them more often than others. Thus, the main page

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 9

d1 The jaguar is a New World mammal of the Felidae family.
d2 Jaguar has designed four new engines.
d3 For Jaguar, Atari was keen to use a 68K family device.
d4 The Jacksonville Jaguars are a professional US football team.
d5 Mac OS X Jaguar is available at a price of US $199 for Apple’s new “family pack”.
d6 One such ruling family to incorporate the jaguar into their name is Jaguar Paw.
d7 It is a big cat.

Figure 4: Example set of documents

d1 the1 jaguar2 is3 a4 new5 world6 mammal7 of8 the9 felidae10 family11
d2 jaguar1 has2 designed3 four4 new5 engines6
d3 for1 jaguar2 atari3 was4 keen5 to6 use7 a8 68k9 family10 device11
d4 the1 jacksonville2 jaguars3 are4 a5 professional6 us7 football8 team9
d5 mac1 os2 x3 jaguar4 is5 available6 at7 a8 price9 of10 us11 $19912 for13 apple’s14 new15 family16 pack17
d6 one1 such2 ruling3 family4 to5 incorporate6 the7 jaguar8 into9 their10 name11 is12 jaguar13 paw14
d7 it1 is2 a3 big4 cat5

Figure 5: Tokenization of document set of Figure 4

of an online newspaper should probably be crawled every day or even more often, while
it may take up to a month to a large-scale crawler to crawl a significant portion of the Web.
The HTTP protocol proposes a way to retrieve a document only if it has been modified since
some given date (If-Modified-Since header), but this is often unreliable, even more so
in the context of dynamic documents which are regenerated at each request. Changes in Web
pages have then to be identified by the crawler, without taking into account minor changes,
for instance using techniques described above for identifying near-duplicates. Crawling
strategies have to be adapted accordingly.

2.2 Text Preprocessing

The techniques described here are general techniques for dealing with text corpora. Depend-
ing upon the application, some variant or other has to be applied. Furthermore, the original
language or languages of the document have a major impact on the preprocessing made.

Tokenization

Let us consider the set of seven (one-sentence) documents represented in Figure 4. We
describe next and illustrate on this particular example how to process a collection of text
documents in a suitable way to efficiently answer keyword queries. This problem and related
ones are known as information retrieval or, simply, search problems.

The first step is to tokenize the initial documents into sequences or tokens, or simply
words. This is illustrated on our example document set in Figure 5. At this stage, inter-word
punctuation is generally removed and case is normalized (unless, obviously, the application
requires differently, as may be the case in a search engine dedicated to linguists researching
the usage of punctuations). This may seem like a very simple step where it is sufficient to
replace whitespaces and punctuation by token separators, but the problem is actually trickier

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 10

than this.

• Whereas words are immediately visible in a language such as English, other languages
(notably, Chinese or Japanese) do not use whitespace to mark word boundaries. Tok-
enization of such languages requires much more complex procedures that typically use
both advanced linguistic routines and dictionaries. Specifically for Chinese, an alterna-
tive is to use individual ideograms as tokens, but this may lead to invalid matches in
query answering.

• Some care has to be taken for a number of textual oddities, such as acronyms, elisions,
numbers, units, URLs, and e-mail addresses. They should probably be preserved as
single tokens in most applications and, in any case, should be dealt with consistently.

• Even in English, tokenization is not always obvious, especially with respect to com-
pound words. An immediate question is whether to consider intra-word hyphens as
token separator, but the problem is broader. Consider for instance the term hostname,
which can be found in three variant forms: hostname, host-name, and host name. If we
want to be able to use any of these terms to query all three variants, some analysis has
to be performed, probably with the help of a lexicon, either to consider host name as a
single compound word, or to break hostname in two tokens. The latter solution will also
allow searching for host and name, which may be appropriate, depending on the context.
In languages where compounds are even more easily produced than in English (e.g.,
German or Russian), such an analysis is indispensable.

Stemming

Once tokens are identified, an optional step is to perform some stemming to remove morpho-
logical markers from inflected words or, more generally, to merge several lexically related
tokens into a single stem. Such a step is often needed, for instance to be able to retrieve
documents containing geese where goose is queried, but the degree of stemming varies widely
depending upon the application (and upon the considered language, obviously: the notion of
stemming does not make much sense in a language without any morphological variations
like Chinese). Here is a scale of possible stemming schemes, from finest to coarsest.

Morphological stemming: This consists in the sole removal of bound morphemes (such as
plural, gender, tense, or mood) from words. Note that this can be a very complex task in
morphologically rich languages such as Turkish or, in a lesser way, French, which require
advanced linguistic processing for resolutions of homographs (different words that are
written in the same way). Consider for instance the famous sentence in French: “Les
poules du couvent couvent.” (The hens of the monastery brood.) Here, the first couvent
[monastery] is an uninflected noun, which should stay as is, whereas the second couvent
[brood] is an inflected form of the verb couver [to brood], which should be stemmed
accordingly. In English, the situation is simpler and plain procedures that remove
final -s, -ed, -ing, etc., with a few adaptations for semi-regular (-y/-ies) or irregular
(mouse/mice) inflections, can be enough. Some ambiguities remain, as illustrated with
the words rose or stocking, which can be either uninflected nouns, or inflected forms
of the verb to rise and to stock, respectively. Depending upon the application, one may
choose either a cautious stemming (that does not remove all morphological markers,

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 11

d1 the1 jaguar2 be3 a4 new5 world6 mammal7 of8 the9 felidae10 family11
d2 jaguar1 have2 design3 four4 new5 engine6
d3 for1 jaguar2 atari3 be4 keen5 to6 use7 a8 68k9 family10 device11
d4 the1 jacksonville2 jaguar3 be4 a5 professional6 us7 football8 team9
d5 mac1 os2 x3 jaguar4 be5 available6 at7 a8 price9 of10 us11 $19912 for13 apple14 new15 family16 pack17
d6 one1 such2 rule3 family4 to5 incorporate6 the7 jaguar8 into9 their10 name11 be12 jaguar13 paw14
d7 it1 be2 a3 big4 cat5

Figure 6: Document set of Figure 4, after tokenization and stemming

and will then fail to retrieve some query matches) or a more aggressive one (that will
retrieve invalid query matches). Figure 6 shows the result of a morphological stemming
applied on our running example.

Lexical stemming: Stemming can be pushed further to merge lexically related words from
different parts of speech, such as policy, politics, political or politician. An effective
algorithm for such a stemming in English, Porter’s stemming, has been widely used.
Further ambiguities arise, with for instance university and universal both stemmed to
universe. This kind of stemming can also be coupled to the use of lexicons in order to
merge synonyms or near-synonyms.

Phonetic stemming: The purpose of phonetic stemming is to retrieve words despite spelling
variations or errors. Soundex is a widely used loose phonetic stemming for English,
especially known for its use in U.S. censuses, that stems for instance both Robert and
Rupert to R163. As can be seen from this example, it is a very coarse form of stemming
and should probably not be used in contexts where the precision of matches is important.

In some circumstances, it can be useful to produce different indexes that use different
forms of stemming, to support both exact and approximate queries.

Stop-word removal

The presence of some words in documents, such as determiners (the, a, this, etc.), function
verbs (be, have, make, etc.), and conjunctions (that, and, etc.), is very common and indexing
them increases storage requirements. Furthermore, they are not informative: A keyword
query on be and have is likely to retrieve almost all the (English) documents of the corpus. It
is then common to ignore them in queries, and sometimes in the index itself (although it is
hard to determine in advance whether an information can be useful or not). Figure 7 shows
a further filtering of our running example that removes stop-words (to be compared with
Figure 6).

3 Web Information Retrieval

Once all needed preprocessing has been performed, the (text) document set can be indexed
in an inverted file (or inverted index) that supports efficient answering to keyword queries.
Basically, such an index implements a binary association (i.e., a matrix) between the docu-
ments and the terms they contain. Documents are represented by their ids, a compact key

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 12

d1 jaguar2 new5 world6 mammal7 felidae10 family11
d2 jaguar1 design3 four4 new5 engine6
d3 jaguar2 atari3 keen5 68k9 family10 device11
d4 jacksonville2 jaguar3 professional6 us7 football8 team9
d5 mac1 os2 x3 jaguar4 available6 price9 us11 $19912 apple14 new15 family16 pack17
d6 one1 such2 rule3 family4 incorporate6 jaguar8 their10 name11 jaguar13 paw14
d7 big4 cat5

Figure 7: Document set of Figure 4, after tokenization, stemming, and stop-word removal

family d1, d3, d5, d6
football d4
jaguar d1, d2, d3, d4, d5, d6
new d1, d2, d5
rule d6
us d4, d5
world d1
. . .

Figure 8: Partial inverted index for document set of Figure 4

that uniquely identifies a document. Note that the search system is not required to store the
document itself, as long as it can be accessed from an external source using its id. Terms are,
as discussed before, stemmed tokens that are not stop words. An inverted index supports
very fast retrieval of the documents (ids) that contain the set of keywords in a query.

We describe next and illustrate on our running example how to index a collection of text
documents in a suitable way to efficiently answer keyword queries. This problem and related
ones are known as information retrieval or, simply, search problems. We present the inverted
index model in Section 3.1. We then proceed to the problem of answering keyword queries
using such an index. Large-scale indexing and retrieval is introduced in Section 3.3 and
clustering in Section 3.4. We discuss briefly at the end of this section how we can go beyond
traditional information retrieval techniques to search the Web.

3.1 Inverted Files

An inverted index is very similar to traditional indexes found at the end of printed books,
where each term of interest is associated to a list of page numbers. In the IR context, an
inverted index consists of a collection of posting lists L(T), one for each term t, storing the
ids (postings) of the documents where t occurs. A (partial) example of inverted index for our
example is given in Figure 8.

For small-scale applications where the index fits on a single machine, lists of occurrences
of documents are usually stored, packed, for each given term, in an inverted file that is
then mapped to memory (using the POSIX system call mmap). A secondary structure (the
vocabulary) gives the position of the list for each term in the index. In order to quickly find
this position given a term t, the vocabulary can be indexed by for example a B-tree.

Figure 9 shows the structure of an inverted index. Some details are noteworthy. First, the
length of an inverted list is highly variable. This length depends on the number of referred

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 13

Structure of

an entry
inverted list

B−tree

(t1,n1)

e1(t2,n2)

(tm,nm)

eie3e2

< di ,wi >

vocabulary

Figure 9: Structure of an inverted file

documents in the list, which is high for common terms (t1 in Figure 9), and small for rare ones
(tm in Figure 9). In text processing, skewness is the norm and often the handle to strongly
accelerate query processing by scanning the shortest lists first. The vocabulary features,
therefore, along with each term ti, the number ni of documents where ti occurs.

Second, a list consists of a sequence of homogeneous entries that can often be quite effi-
ciently compressed to limit the memory space required by the whole index. A key requirement
for efficient compression is the ordering of entries on the document id (represented as an
unsigned integer). The basic index illustrated in Figure 8 shows an ordering of each on the di
component, assuming that di < dj when i < j.

Here is a first concrete example giving some measures for a basic representation of an
inverted index.

Example 3.1 Consider an institution that wants to index its collection of e-mails. We assume
that the average size of an e-mail is 1,000 bytes and that each e-mail contains an average of
100 words.

A collection of 1 million e-mails occupies 1 GB. It consists in 100× 106 words. Suppose
that, after parsing and tokenization, the number of distinct terms is 200,000. Then:

1. The index consists of 200,000 lists;

2. Each document appears in 80 lists, if we make the (rough) assumption that 20% of the
terms in a document appear twice;

3. Each list consists, on average, of 400 entries;

4. If we represent document ids as 4-bytes unsigned integers, the average size of a list is
1,600 bytes;

5. The whole index contains 400× 200,000 = 80,000,000 entries;

6. The index size is 320 MB (for inverted lists) plus 2,4 MB (200,000× 12) for the directory.

The index size is generally not negligible. It is more than 30% of the collection size on this
example, a ratio that can get even higher when additional information is added in inverted
lists, as explained next.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 14

family d1/11, d3/10, d5/16, d6/4
football d4/8
jaguar d1/2, d2/1, d3/2, d4/3, d5/4, d6/8 + 13
new d1/5, d2/5, d5/15
rule d6/3
us d4/7, d5/11
world d1/6
. . .

Figure 10: Partial inverted index for document set of Figure 4, with positions

Content of inverted lists

Storing the document id is sufficient for Boolean querying (e.g., to determine which docu-
ment(s) contain a given term). However, applications sometimes require the position of each
term in the original document. This is, for instance, the case when phrases can be searched
(this is usually done in search engine interfaces by enclosing phrases between quotes), or
when the search engine allows operators that need this position information (e.g., the NEAR
operator of Altavista, that requires two terms to be close to each other). This information
can easily be stored in the index, by simple addition of the positions (as integers) next to the
document id in an entry. See Figure 10 for an illustration.

When a term appears several times in a document, the sorted list of its positions is stored
after the document id. This additional information is likely to increase the size of the inverted
file. Storing a list of integers in increasing order allows some effective compression techniques
which are discussed in Section 3.3.

Note that this space overhead can be avoided at the price of a post-processing step at
run-time. In that case, a phrase query is processed just as a traditional bag-of-words query,
and proximity is checked once the document itself has been fetched. This method is however
ineffective at large scale, due to the cost of fetching many useless documents.

Finally, for ranking purposes, a weight wi is stored along with the document id di to
represent the relevancy of the document with respect to the term. The value of wi is discussed
next.

Assessing document relevance

In traditional databases, the result of a query (say, a SQL query) is the set of tuples that match
the query’s criterion, without any specific order. This constitutes a major difference with IR
queries. The set of documents (ids) that contain a term t is easily found by scanning the list
associated with t. But, clearly, some of these documents are more relevant to the term than
others. Assessing the relevance of documents during the matching process is essential in a
system where query results may consist of hundreds of thousands of documents.

Relevance is measured by assigning some weight to the occurrence of a term in a document,
depending on the relevance and informativeness of the term. A term that appears several
times in a document is more relevant for indexing the document than single occurrences. If the
term occurs rarely in the whole collection, this further strengthens its relevance. Conversely,
a term that occurs frequently in many documents is less discriminative. Based on these
principles, a common weighting scheme is tf–idf, or term frequency–inverse document frequency:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 15

family d1/11/.13, d3/10/.13, d5/16/.07, d6/4/.08
football d4/8/.47
jaguar d1/2/.04, d2/1/.04, d3/2/.04, d4/3/.04, d5/4/.02, d6/8 + 13/.04
new d1/5/.20, d2/5/.24, d5/15/.10
rule d6/3/.28
us d4/7/.30, d5/11/.15
world d1/6/.47
. . .

Figure 11: Partial inverted index for document set of Figure 4, with positions and tf-idf
weighting

this scheme assigns a weight to a term that is proportional to its number of occurrences in the
document. It also raises the weight of terms that are present in few documents.

The term frequency is the number of occurrences of a term t in a document d, divided by
the total number of terms in d. The division normalizes the term frequency to avoid the
distorsion that would occur for large documents. In mathematical terms:

tf(t,d) =
nt,d

∑t′ nt′,d

where nt′,d is the number of occurrences of t′ in d.
The inverse document frequency qualifies the importance of a term t in a collection D of

documents. A term that is rarely found is more characteristic of a document than another one
that is very common. The idf is obtained from the division of the total number of documents
by the number of documents where t occurs, as follows:

idf(t) = log
|D|

|{d′ ∈ D |nt,d′ > 0}| .

Finally, the mathematical definition for the weight tfidf(t,d) of term t in document d is
the products of these two descriptors:

tfidf(t,d) =
nt,d

∑t′ nt′,d
· log

|D|
|{d′ ∈ D |nt,d′ > 0}|

The first term raises the weight of frequently occurring terms in the given document, whereas
the second term negatively depends of the global frequency of the term in the document set.
This weighting scheme can then be added to each entry in the index, as shown on Figure 11.

Adding the weight or the position has an impact on the index size.

Example 3.2 Consider again the e-mails collection of Example 3.1. We add the term position
and the weight to each entry, resulting in a storage overhead of 8 bytes, assuming a 4-byte
representation for each component. The 80,000,000 entries now occupy 80× 12× 106 =
960 MB (i.e., almost the size of the whole collection).

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 16

3.2 Answering Keyword Queries

Given an inverted index built as described in the previous sections, we can answer to keyword
queries. This may involve some sophisticated operations if one wants to put the most
significant answers on top of the result set. We begin with the simple case of Boolean queries
that do not require to rank the result.

Boolean queries

If we want to retrieve all documents containing a given keyword, we just need to look up the
(stemmed) keyword in the index and display the corresponding list of documents; associated
weights give an indication of the relevance of each result to the keyword query. Consider now
arbitrary multi-keyword Boolean queries (containing AND, OR, NOT operators), such as:

(jaguar AND new AND NOT family) OR cat.

They can be answered in the same way, by retrieving the document lists from all keywords ap-
pearing in the query and applying the set operations corresponding to the Boolean operators
(respectively, intersection, union, and difference for AND, OR, and AND NOT). Assigning a
score to each document retrieved by the query is not completely straightforward, especially
in the presence of NOT operators. For queries that only contain either the AND or the OR
operator, some monotonous functions of the scores (or weights) of all matched terms can
be used; a simple and effective way to compute the global score of the document is just to
add all scores of matched terms. Another possibility is to use a similarity function, such as
cosine (see Section 3.4) and compute the similarity between the query and the documents.
Queries that give the location of terms relatively to each other (phrase queries or queries
with a NEAR operator) can be answered in the same way, by retrieving from the index all
matching documents with the associated positions, and checking whether the conditions
imposed by the query (such as, position of keyword t should be that of keyword t′ minus one
for the phrase query “t t′”) are satisfied.

In most applications, it is often desirable to return only a subset of the documents that
match a query, since a user cannot be expected to browse through thousands or even millions
of documents. This is achieved by ranking the result.

Ranked queries: basic algorithm

We consider conjunctive keyword queries of the form:

t1 AND . . . AND tn

and let k be a fixed number of documents to be retrieved (e.g., 10 or 50). We describe next two
algorithms based on inverted files for top-k queries.

Recall that the inverted lists are sorted on the document id. Starting from the beginning
of each list Lt1 , . . . , Ltn , a parallel scan is performed, looking for a tuple [d(1)i , . . . ,d(n)i] (in other
words, a document di matching all the terms). We denote by s(t,d) the weight of t in d
(e.g., tfidf) and g(s1, . . . , sn) the monotonous function that computes the global score of a
document given the weight of each term in the document (e.g., addition). The global score
Wi = g(s(t1,di), . . . , s(tn,di)) of di is then computed and the pair [di,Wi] inserted in an array.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 17

When the parallel scans are finished, the array is sorted on the global score, and the k first
documents constitute the output.

The algorithm is linear in the size of the inverted lists (we neglect here the cost of sorting
the resulting array, which is in most cases much smaller than the inverted lists). In practice,
the efficiency depends on the semantics of the query. If at least one occurrence of each term
t1, . . . , tn is required in each document of the result set, then the scan may stop as soon as
one of the list is exhausted. However, in general (for a query involving the OR operator), a
document can obtain a high global score even if one or several query terms are missing. A
semantics that favors the global score and not the presence of each term requires a full scan of
the lists.

Fagin’s threshold algorithm

Fagin’s threshold algorithm (TA in short) allows answering top-k queries without having
to retrieve and compute the intersection of all documents where each term occurs. We now
make the assumption that, in addition to an inverted index that stores lists in increasing
documents identifier order, we have another inverted index sorted on the weights. The first
index can be used to directly check the weight of a term in a document with binary search.
The algorithm is as follows:

1. Let R, the result set, be the empty list.

2. For each 1≤ i ≤ n:

(a) Retrieve the document d(i) containing term ti that has the next largest s(ti,d(i)).

(b) Compute its global score gd(i) = g(s(t1,d(i)), · · · , s(tn,d(i))) by retrieving all s(tj,d(i))
with j 6= i. If the query is a conjunctive query, the score is set to 0 if some s(tj,d(i))
is 0.

(c) If R contains less than k documents, add d(i) to R. Otherwise, if gd(i) is larger
than the minimum of the scores of documents in R, replace the document with
minimum score in R with d(i).

3. Let τ = g(s(t1,d(1)), s(t2,d(2)), . . . , s(tn,d(n))).

4. If R contains at least k documents, and the minimum of the score of the documents in R
is greater than or equal to τ, return R.

5. Redo step 2.

We now illustrate this algorithm on our running example with the top-3 query “new
OR family”, using the sum of weights as our aggregation function. A first index sorts the
inverted lists on the document ids (Figure 11), a second one on their weights (Figure 12 shows,
respectively, the lists for family and new).

Initially, R = ∅ and τ = +∞. The query evaluation must retrieve the k = 3 top-ranked
document in the result set. Here, n = 2 (the query consists of two keywords). We develop a
step-by-step progress of TA.

Let i = 1. Document d(1) is the first entry in the list Lfamily, hence d(1) = d1. We now
need s(new,d1), the weight of term new in d1. Note that we cannot afford to scan the entries

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 18

family d1/11/.13, d3/10/.13, d6/4/.08, d5/16/.07
new d2/5/.24, d1/5/.20, d5/15/.10
. . .

Figure 12: Partial inverted index sorted on tf-idf weighting in descending order

Lnew since this would involve a linear cost at each step of the algorithm. This is where a
binary search on another inverted list L′new sorted on the document id is useful. One gets
s(new,d1) = 0.20. Finally, the global score for d1 is g(s(family,d1), s(new,d1)) = 0.13+ 0.20 =
0.33.

Next, i = 2, and the highest scoring document for new is d2. Applying the same process,
one finds that the global score for d2 is .24 (note that d2 does not appear in Lfamily, so its
weight for term family is 0). The algorithm quits the loop on i with R = 〈[d1,0.33], [d2,0.24]〉
and τ = 0.13 + 0.24 = 0.37.

Since the termination condition is not fulfilled, we proceed with the loop again, taking d3
and d5 as, respectively, d(1) and d(2). The global score for d3 is 0.13 and the global score for
d5 is 0.10 + 0.07 = 0.17. The element [d5,0.17] is added to R (at the end) and the threshold
τ is now 0.10 + 0.13 = 0.23. Although R now contains three documents, as required, the
termination condition is not met because τ is larger than the minimal score in R. Therefore,
it is still possible to find a document whose score is higher than .17. Assume for instance a
document d at the next position in both lists, with weights 0.09 and 0.12. A last loop concludes
that the next candidate is d6, with a global score of 0.08 and τ = 0.08. The algorithm halts with

R = 〈[d1,0.33], [d2,0.24], [d5,0.17]〉.

3.3 Large-scale Indexing with Inverted Files

Inverted files must be able to process keyword-based queries on large collections of docu-
ments. As discussed earlier, the basic operation is a sequential scan of a list that retrieves
the set of document containing a given term. This operation is linear in the size of the list,
and therefore in the size (number of documents) of the collection. It is also linear in the
number of terms in the query. This seems to keep inverted files from being scalable to very
large collections. However, the following analysis shows that they actually constitute a quite
effective structure.

Table 1 summarizes a few important properties of modern hardware. Values are given
for a typical data server. The cost of a random disk access (about 5 ms) is several orders of
magnitudes larger than an access to main memory (about 100 ns). Most of this cost accounts
for positioning the disk head (seek time, or disk latency). A sequential read which avoids
the seek time can retrieve as much as 100 MB/s from the disk. A typical data server holds
tens of gigabytes of main memory, and stores several terabytes of data on disks. Two simple
guidelines for the design of efficient large scale systems are: (i) keep data in main memory
as much as possible and (ii) write and read, sequentially large chunks of contiguous data on
disks. Note that the discussion assumes a single data server.

Performance of inverted files

Consider an inverted file structure that does not store the position of terms in the lists. An
entry is a pair [di,wi]. The document id di can be represented with a 4-byte unsigned integer,

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 19

Type Size Speed
Processor Cache lines = a few MBs 3–4 GHz; typical processor clock

rate ≈ 0,310−9s.
Memory Tens of GBs Access time ≈ 10−9s − 10−8s (10–

100 ns)
Disk Several Terabytes Access time≈ 5× 10−3s (5 ms); Max.

disk transfer rate = 100 MB/s

Table 1: Hardware characteristics

allowing 232 = more than four billions of documents ids. The weight wi only requires 2 bytes
by setting its value to nt,d. The tf–idf can then be computed on the fly.

A collection of 1 million documents can therefore be indexed with 1 million of entries that
occupy 6 MBs (the size of secondary structures is considered negligible). For a collection of
1 billion documents, a 6 GBs index suffices. Clearly such an index fits in the main memory
of any reasonable data server, and requires far less storage than the documents themselves.
Assume for a moment that the collection contains 10,000 terms uniformly distributed in the
documents. Each of the 10,000 lists contains 100,000 entries and occupies 600,000 bytes. Even
if the list is on disk, it takes less than 1/100 s. to scan it and process its content. It practice,
terms are not uniformly distributed, and this makes things even better, as explained later.
These figures assume a contiguous storage of inverted lists, which is essential to ensure a
high speed sequential disk-based retrieval.

If the index stores the positions of terms in the list entries, things become less pleasant.
In a naive approach, a position is stored with 2 bytes (this limits the size of documents to
216 = 65,536 positions/terms) or 3 bytes (16,777,216 positions). This constitutes a storage
overhead of at least 50% with respect to the position-free index if each term occurs only once,
and much more for terms with multiple occurrences in a same document.

What about Web-scale indexing? At the end of 2009, the size of the Web (a continuously
changing value) is at least 20 billion pages (see http://www.worldwidewebsize.com/
for an up-to-date estimate), and probably two of three times larger (note that a four-byte
storage is no longer sufficient for documents ids). Several hundreds of gigabytes are necessary
to index its content with the simplest possible inverted index, without storing the term
positions and without replication. For Web-scale applications, such as search engines, the
index is distributed over a cluster of machines. Distribution mechanisms are investigated in a
dedicated chapter.

Building and updating an inverted file

Building inverted files is a complex task because of their large size, and because of the need
to preserve the contiguous storage of inverted lists. We first discuss static construction, where
the collection of documents is known in advance, then dynamic maintenance of the index as
documents are added or removed.

The basic procedure consists in scanning the documents one by one, creating for each
a sorted list of the tokens. One creates a matrix with documents ids in rows and terms in
columns, which must then be inverted to obtain a row for each term. For large files, matrix
inversion cannot be processed in main memory. Moreover, writing each entry on the disk as

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.worldwidewebsize.com/

For personal use only, not for distribution. 20

soon as it is found would result in a highly fragmented storage.
The index can be created in two passes. The first pass collects information on the frequency

of each term t. This determines the size of the inverted list for t, which can then be allocated
on the disk. During the second pass, each entry can be written sequentially in the appropriate
list. This results in a non-fragmented index.

The drawback of any two-pass approach is that documents must be processed twice.
Another strategy relies on a preprocessing step, e.g., sorting. Sort-based algorithms first extract
triplets [d, t, f] from the collection, then sort the set of triplets on the term-docid pair [t,d].
Contiguous inverted lists can be created from the sorted entries.

The most commonly used algorithm for external sorting is an adaptation of the sort/merge
main memory algorithm. In the first phase, sorted subfiles called “runs” are created from the
data source. Assuming m blocks in main memory, each run occupies m pages and stores a
sorted subset of the input. In order to create the runs, one repeats the following sequence of
operations (Figure 13):

1. the m buffer pages in main memory are filled with triplets [d, t, f] extracted from the
documents;

2. the triplets in the m pages are sorted on [t,d] with an internal-memory algorithm (usually
quicksort);

3. the sorted blocks are written onto disk in a new run.

...

...

...Disk
Sorted "runs"

Main memory

m pages

Figure 13: The creation of initial runs

Starting from the runs created in the first phase, the merge phase begins. One block in
main memory is assigned to each run file: m− 1 runs are merged in a single pass, and the last
block in main memory is allocated to the output run.

The process is illustrated in Figure 14. It can be represented by a tree, each node of the tree
corresponding to a single merge operation described in the right part of the figure. One reads
the first page of each input run {i1, i2, . . . , im−1} in the main memory buffer (recall that the
input runs are sorted). The merge then begins on the data in main memory. The record with
the smallest t value is repeatedly picked in one of the m− 1 blocks and stored in the output
block (if several triplets with the same t exist, then the one with the smallest d is chosen).
When all the triplets in an input block, say j, have been picked, one reads the following block
in run ij. Once the output block is full it is written in the output run. Eventually, an output
run is full (m× (m− 1) blocks have been written in the run), it is ready to be merged at a
higher level with other runs obtained from the first-level merge operations, etc.

The merge of runs is done in linear time. Each run is read once and the size of the output is
the sum of the sizes of the input runs. Therefore, at each level of the tree, one needs exactly 2n

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 21

...

o

o

...

...

...

input runs

i2

i1

output
run

initial runs

sorted output fan-in

i2 im−1

im−1i1

Figure 14: The merge phase

I/Os. If the fan-in is m− 1, there are O(logm n) levels in the tree, and we obtain an Θ(n logm n)
algorithm.

As a final improvement, merge-based algorithms avoid the sort phase by directly construct-
ing sorted inverted lists in main memory. When the memory is full, sorted in-memory lists
are flushed on the disk, just like sorted runs in the sort-merge algorithm. When all docu-
ments have been processed, the flushed lists that relate to a term t are merged and the result
constitutes the final inverted list for t.

This is illustrated with Figure 15. For each document d in the collection, the parsing process
extracts a set of terms, and a pair [d, f] is inserted in the in-memory list Li for each term ti.
Eventually the allocated memory gets full. A flush creates then a “run” on the disk. At the
end of collection, several such runs may have been created. A final merge operation carries
out a merge of the lists associated with each term. One obtains the final inverted index.

This algorithm enjoys several properties that make it widely used in practice. First, it
avoids both a double parsing of the input documents and a costly external sort. Second, it is
robust enough to behave correctly in the presence of large collections or moderate memory
availability. Finally, this algorithm turns out to be useful for evolving collections, as discussed
next.

parsing

sorted inverted list

Final inverted index

Disk

merge

flush

flush

document d1

document dm

entries

entries
run 1

run 2

...

entries

...

...

tn

ti

t1

...

Figure 15: The merge-based algorithm

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 22

Indexing dynamic collections

When new documents are added or removed continuously (which is the standard situation
in Web indexing), the inverted index must be updated to reflect the up-to-date knowledge
acquired by the crawler, which constantly runs in parallel. Updating the index is typically
quite costly since it requires updating the document list of various terms, changing the
structure of each list. Actually, applying the naive approach of directly accessing the list for
each incoming document would result in awful performances.

The merge-based algorithm provides a solution to the problem. An in-memory index that
holds the information related to the new documents is maintained. Searches are performed
on the two indexes. When the index becomes full (that is, its size exceeds a given threshold),
it can be seen as the last run of a merge-based approach, and a merge with the main index
can be processed. During a merge, a copy of the old index must be kept to support the
current searches operations. This doubles the space requirements. The preceding description
disregards deletions, which can be processed thanks to a small variant (left as an exercise).

Compression of inverted lists

Compression of inverted lists is an important feature of text IR systems. It brings several
advantages:

1. Compressed files require less disk space;

2. The same amount of information can be read more quickly;

3. A larger part of the inverted index can be kept in main memory.

The price to pay is the need to uncompress the content of the lists when they are accessed.
A basic criterion is that the total cost of reading (on disk) a compressed inverted list followed
by its decompression should not exceed the cost of reading the uncompressed list. The com-
pression would otherwise jeopardize the query evaluation process. Efficient decompression
algorithms exist that take advantage of the very high speed of modern hardwares.

The standard storage size of an integer is 4 bytes (2 bytes for so-called “short” integers).
A 4-byte unsigned integer can represent values in the range [0;232 − 1] = 4,294,967,296 (the
maximal value is 65,535 for 2-bytes ints). The intuition behind the compression strategies
of inverted list is that they can be seen as sequences of positive integers such that the gap
between two consecutive entries in the list is typically small. Assume for instance that a term
t is represented in the following documents, put in ascending order:

[87;273;365;576;810].

Note that we need at least one byte to store the first id, and 2 bytes for the other ones. This
sequence of sorted documents id can be equivalently represented by the gaps between two
consecutive ids:

[87;186;92;211;234].

An immediate advantage of this latter representation is that, since the gaps are much
smaller that the absolutes ids, they can be represented (on this particular example) with 1-byte
integers. More generally, the following facts help to greatly reduce the necessary storage:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 23

1. Relative gaps tend to be smaller than ids, and thus need on average a lot less space than
the standard 4-byte storage;

2. For very common terms that appear in many documents, the gap often is the minimal
value of 1, with high potential compression.

This representation, called delta-coding, is a very simple way to achieve a significant
reduction of space requirements. Note, however, that although one may expect a lot of
small gaps, we must be ready to face large gaps in the inverted lists of rare terms. The
compression method must therefore adapt to these highly variable values, in order to choose
the appropriate storage on a case-by-case basis. As mentioned earlier, this method must also
support a very quick decompression mechanism.

We present later two efficient compression methods, which, respectively, attempt at using
the minimal number of bytes (bytewise compression) or the minimal number of bits (bitwise
compression) to represent gaps. Both methods are parameter-free in the sense that they do not
rely on any assumption on the distribution of gaps, and thus do not require the additional
storage of parameters that would describe this distribution. Bitwise compression achieves
a (slightly) better compression ratio than bytewise compression, at the price of a higher
decompression cost.

Variable byte encoding

As the name suggests, variable byte encoding (VByte in short) encodes integers on a variable
(but integral) number of bytes. The idea of VByte encoding is very simple. Given a positive
integer value v, one tests whether d is strictly less than 128. If yes, d can be encoded on the
last 7 bits of a byte, and the first bit is set to 1 to indicate that we are done. Otherwise:

1. Take the reminder v′ of v/128; encode v′ as explained above in a byte b;

2. Apply recursively the procedure to v/128, this time setting the first bit to 0; concatenate
the result with b.

Let, for example, v = 9. It is encoded on one byte as 10001001 (note the first bit set to 1).
Now consider a larger value, say v = 137.

1. The first byte encodes v′ = v mod 128 = 9, thus b = 10001001 just as before;

2. Next we encode v/128 = 1, in a byte b′ = 00000001 (note the first bit set to 0).

The value 137 is therefore encoded on two bytes:

00000001 10001001.

Decoding is very simple: one reads the bytes bn, · · · ,b2 with a leading 0, until one finds a
byte b1 with a leading 1. The value is:

bn × 128n−1 + · · ·+ b2 × 128 + b1.

The procedure is very efficient because it manipulates full bytes. It is also quite flexible
since very large integers (there is no upper bound) can be encoded just as very small ones.
The method also achieves a significant amount of compression, typically 1/4 to 1/2 of the
fixed-length representation.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 24

Variable bit encoding

We next illustrate bit-level encoding with γ-codes. Given an unsigned integer x, the starting
point is the binary representation with blog2 xc+ 1 bits. For instance, the binary representation
of 13 is 1101, encoded with blog2(13)c+ 1 = 4 bits. The binary representation is space-optimal,
but since its size obviously depends on x, we need to represent this varying length as well to
be able to decode the value.

Using γ-codes, the length blog2 xc+ 1 is encoded in unary: a length l is represented with
l − 1 ‘1’ bits terminated by a ‘0’ bit. The value 13 can therefore be represented by a pair
(1110,1101), where 1110, the length, is in unary format, followed by the value (called the offset,
see below) in binary.

γ-codes introduce an optimization based on the following observation: a non-null value x
is of the form 2blog2(x)c + d. In terms of binary representation, the first term corresponds to a
leading ‘1’, followed by the binary representation of d (the offset of x).

Since the first term 2blog2(x)c is determined by the length, which is known from the prefix of
the code, we only need to store the value of d in the suffix. So, still taking 13 as an illustration,
we put it in the form 23 + 5. We encode the length in unary as before as 1110, and we encode
the offset (5) in binary on 3 bits as 101. The γ-code for 13 is finally:

1110101.

Decoding first reads the number of leading ‘1’ bits until a ‘0’ is met. This gives us the
length of the binary code that follows. On our example, we determine that the length is 3.
The value is therefore 23 + decode(101) = 8 + 5 = 13.

The length of a γ-code for a value x is 2× blog2(x)c+ 1, that is, at most twice the minimal
possible storage required for x (recall that using this minimum representation is not possible
since we need to be able to find the boundaries of each value).

Better compression can only be achieved by using a model of the distribution of the values.
It turns out that using such a model for inverted list is never done because (i) it leads to a
compression/decompression cost which balances the gain of space reduction, and (ii) the
maintenance of encoding becomes too complicated if the distribution changes.

Experiments show that bitwise compression achieves a better compression than bytewise
(about 10 to 20% better, depending on the data set), at the price of a more expensive pre- and
post-processing of the inverted lists.

3.4 Clustering

If one wants to search on the Web some information about the jaguar animal, one is probably
not interested in the other meanings of the word jaguar, such as the car make or the version
of Mac OS X. Clustering can be used in such contexts to partition a set of documents (the
result of the keyword query) into a set of homogeneous document collections. The result of a
clustered search for jaguar on the Clusty7 search engine is shown on Figure 16.

One way to achieve such a clustering is the following. Start from some document set
that is to be clustered. We shall see this document set in a document vector space model, that
is the dual of the inverted index model: Documents are described by the terms that occur
in them, with associated weighting, and each term is seen as a dimension of a vector space

7http://clusty.com/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://clusty.com/

For personal use only, not for distribution. 25

� � � � � � � � � 	
 � � � � � � � � � 	 � � �
 � � � � � � � � � �
� � � � � � � � � � � � � � �� � � � ! " � ! � � � � �# � ! � � � � $ �" � � � � � � �# % & � & � � � ' �# � (� % � ! � & () � � * + �, � (- � & . � ! � * / �� �) 0 � & (. 1 � � � � � � � ! � � * � �2 � 3 � (� 1 . � 4 5 � �) & (� � 6 �� � � ! 1 4 7 � 8 � � * 9 �" � � � � 1) � � � � ! � / �

) � � � � � ! � � � : � ; � � � � < � � = � � > ? > � � � : � < � � @ 	 < � � 	 � < A ? 4 B ? B 4 B B B � � < � � � C � @ � � < D � E : � � F G � � � ! H � @ � � � < � � � I H � < 	 � � � I J � 	 � ; D K � � : � < �LM N O P Q O R S T U V W X X Y Z [V \ \] U] ^ _ ` [a b] c [V \ c Z [d e f g b h ^ U i b V j k] _ _ [l O P Q O R S= D � � @ @ � ; � 	 � < � 	 � � � < � � � < D � ; � � � � m � � � � � < � � � m
 	 � � � ; D � : � � m 	 � � � � < � � L� � � L � 	
 : 	 � � L ; � � n o ; 	 ; D � p n q � C � m r � � � s � � � ; < � � F m t � �Lu l O P Q O R = D � G � � � ! H v w x y z { | w } x ~ w I � � 	 � 	 �
 � � � � � � � � @ < D � ; 	 < @ 	 � � � F � 	 < � C � < � � 	 � �� �
 � � � � � @ < D � t � � � � ; 	 � L � < � � ; � � � � � F � � � 	 < � < � < D � � � � � m < �
 � � m 	 � � � � � 	 � � @ < D � r � � � � � m 	 � � � < D � � 	 �
 � � < � � � ; � � � � @ < D � ; 	 < @ 	 � � � F @ � : � � � < D � t � � � � ; 	 � L� � L � � � � � � � 	 L � �
 � � � � � � � 	
 : 	 � n o ; 	 ; D � p n � � � � � � � 	 m t � � m q � C �L� l O P Q O R � j c Z � b] ^ b c b g � _ � a� � � � � � � 	 �
 � � < � � � � ! � s 	 � � � � � � � : � L L L q 	 �
 � � < � � � � ! � � : � � � < D � � � � � m � � � C � �
 � C � � u � m � � �� � � � � � � L L L� � � L � � ; L � �
 L : � n o ; 	 ; D � p n t � � m r � � � s � � � ; < � � FL� � � ^ a ^ j � V j b a] � \ V � N O P Q O R � [U V k [� � � _ ^ j� � � � � � � � � � � = D � � � < � � � � � s � � 	 � < � � � < D 	 � 	 � 	 � � � � 	 < < � � � < � < � ; � 	 @ < 	 � � ; � C � � F � � 	 � @ � � < D �� � 	 �
 � � � G � � � ! � � ; 	 : � � < � � @ � � � @ < D � � 	 � � ; 	 < � D 	 C � � � � � � � � < < � 	 � � �
 < D � J � : < D � � � < � �
 � � �� @ � � � � � � � ; � 	 � t � � � � � 	 < � � 	 � � 	 � < � : ; D 	 ; < � � � L J � � � ; � � < � ; � � @ < D � � ; � � � � � � 	 � = D : � � 	 F < D �G � � � ! � � � � � �
 � 	 ; � � @ � ; � @ � � < D �
 � C � � � � � � < � � � � � � � � � � @ � � ; � m � D � ; D � �
 � � �
 : � 	 � � �
 � 	 � F � @ < D �� 	 � � 	 � � 	 � � D � � � < D � L L L D 	 � ; � � � � � � � < � < D � � � � < � J < 	 < � � @ � � � � � � � ; � L � @ < D � � L J L � � � � � 	 � � 	 �� � � � � � �
 � 	 < � ; � � < � ; 	 � � � ; � C � � F 	 � � 	 � @ � � < D � G � � � ! m < D � � � < � � : � ; � � � < � 	 � � < D � � � � � � 	 � J � ; : � � < Fs � � 	 � < � � � < � � � : � � � �
 < D � @ � � ; � m � 	 � � � � 	 � J : ; � � � �
 m � � � � ; F � � � ; < � � � @ < D � � � � < � � L L L� � � � L F 	 D � � L ; � � � � � 	 � � u � � ¡ � M M ¡ � 	 � ¢ � � ¢
 � ¢ ; 	 ¢ � < ¢ � � � � 	
 : 	 � ¢ � � ; � C � � F n o ; 	 ; D � p n £ 	 D � � ¤ � � � �L¥ ¦ ^ k] j § ¨ V V � a � [c V © [§ [W V j �ª « ¬ � � ® ¯ � L L L � � � � ; � : � < � � � � ° � � � � �
 � � � � � < 	 � ; � � � ; � � � � � 	 < � @ � � 	 � ; � ± � C � � 	 @ < � �F � : � : � < � 	 ; < � D � � 	 L � D � � = 	 < 	 � @ � � � 	 � � C F � �
 < � � : F � � � � ! m F � : � � � � < D �� 	 � � ; 	 � � � @ � � � � � D 	 � ; D 	 �
 � L J � ; � � n � � � � ; � : � < � � � � 	 � � 	 � � � @ 	 � < � � ; � � � �
D : � � @ � � � � � 	 � < � � � � � m L L L� � � L � F < � � � � L ; � � � L L L M � ¥ ² � ² � � � � ³ � � ´ ; µ � @ � ¡ � M � ¶ ² @ µ 	 � ³ � � ´ ¥ � ¡ ¡ ³ � 	 � < � � � ´ � � � � F < ³ � � ; ´ � � � n o ; 	 ; D � pn � £ = � � � �Lµ l O P Q O R� � � � ! � 	 F � � @ � � < � · t G � � � ! H v w x y z { | w } x ~ w I m 	 � 	 �
 � @ � � � � 	 < � C � < � J � : < D 	 � � � � < � 	 � t � � � � ; 	7 ! � 8 8 � (5 A B � � � � ! � 8 1 � 1 � � ! ¸ � 1 !) ! � 3 � ¹ º # º " � » � � � � ! m 	 � � � � < 	 � F 	 � � ; � 	 @ < � � � � ! " � ! � m ¼ � � < � � D	 : < � � � � � � � � 	 � � � � � � � ! � �) 1 (m 	 @ � � � � � ½ � � � : � 	 r � � < � 	 � m � � � K � ¼ : � � K 	 ; � �
 � � � ! 1 � � � � ! m 	¾ � � �
 	 � � ; � � � � � � � 	 � � F t < 	 � � � 	 ; r J ¿ M � L u À � 	
 : 	 � À m < D � ; � � � 	 � � @ � � C � � � � � � M � L u � @ < D �� 	 ; r J ¿ r � � � 	 < � �
 J F � < � � � � � � ! � Á º . � (� m 	 � � � < � � � �) 0 � & (. 1 � � � � � � � ! � m 	 � � ½ q < � 	 � 	; D 	 � 	 ; < � � � � < D � � � C � � � 1 8 Â � � (- � � � � ! 	 ¼ � � < � � D � � ; � � < m � 	
 : 	 � H � � ; � � < I� � L � � � � � � � 	 L � �
 � � � � � � � 	
 : 	 � ¢ H � � 	 � � �
 : 	 < � � � I n o ; 	 ; D � p n � � � � � � � 	L¶ l O P Q O R � � X © V W [� � � � ! � J t r @ @ � ; � 	 � � � � � Ã 	
 � L L L� � � L � 	
 : 	 � : � 	 L ; � � n o ; 	 ; D � p n t � �L¡ l O P Q O RÃ 	 � < D � � 	 � � ; 	 L � £ J = Ä K � r � J � t = r ½ = � Ä t � t Å r � L r @ 	 � � < D � � �
 ; 	 < � m < D � G � � � ! � � � 	 � � � < D �� � 	 � < � < : � � L � D � � � � � � � � � @ � � � 	 < � � � ; � � � � @ � � � < D � � � � m � � � < � @ � D 	 < � � � � � � � 	 � � : < L L L� � � L � � : � � � � � L � �
 � � 	
 : 	 � L D < � n o ; 	 ; D � p n q � C � m t � �L² e ^ _ U V j b Z] � [h ^ § b g � W] c Z ^ b j [` U V ^ U Z� � � � Æ � � � � � � L L L < � 	 � � m 	 < � 	 ; � � � ; � � � @ � : ; ; � � � m 	 � � � � m � � 	 � < 	 � � � � 	 ; D < � < D �
 	 � � m 	 � D �
 D ; D 	 � 	 ; < � � 	 � � � < �
 � � < F L À J � � < D m < D � � � � � ! � � � @ � � � � C � ; � � � � � 	 < � �� � � ; � u � � � m D 	 D � � � � ; � � � � < � � C � � � � � < D < D � ½ 	 � ; � � � � � ½ � � 	 F L � � D 	 � � � C � �� � � � 	 � � ½ q D � 	 L L L � � ; � � � � u � � µ 	 � � � � < D � � u � � ¥ L q � @ < � � ; D � 	 � J � � < D � � : � � � C � � � � ; � � C � � � � :
 D ; � � � < � � � 	 ; � � � � C � � � � � � ; 	 : � � � 	 � F 	 � � : � � � � � � ! � ; � 	 ; D� 	 ; � s � � K � � m 	 @ � � � � � � @ � � � � C � ; � � � � � 	 < � � m � 	 � < D � � � 	 � � 	 � < � � � � � � @ < D � � @ � � � � L � � � � ! � � @ � � � � C � � � � 	 � ; � � � : � � � � � F L L L� � � � L F 	 D � � L ; � � � � � 	 � � u � � ¡ � M u � � 	 � ¢ � � ¢ � � ¢ @ � ¢ � � � @ � � ¢ @ 	 � ; � � � ¢ ; � 	 ; D n o ; 	 ; D � p n £ 	 D � � ¤ � � � �LM � ¦] _ _ � ^ � b e _ � ^ b e ^ b c ^ b c Z [Ç [c ^ � Z V � b Èª É ¯ Ê Ë � ® ¯ � L L L 	 � 	 � � � @ < D � � � � < 	 < : � 	 � � : � � � : � � �
 � L t � � D � � 	 � � � 	 � � : < < D � @ : < : � � � @ ½ � � ° �� � � � � � � 	 � � F � � � � F n � � � � �
 ¼ � � < � � D � � 	 � � m � � � � ! 	 � q 	 � K � C � � m � D � ; D 	 � � @ � � � 	 � � m � � L � : � 	 � � F� @ @ � � � < D � � 	 � � � � 	 : < � ; 	 � 	 � � � � � � � � < · Ì = D � F ° � � � � 	 F < � < 	 � � � @ @ 	 � L L L� � � L � F < � � � � L ; � � � L L L M � ¥ ² � ² � � � � ³ � � ´ � ¥ u ¡ � � ¡ µ � ² u M � � � ; ³ � � ´ ¥ � ¡ ¡ ³ � 	 � < � � � ´ � � � � F < ³ � � ; ´ � � � n

Figure 16: Example clustering from Clusty of the results of the query jaguar

documents live in. The coordinate of a document d in this vector space, along the dimension
corresponding to t, will be the weight of t in d (say, tfidf(t,d)). We then consider the cosine
similarity between two documents d and d′, seen as vectors:

cos(d,d′) =
d · d′

‖d‖ × ‖d′‖

where d · d′ is the scalar product of d and d′ and ‖d‖ the norm of vector d. With this definition
(which is a simple extension of the usual cosine function in the Euclidean plane), cos(d,d) = 1
and cos(d,d′) = 0 if d and d′ are orthogonal, that is, if they do not share any common term.

This is illustrated on Figure 17 which shows a two-dimensional vector space built on
the terms (jaguar, Mac OS). Documents are represented as normalized vectors with two
coordinates representing respectively their scores for each term. The similarity is estimated
by the angle between two vectors (and measured by the cosine of this angle). The figure
shows that d1 and d3 share almost the same scores, resulting in a small angle θ and thus in a
cosine close to 1.

This definition of similarity is all that we need to apply standard clustering algorithms,
for instance the following simple agglomerative clustering:

1. Initially, each document forms its own cluster.

2. The similarity between two clusters is defined as the maximal similarity between
elements of each cluster.

3. Find the two clusters whose mutual similarity is highest. If it is lower than a given
threshold, end the clustering. Otherwise, regroup these clusters. Repeat.

Note that many other more refined algorithms for clustering exist.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 26

jaguar

Mac OS

θ′ θ

~v(d1)

~v(d3)

~v(d2)

Figure 17: Illustration of similarity in the document vector space

3.5 Beyond Classical IR

HTML Web pages are not just text, but text enriched with meta-information and document-
level and character-level structure. This enrichment can be used in different ways: A separate
index for the title or other meta-information of a page can be built and independently queried,
or the tokens of a document that are emphasized can be given a higher weight in the inverted
index. For some applications, the tree structure of Web pages can be stored and queried with
languages such as XPath or XQuery (cf. Chapter ??); because most Web pages, even when
they are well-formed and valid, do not really use HTML structural elements in a meaningful
and consistent way, this approach is not very useful on the Web as a whole (see the part of
the book devoted to the Semantic Web). Also present on the Web is multimedia content such
as images or videos. They can be described and searched as text (file names, text present in
the context of the content, etc.), or with more elaborate multimedia descriptors.

The material covered in this section is just a brief introduction to the field of Information
Retrieval, taken as the art of efficiently and accurately searching for relevant documents
in large collections. Note in particular that the techniques introduced here are by no way
restricted to Web search and apply to any collection of documents (e.g., a digital library). The
next section is devoted to IR extensions that address the specificities of the Web, namely its
graph structure. Modern search engines also use other kinds of information, especially query
logs, the list of all queries made by users to the engine, and, in some cases, also consider their
selection among the list of results returned. If a user never clicks on a link for a given query, it
makes sense to decrease its relevance score.

4 Web Graph Mining

As all hyperlinked environments, the World Wide Web can be seen as a directed graph in the
following way: Web pages are vertices of the graph, whereas hyperlinks between pages are
edges. This viewpoint has led to major advances in Web search, notably with the PageRank
and HITS algorithms presented in this section.

Extraction of knowledge from graphs, or graph mining, has been used on other graph
structures than the Web, for instance on the graph of publications, where edges are the citation
links between publications; cocitation analysis relies on the observation that two papers that
are cited by about the same set of papers are similar. Other graphs susceptible to this kind of

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 27

analysis include graphs of dictionaries, or encyclopedias, or graphs of social networks.

4.1 PageRank

Though tf–idf weighting adds some relevance score to a document matching a keyword,
it does not distinguish between reference documents that are highly trusted and obscure
documents containing erroneous information. The idea of using the graph structure of the
Web to assign some score to a document relies in the following idea or variants of it: If a
document is linked by a large number of important documents, it is itself important.

PageRank, which was introduced with much success by the founders of the Google search
engine, is a formalization of this idea. The PageRank of a page i can be defined informally as
the probability pr(i) that the random surfer has arrived on page i at some distant given point
in the future. Consider for instance the basic graph on the left of Figure 18. A random surfer
will reach node A at step i if it reaches node B, C or D at step i− 1. Therefore:

pr(A) = pr(B) + pr(C) + pr(D)

Figure 18: PageRank – Basic idea

In less simplistic cases, the surfer may have to choose among several outgoing edges. In
that case one assumes that the probability is uniform. Looking at the right part of Figure 18,
the probability for a surfer residing on node B (or D) to reach node C i 1/2. Hence, the
probability to reach C at i given the position at i− 1 is:

pr(C) =
1
2

pr(B) +
1
2

pr(D)

In general, let G = (gij) be the transition matrix of the Web graph (or a large part of it),
that we assume to be normalized in the following way:{

gij = 0 if there is no link between page i and j;
gij =

1
ni

otherwise, with ni the number of outgoing links of page i.

This normalization ensures that the matrix is stochastic (all rows sum to 1) and that it describes
a random walk on the pages of the Web: a random surfer goes from page to page, choosing with
uniform probability any outgoing link.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 28

1
2

3

6

7

9

4

5

10

8

Figure 19: Illustration of PageRank: Example graph

Example 4.1 Consider the graph of Figure 19. Its normalized transition matrix is as follows:

G =

0 1 0 0 0 0 0 0 0 0
0 0 1

4 0 0 1
4

1
4 0 1

4 0
0 0 0 1

2
1
2 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2 0 0 0 1
2

1
3

1
3 0 1

3 0 0 0 0 0 0
0 0 0 0 0 1

3 0 1
3 0 1

3
0 1

3 0 0 0 0 0 0 1
3

1
3

0 1
2

1
2 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

Thus, the probability that a random surfer goes from page 2 to page 6 or, in other words, the
probability of transition between nodes 2 and 6 in the random walk on the graph, is g2,6 =

1
4 .

Observe that if v denotes the initial position as a column vector (say, a uniform column
vector would mean that the random surfer starts with uniform probability on each page),
(GT)v is a column vector indicating the position after one step of the random walk. The
PageRank can then be defined as the limit of this process, that is the PageRank of page i is the
i-th component of the column vector:

lim
k→+∞

(GT)kv

if such a limit exists.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 29

0.100
0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

Figure 20: Illustration of PageRank: Initial uniform distribution

Example 4.2 Let us continue with the graph of Example 4.1. Let v be the uniform column
vector of sum 1. This measure over the graph nodes can be displayed as in Figure 20. Consider
one iteration of the PageRank computation. It amounts to multiplying the matrix of GT by v,
which gives:

GTv =
[1

30
19
60

3
40

5
60

3
20

13
120

1
40

1
30

7
120

7
60

]T

≈
[
0.033 0.317 0.075 0.083 0.150 0.108 0.025 0.033 0.058 0.117

]T

This is the vector of probabilities of reaching a given node after one step, assuming a uniform
probability for the initial node.

If we iterate this computation, we converge towards the measure displayed in Figure 21,
the PageRank measure. Here, node 2 has the highest PageRank score because it is somehow
more central in the graph: the probability of reaching node 2 after an arbitrarily long random
walk in the graph is the greatest.

Some problems arise with this definition of the PageRank score. The convergence that is
observed in the previous example is not guaranteed. The limit (if it exists) can be dependent
on the initial position of the random surfer, which is kind of disappointing from a robustness
point of view. Besides, some pages may have no outgoing links (they are called sinks),
which means that the random surfer will eventually be blocked on these pages. Note that
one can show that none of these problems occurs when the graph is aperiodic (the greatest
common divisor of the length of all cycles is 1, a condition that is always verified in real-world
examples) and strongly connected (i.e., there is a path in the graph from every node to every
node). These assumptions were verified in Example 4.2, but the Web graph as a whole can
definitely not be assumed to be strongly connected.

For this reason, we introduce some change in our random surfer model: At each step of
the random walk, with some fixed probability d (typically around 15%; 1− d is called the

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 30

0.050
0.234

0.091

0.149

0.058

0.065

0.095

0.142

0.097

0.019

Figure 21: PageRank (damping factor of 1) for graph of Figure 19

damping factor), the surfer goes to an arbitrary uniformly chosen page of the Web; otherwise,
it follows the outgoing links of the page with uniform probability as before (and if there are
no outgoing links, the surfer goes in all cases to an arbitrary uniformly chosen page of the
Web). With these modifications, the PageRank of page i is defined as the i-th component of
the column vector:

lim
k→+∞

((1− d)GT + dU)kv,

where G has been modified so that sink pages are replaced by pages with outgoing links to
any page of the Web, and U is the matrix with all 1

N values where N is the number of vertices.
One can show that this limit indeed exists, whenever d > 0 (Perron–Frobenius theorem) and
is independent of the choice of the vector v, whenever ‖v‖ = 1. This formula can be used
to compute the PageRank scores of all pages in an iterative way: starting from, say, the
uniform column vector v, ((1− d)GT + dU)v is computed by simple matrix multiplication,
then ((1− d)GT + dU)2v by another matrix multiplication, ((1− d)GT + dU)3v, and so forth,
until convergence.

It is important to understand that PageRank assigns a global importance score to every
page of the Web graph. This score is independent of any query. Then, PageRank can be
used to improve scoring of query results in the following way: Weights of documents in the
inverted index are updated by a monotonous function of the previous weight and of the
PageRank, say,

weight(t,d) = tfidf(t,d)× pr(d),

thus raising the weight (and therefore their order in query results) of important documents.

Online Computation

The computation of PageRank by iterative multiplication of a vector by the dampened
transition matrix requires the storage of, and efficient access to, the entire Web matrix. This

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 31

can be done on a cluster of PCs using an appropriate distributed storage technique (see the
chapters devoted to distributed indexing and distributed computing). An alternative is to
compute PageRank while crawling the Web, on the fly, by making use of the random walk
interpretation of PageRank. This is what the following algorithm, known as OPIC for Online
PageRank Importance Computation, does:

1. Store a global cashflow G, initially 0.

2. Store for each URL u its cash C(u) and history H(u).

3. Initially, each page has some initial cash c0.

4. We crawl the Web, with some crawling strategy that accesses repeatedly a given URL.

5. When accessing URL u:

• we set H(u) := H(u) + C(u);

• we set C(u′) := C(u)/nu for all URL u′ pointed to by u, with nu the number of
outgoing links in u.

• we set G := G + C(u) and C(u) := 0.

6. At any given time, the PageRank of u can be approximated as H(u)
G .

It can be shown that this gives indeed an approximation of the PageRank value, whatever
the crawling strategy is, as long as a URL is repeatedly accessed. A reasonable strategy is
for instance a greedy one, to crawl the URL with the largest amount of cash at each step.
Finally, much like the use of the damping factor in the iterative computation of PageRank,
convergence can be ensured by adding a virtual node u that is pointed to by each URL and
that points to all URLs. In addition to making the storage of the Web matrix unnecessary,
such an online algorithm also is more adapted to the case of a changing Web, when pages are
added continuously. However, since computation power tends to be cheap and the storage of
the content of Web pages already necessitates appropriate storage, search engines currently
stick with the classical iterative computation of PageRank.

4.2 HITS

The HITS algorithm (Hypertext Induced Topic Selection) is another approach proposed by
Kleinberg. The main idea is to distinguish two kinds of Web pages: hubs and authorities. Hubs
are pages that point to good authorities, whereas authorities are pages that are pointed to
by good hubs. As with PageRank, we use again a mutually recursive definition that will
lead to an iterative fixpoint computation. For example, in the domain of Web pages about
automobiles, good hubs will probably be portals linking to the main Web page of car makers,
that will be good authorities.

More formally, let G′ be the transition matrix (this time, not normalized, i.e., with Boolean
0 and 1 entries) of a graph (say, a subgraph of the Web graph). We consider the following
iterative process, where a and h are column vectors, initially of norm 1:{

a := 1
‖G′Th‖ G′Th

h := 1
‖G′a‖ G′a

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 32

If some basic technical conditions on G′ hold, we can show that this iterative process converges
to column vectors a and h which represent, respectively, the authority and hub scores of
vertices of the graph. Kleinberg proposes then the following way of using authority scores to
order query results from the Web:

1. Retrieve the set D of Web pages matching a keyword query.

2. Retrieve the set D∗ of Web pages obtained from D by adding all linked pages, as well
as all pages linking to pages of D.

3. Build from D∗ the corresponding subgraph G′ of the Web graph.

4. Compute iteratively hubs and authority scores.

5. Sort documents from D by authority scores.

The process is here very different from PageRank, as authority scores are computed for
each request (on a subgraph kind of centered on the original query). For this reason, and
although HITS give interesting results, it is not as efficient as PageRank, for which all scores
can be precomputed and top-k optimization is possible.

4.3 Spamdexing

The term spamdexing describes all fraudulent techniques that are used by unscrupulous
Webmasters to artificially raise the visibility of their Web site to users of search engines. As
with virus and antivirus, or spam and spam fighting, spamdexing and the fight against
it is an unceasing series of techniques implemented by spamdexers, closely followed by
countertechniques deployed by search engines. The motivation of spamdexers is to bring
users to their webpages so as to generate revenue from pay-per-view or pay-per-use content
(especially in the industries of online gambling and online pornography), or from advertising.

A first set of techniques consists in lying about the document by adding to a page keywords
that are unrelated to its content; this may be done either as text present in the page but invisible
to users through the use of CSS, JavaScript or HTML presentational elements, or in the meta-
information about the page that can be provided in the <meta name="description">
or <meta name="keywords"> tags in the header. As a result, current search engines tend
not to give a strong importance to this kind of meta-information, or even to ignore them
altogether. Furthermore, they implement automatic methods to find text hidden to a regular
user and ignore it. In some cases, this is even used as a reason to lower the importance of the
Web page.

PageRank and similar techniques are subject to link farm attacks, where a huge number
of hosts on the Internet are used for the sole purpose of referencing each other, without
any content in themselves, to raise the importance of a given Web site or set of Web sites.
Countermeasures by search engines include detection of Web sites with empty or duplicate
content, and the use of heuristics to discover subgraphs that look like link farms. A collection
of algorithms have also been proposed to assign importance scores to Web pages in a way that
is more robust to these kind of attacks. TrustRank, for instance, is defined using the same kind
of iterative computation as PageRank, except that random jumps toward uniformly selected
Web pages are replaced by random jumps to a small subset of “safe” seed pages, to prevent

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 33

being trapped in link farms; this has the downside of artificially raising the importance of the
set of seed pages, and thus of biasing the computation.

An assumption made by the graph mining techniques described earlier is that the addition
of a link to a Web page is a form of approval of the content of the linked page, thus raising its
importance. While this is mostly true when Web pages are written by a single individual or
entity, this does not hold with user-editable content, such as wikis, guestbooks, blogs with
comment systems, and so on. Spamdexers have an incentive to use these platforms to add
links to their Web site. They can also exploit security faults in Web applications to achieve the
same effect. While most Webmasters take care to control whatever is added to their Web sites
and to remove spam content, this cannot be assumed on a global level. A partial solution to
this is the possibility of adding a rel="nofollow" attribute to all <a> links that have not
been validated or are not approved by the Webmaster (some content management systems
and blog platforms automatically add this attribute to any link inside content provided by
users). Most current-day Web spiders recognize this attribute and ignore this link.

4.4 Discovering Communities on the Web

The graph structure of the Web can be used beyond the computation of PageRank-like
importance scores. Another important graph mining technique that can be used on the Web
is graph clustering: using the structure of the graph to delimitate homogeneous sets of Web
pages (e.g., communities of Web sites about the same topic). The assumption is that closely
connected set of pages in a Web page will share some common semantic characteristic.

Various algorithms for graph clustering have been studied, in this context and others
(to isolate local networks of interest on the Internet, to find communities of people in social
networks, etc.). Let us just present briefly one of them, which has the advantage of being
simple to understand. Given a graph, the purpose is to separate it, hierarchically, into smaller
and smaller, and more and more homogeneous, communities of nodes. We introduce the
notion of betweenness of an edge, as the number of shortest paths between any two nodes of the
graph that use this edge. The main idea of the algorithm is that edges with high betweenness
tend to be connecting distinct communities. The algorithm proceeds by computing the
betweenness of all edges (i.e., computing all shortest paths between pairs of nodes) removing
the edge with highest betweenness, and then iterating the whole procedure, recomputing
all betweenness values at each step. The algorithm ends when enough components of the
graph have been separated, or when the highest betweenness is less than a given threshold.
This is not a particularly efficient technique (the number of required operations is cubic in the
number of nodes). Cubic-time algorithms are not appropriate for the whole graph of the Web,
but such an algorithm might be used to cluster subgraphs.

Other graph clustering methods, usually more efficient, rely on another principle, namely
that of minimum cut in a transport network. This is a classical algorithmic problem: given a
directed graph with weights (positive numbers) on the edges, one wants to find the set of
edges of minimum weight to remove from the graph to separate two given nodes. This can be
used to cluster the Web: in order to find the community to which a given Web page belongs,
just compute the minimum cut (with some appropriate weighting of the edges) that separate
this page from the rest of the Web, represented as a virtual node all pages point to. Such an
approach differs from the previous one in that it is more local: We are not looking for a global
partition into clusters, but for the cluster of a given Web page.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 34

5 Hot Topics in Web Search

We conclude this chapter with some research topics related to the search of information on
the Web that are particularly active at the moment of writing.

Web 2.0

Web 2.0 is a buzzword that has appeared recently to refer to recent changes in the Web, notably:

• Web applications with rich dynamic interfaces, especially with the help of AJAX tech-
nologies (AJAX stands for Asynchronous JavaScript And XML and is a way for a browser
to exchange data with a Web server without requiring a reload of a Web page); it is
exemplified by GMail8 or Google Suggest9;

• User-editable content, collaborative work and social networks (e.g., in blogs, wikis such
as Wikipedia10, and social network Web sites like MySpace11 and Facebook12);

• Aggregation of content from multiple sources (e.g., from RSS feeds) and personalization,
that is proposed for instance by Netvibes13 or YAHOO! PIPES (see Chapter ??).

Though Web 2.0 is more used in marketing contexts than in the research community, some
interesting research problems are related to these technologies, especially in the application
of graph mining techniques similar to those employed on the graph of the Web to the graph
of social network Web sites, and in the works about mashups for aggregating content from
multiple sources on the Web.

Deep Web

The deep Web (also known as hidden Web or invisible Web) is the part of Web content that lies
in online databases, typically queried through HTML forms, and not usually accessible by
following hyperlinks. As classical crawlers only follow these hyperlinks, they do not index
the content that is behind forms. There are hundreds of thousands of such deep Web services,
some of which with very high-quality information: all Yellow pages directories, information
from the U.S. Census bureau, weather or geolocation services, and so on.

There are two approaches to the indexing of the deep Web. A first possibility is an
extensional approach, where content from the deep Web is generated by submitting data into
forms, and the resulting Web pages are stored in an index, as with classical Web content. A
more ambitious intensional approach is to try to understand the structure and semantics of
a service of the deep Web, and to store this semantic description in an index. A semantic
query from a user would then be dispatched to all relevant services, and the information
retrieved from them. Whatever the method, searching the deep Web requires first discovering
all relevant forms, and some analysis to understand what data to submit to a form. In the
intensional approach, deep Web search is also needed to extract information from the pages
resulting from the submission of a form, which is the topic of the next section.

8http://mail.google.com/
9http://www.google.com/webhp?complete=1

10http://www.wikipedia.org/
11http://www.myspace.com
12http://www.facebook.com/
13http://www.netvibes.com/

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://mail.google.com/
http://www.google.com/webhp?complete=1
http://www.wikipedia.org/
http://www.myspace.com
http://www.facebook.com/
http://www.netvibes.com/

For personal use only, not for distribution. 35

Figure 22: Example pages resulting from the submission of a HTML form

Information Extraction

Classical search engines do not try to extract information from the content of Web pages, they
only store and index them as they are. This means that the only possible kind of queries
that can be asked is keyword queries, and results provided are complete Web pages. The
purpose of Web information extraction is to provide means to extract structured data and
information from Web pages, so as to be able to answer more complex queries. For instance,
an information extractor could extract phone numbers from Web pages, as well as the name
of their owner, and provide an automatically built directory service. Information extraction
is facilitated by very structured Web pages, such as those that are dynamically generated
on response to the submission of an HTML form (e.g., Figure 22); a wrapper for this kind of
dynamic site can be generated, in order to abstract away its interface.

Most research works in information extraction are in a supervised or semi-supervised
context, where humans pre-annotate Web pages whose content is to be extracted, or where
human give some feedback on automatic wrapper construction. Unsupervised approaches
rely either on the detection of linguistic or sentence-level patterns that express some concept
or relation between concepts (e.g., addresses usually follow some kind of fixed format that can
be discovered in corpus; textual patterns like was born in year can be found to automatically
extract birth dates of individuals), or the detection of structural patterns in the Web page (e.g.,
repetitive structures such as tables or lists).

6 Further Reading

We provide references on the material found in this chapter. More information, as well as
in-depth coverage of some other parts of this chapter, can be found in [Cha03].

Web Standards

HTML 4.01 [W3C99] is described by a recommendation of the World Wide Web Consortium
(or W3C), an organism that regroups academics and industrials for the development of

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 36

standards about the World Wide Web, as is XHTML 1.0 [W3C02]. The W3C is working at the
time of writing on the successor to both languages, HTML5 [W3C10]. The DNS and HTTP
protocols, which are Internet protocols, are published by the Internet Engineering Task Force
(IETF) and can be found, respectively, in [IET99a] and [IET99b].

The standard for robot exclusion and sitemaps both have unofficial specifications, not
supported by any normalization organization. The former is described in [Kos94]. Sitemaps
are an initiative of Google, that has been embraced by other search engines. The specification
of sitemaps is available in [sit08].

Web Parsing and Indexing

Computation of the edit distance between two text documents is a classical problem, and a
dynamic algorithm for solving it can be found in textbooks on algorithmics, such as [CLR90].
The Jaccard similarity coefficient has been introduced by the botanist Paul Jaccard for compar-
ing floral populations across areas [Jac01]. Hashing shingles of a document to build a compact
sketch that can be used to efficiently detect near-duplicates has been proposed in [BGMZ97].

The stemming technique described in the text is from Porter [Por80]. Soundex [US 07] is a
widely used loose phonetic stemming for English.

[ZM06] is a recent and accurate survey on inverted files. From the same authors, the
book [WMB99] provides a larger (but less up-to-date) coverage of the field, including a
detailed presentation of the most useful text and index compression techniques. The re-
cent book [MRS08] covers information retrieval techniques and supplies on-line material at
http://nlp.stanford.edu/IR-book/information-retrieval-book.html. The
byte-level compression technique has been developed and experimented in [SWYZ02, AM05,
AM06]. Experimental results show that byte-level compression is twice as fast as bit-level
compression. The compression loss with respect to the latter approach is reported to be
approximately 30%. Integer compression methods have been studied for a long time in
computer science. The γ code presented here is from [Eli75].

Efficient external memory algorithms to construct index structures that cannot fit in mem-
ory is one of the core issues in databases and information retrieval. See for instance [Vit01]
for an in-depth survey. The external sort/merge is a standard algorithm implemented in all
DBMS (and used, for instance, during non-indexed joins or grouping operations). [HZ03]
cover in detail the one-pass construction algorithm outlined in the present chapter.

Fagin’s threshold algorithm (TA) that computes the top-k result of a ranked query is
from [FLN03]. It improves an earlier algorithm proposed by Fagin in [Fag99].

Graph mining

PageRank was introduced in [BP98] by the founders of the Google search engine, Sergey
Brin and Lawrence Page. The OPIC algorithm is from [APC03]. HITS has been proposed by
Kleinberg in [Kle99]. TrustRank has been presented by researchers from Stanford University
and Yahoo! in [GGMP04]. Interestingly, Google registered TrustRank as a trademark in 2005,
suggesting they might adopt the technology, but the trademark was abandoned in 2008.

The graph clustering algorithm relying on betweenness is the work of two physicists,
published in [NG04]. The idea of using minimum cuts on the Web graph has been proposed
in [FLG00, FLGC02]. A large number of graph clustering techniques exist, some of them are
reviewed in [Sch07]. One particular technique of interest, particularly interesting because

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://nlp.stanford.edu/IR-book/information-retrieval-book.html

For personal use only, not for distribution. 37

of its efficiency and the availability of an optimized implementation, is MCL, the Markov
CLustering algorithm [vD00].

The Deep Web and Information Extraction

The first study about the amount of content is [Bri00]. Other works [CHL+04] have confirmed
the fact that an impressive amount of content is hidden to current-day search engines. Google
believes in an extensional approach to crawling the deep Web, see [MHC+06]. Research
works that go towards intensional indexing include [CHZ05, SMM+08].

A survey of existing information extraction techniques on the Web can be found in [CKGS06].
Unsupervised techniques, which are probably the only relevant at the scale of the whole
world, include RoadRunner [CMM01], ExAlg [AGM03], and the various works derived from
the MDR system [LGZ04, ZL05].

References

[AGM03] Arvind Arasu and Hector Garcia-Molina. Extracting structured data from Web
pages. In Proc. ACM Intl. Conf. on the Management of Data (SIGMOD), pages
337–348, June 2003.

[AM05] Vo Ngoc Anh and Alistair Moffat. Inverted Index Compression Using Word-
Aligned Binary Codes. Inf. Retrieval, 8(1):151–166, 2005.

[AM06] Vo Ngoc Anh and Alistair Moffat. Improved Word-Aligned Binary Compression
for Text Indexing. IEEE Transactions on Knowledge and Data Engineering, 18(6):857–
861, 2006.

[APC03] Serge Abiteboul, Mihai Preda, and Grégory Cobena. Adaptive on-line page
importance computation. In Proc. Intl. World Wide Web Conference (WWW), 2003.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the Web. Computer Networks, 29(8-13):1157–1166, 1997.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web
search engine. Computer Networks, 30(1–7):107–117, April 1998.

[Bri00] BrightPlanet. The Deep Web: Surfacing Hidden Value. White Paper, July 2000.
[Cha03] Soumen Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.

Morgan Kaufmann, 2003.
[CHL+04] Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen Zhang.

Structured Databases on the Web: Observations and Implications. SIGMOD
Record, 33(3):61–70, 2004.

[CHZ05] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward Large Scale Integra-
tion: Building a MetaQuerier over Databases on the Web. In Proc. Intl. Conference
on Innovative Data Systems Research (CIDR), January 2005.

[CKGS06] Chia-Hui Chang, Mohammed Kayed, Mohem Ramzy Girgis, and Khaled F.
Shaalan. A survey of Web information extraction systems. IEEE Transactions on
Knowledge and Data Engineering, 18(10):1411–1428, October 2006.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

[CMM01] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. RoadRunner: To-

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 38

wards Automatic Data Extraction from Large Web Sites. In Proc. Intl. Conf. on
Very Large Databases (VLDB), 2001.

[Eli75] Peter Elias. Universal code word sets and representations of the integers. IEEE
Transactions on Information Theory, 21(2):194–203, 1975.

[Fag99] Ronald Fagin. Combining fuzzy information from multiple systems. Journal of
Computer and System Sciences, 58:83–99, 1999. Abstract published in PODS’96.

[FLG00] Gary Flake, Steve Lawrence, and C. Lee Giles. Efficient Identification of Web
Communities. In Proc. ACM Intl. Conf. on Knowledge and Data Discovery (SIGKDD),
pages 150–160, 2000.

[FLGC02] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-
Organization of the Web and Identification of Communities. IEEE Computer,
35(3):66–71, 2002.

[FLN03] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. Journal of Computer and System Sciences, 66:614–656, 2003. Abstract
published in PODS’2001.

[GGMP04] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan O. Pedersen. Combating Web
Spam with TrustRank. In Proc. Intl. Conf. on Very Large Databases (VLDB), 2004.

[HZ03] Steffen Heinz and Justin Zobel. Efficient single-pass index construction for text
databases. Journal of the American Society for Information Science and Technology
(JASIST), 54(8):713–729, 2003.

[IET99a] IETF. Request For Comments 1034. Domain names—concepts and facilities.
http://www.ietf.org/rfc/rfc1034.txt, June 1999.

[IET99b] IETF. Request For Comments 2616. Hypertext transfer protocol—HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

[Jac01] Paul Jaccard. Étude comparative de la distribution florale dans une portion des
Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 1901.

[Kle99] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal
of the ACM, 46(5):604–632, 1999.

[Kos94] Martijn Koster. A standard for robot exclusion. http://www.robotstxt.org/
orig.html, June 1994.

[LGZ04] Bing Liu, Robert L. Grossman, and Yanhong Zhai. Mining Web Pages for Data
Records. IEEE Intelligent Systems, 19(6):49–55, 2004.

[MHC+06] Jayant Madhavan, Alon Y. Halevy, Shirley Cohen, Xin Dong, Shawn R. Jeffery,
David Ko, and Cong Yu. Structured Data Meets the Web: A Few Observations.
IEEE Data Engineering Bulletin, 29(4):19–26, December 2006.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008. Online version at
http://informationretrieval.org/.

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2), 2004.

[Por80] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, July
1980.

[Sch07] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
[sit08] sitemaps.org. Sitemaps XML format. http://www.sitemaps.org/

protocol.php, February 2008.
[SMM+08] Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and Marc Tommasi.

Automatic Wrapper Induction from Hidden-Web Sources with Domain Knowl-

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.robotstxt.org/orig.html
http://www.robotstxt.org/orig.html
http://www.sitemaps.org/protocol.php
http://www.sitemaps.org/protocol.php

For personal use only, not for distribution. 39

edge. In Proc. Intl. Workshop on Web Information and Data Management (WIDM),
pages 9–16, October 2008.

[SWYZ02] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression of
inverted indexes for fast query evaluation. In Proc. ACM Symp. on Information
Retrieval, pages 222–229, 2002.

[US 07] US National Archives and Records Administration. The Soundex indexing sys-
tem. http://www.archives.gov/genealogy/census/soundex.html,
May 2007.

[vD00] Stijn Marinus van Dongen. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, May 2000.

[Vit01] Jeffrey Scott Vitter. External memory algorithms and data structures. ACM
Computing Surveys, 33(2):209–271, 2001.

[W3C99] W3C. HTML 4.01 specification, September 1999. http://www.w3.org/TR/
REC-html40/.

[W3C02] W3C. XHTML 1.0: The extensible hypertext markup language (second edition).
http://www.w3.org/TR/xhtml1/, August 2002.

[W3C10] W3C. HTML5, 2010. Working draft available at http://dev.w3.org/html5/
spec/Overview.html.

[WMB99] I. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan-Kaufmann, 1999.

[ZL05] Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment.
In Proc. Intl. World Wide Web Conference (WWW), 2005.

[ZM06] J. Zobel and A. Moffat. Inverted Files for Text Search Engines. ACM Computing
Surveys, 38(2), 2006.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.archives.gov/genealogy/census/soundex.html
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/xhtml1/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html

For personal use only, not for distribution. 40

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

	The World Wide Web
	Parsing the Web
	Crawling the Web
	Text Preprocessing

	Web Information Retrieval
	Inverted Files
	Answering Keyword Queries
	Large-scale Indexing with Inverted Files
	Clustering
	Beyond Classical IR

	Web Graph Mining
	PageRank
	HITS
	Spamdexing
	Discovering Communities on the Web

	Hot Topics in Web Search
	Further Reading

