
http://webdam.inria.fr/

Web Data Management

Tree Pattern Evaluation

Serge Abiteboul Ioana Manolescu
INRIA Saclay & ENS Cachan INRIA Saclay & Paris-Sud University

Philippe Rigaux
CNAM Paris & INRIA Saclay

Marie-Christine Rousset Pierre Senellart
Grenoble University Télécom ParisTech

Copyright @2011 by Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,
Pierre Senellart;

to be published by Cambridge University Press 2011. For personal use only, not for distribution.

http://webdam.inria.fr/Jorge/

http://webdam.inria.fr/
http://webdam.inria.fr/Jorge/

For personal use only, not for distribution. 2

Contents

1 Tree-pattern dialects 2

2 CTP evaluation 5

3 Extensions 9
In this chapter, we learn how to build an evaluation engine for tree-pattern queries, using

the SAX (Simple API for XML) programming model. We thereby follow a dual goal: (i)
improve our understanding of XML query languages and (ii) become familiar with SAX, a
stream parser for XML, with an event-driven API. Recall that the main features of SAX were
presented in Section ??.

1 Tree-pattern dialects

We will consider tree-pattern languages of increasing complexity. We introduce them in this
section.

C-TP This is the dialect of conjunctive tree-patterns. A C-TP is a tree, in which each node
is labeled either with an XML element name, or with an XML attribute name. C-TP nodes
corresponding to attributes are distinguished by prefixing them with @, e.g., @color. Each
node has zero or more children, connected by edges that are labeled either / (with the
semantics of child) or // (with the semantics of descendant). Finally, the nodes that one
wants to be returned are marked.

As an example, Figure 1 shows a simple XML document d where each node is annotated
with its preorder number. (Recall the definition of this numbering from Section ??.) Figure 2
shows a C-TP pattern denoted t1 and the three tuples resulting from “matchings” of t1 into d.
A matching v is a mapping from the nodes in the tree-pattern to the nodes in the XML tree
that verifies the following conditions: For each nodes n,m,

• If n is labelled l for some l, v(n) is an element node labelled l; If n is labelled @l, v(n) is
an attribute node labelled @l;

• If there is a / edge from n to m, v(n) is a parent of v(m); If there is a // edge from n to
m, v(n) is an ancestor of v(m).

In the figure, the nodes that we want to be returned are marked by boxes surrounding their
labels. Observe that a result is a tuple of nodes denoted using their preorder numbers. For
now, assume that C-TPs return tuples of preorder numbers. In real-world scenarios, of course,
we may also want to retrieve the corresponding XML subtrees, and at the end of this chapter,
the reader will be well-equipped to write the code that actually does it.

Before moving on and extending our language of tree-pattern queries, we next observe an
important aspect of the language. For that consider the following three queries:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 3

XML document d

1people

2person 7person 11person

3email

’m@home’

12email

’a@home’

13email

’a@work’

4name 8name 14name

5first

’Mary’

6last

’Jones’

9first

’Bob’

10last

’Lang’

15first

’Al’

16last

’Hart’

Figure 1: A sample document.

Query q1:
for $p in //person[email]

[name/last]
return ($p//email,

$p/name/last)

Query q′1:
for $p in //person
return ($p//email, $p/name/last)

Query q2:
for $p in //person[name/last]
return ($p//email,

$p/name/last)

Which one do you think corresponds to the tree-pattern query t1? Well, it is the first one. In
q1, the for clause requires the elements matching $p to have both an e-mail descendant, and
a descendant on the path name/last. Similarly, to obtain a matching from t1 and d, we need
matches on both paths. In contrast, consider the more relaxed query q′1 that would output
the last name of a person element without an email, or the email of a person element
without last name. Lastly, query q2 requires a last name but no email. This motivates an
extension of the language we consider next.

TP The dialect TP is a superset of C-TP, extending it to allow optional edges. Syntactically,
TP distinguishes between two kinds of edges, compulsory and optional edges. In a nutshell,
the semantics of TP is defined as follows. Matchings are defined as for C-TP. The only
difference is that for an optional child edge from n to m, two cases can be considered:

• If v(n) has some child v(m) such that there is a matching from the subtree of the query
rooted at m and the subtree of d rooted at v(m); then v extends such a matching from

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 4

Tree pattern t1:
person

email name

last

Embeddings of t1 in d

person email name last
2 3 4 6
11 12 14 16
11 13 14 16

Expected result t1(d)

email last
3 6
12 16
13 16

Figure 2: A C-TP and its result for a sample document.

Tree-pattern t2:
person

email name

last

Embeddings of
t2 in d

person email name last
2 3 4 6
7 null 8 10
11 12 14 16
11 13 14 16

Expected result
t2(d)

email last
3 6

null 10
12 16
13 16

Figure 3: A TP and its result for the sample document in Figure 1.

the m-subtree to the v(m)-subtree.

• Or v(n) has no such child, then v has a null value for m and all its descendants.

And similarly for descendant.
As an example, Figure 3 shows the TP pattern t2 corresponding to the previously see

query q2. It resembles t1 but the edge between the person and email nodes is optional
(denoted by the dashed lines in the figure). As the figure shows, the second person element
from the document in Figure 1 lacks an email, which leads to a matching tuple with a null.
As a consequence, one of the tuples in t2(d) contains a null email.

To conclude this section, we consider three somehow orthogonal extensions of both TP
and C-TP. Figure 4 shows the extended tree-pattern t3, t4 and t5, together with their equivalent
queries, respectively q3,q4 and q5, and their results for the sample document in Figure 1. The
three extensions are:

Star (*) patterns We allow labels to be not only element or attribute names, but also “*” that
are interpreted as wild cards matched by any element or attribute.

Value predicate patterns We can impose a constraint on nodes using some predicates. For
instance, we can impose the value of an email, e.g, email = m@home.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 5

Query q3:
for $p in //person[email]
return $p//name/*

Equivalent tree pattern t3:
person

email name

*

Evaluation result of t3(d):
*
5
6
9
10
15
16

Query q4:
for $p in //person[//first]

[//last]
where $p/email=’m@home’
return ($p//first,

$p//last)

Equivalent tree pattern t4:
person

email
=’m@home’

first last

Evaluation result of t4(d):
first last

5 6

Query q5:
for $p in //person
where $p/email=’m@home’
return <res>{$p/*/last}</res>

Equivalent tree pattern t5:
person

email
=’m@home’

*

last

Evaluation result of t5(d):
last

<last>Jones</last>

Figure 4: Extended patterns.

Patterns returning full elements Finally, we can request the tree-pattern to not only return
the preorder values of nodes but the entire corresponding subtrees. For simplicity,
we do not introduce any explicit graphical notation for requesting that in answers. In
Figure 4, the result of t5(d) assumes that “full answers” are requested.

From a practical perspective of XML querying, all these extensions are interesting. In
particular, C-TP with all the extensions corresponds to a large and useful subset of XPath,
whereas its counterpart building on TP is at the core of an important expressive fragment of
XQuery. We first consider the evaluation of C-TP. Then look at extensions.

2 CTP evaluation

We now describe an algorithm, named StackEval, for evaluating a C-TP pattern t on a
document d in a single SAX-based traversal of the document. To understand the algorithm,
it is useful to have in mind that a node matches both because it satisfies some “ancestor
condition” (the path from the root has a certain pattern) and also because its descendants
satisfy some “descendant conditions”. We know whether an XML node satisfies some ancestor
conditions, by the time we encounter the opening tag of the node, because by that time, all
its ancestors have been encountered already. However, we can only decide if the node
satisfies descendant conditions after the complete traversal of all its descendants, that is,
when encountering the closing tag of the node.

We start by describing some data structures we will use:

• When a node nd in document d is found to satisfy the ancestor conditions related to a
node nt in t, a Match object is created to record this information. A Match holds the
following:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 6

class Match {

int start;

int state;

Match parent;

Map <PatternNode, Array<Match>> children;

TPEStack st;

int getStatus() {...}

}

class TPEStack {

PatternNode p;

Stack <Match> matches;

TPEStack spar;

Array <TPEStack> getDescendantStacks(); {...}

// gets the stacks for all descendants of p

push(Match m){ matches.push(m); }

Match top(){ return matches.top(); }

Match pop(){ return matches.pop(); }

}

Table 1: Outline of the Match and TPEStack classes.

– the start number of node nd (an integer).

– an internal state flag, whose value can be either open or closed.

– (ancestor conditions) the Match parent that corresponds to a match between the
parent (or an ancestor) of nd, and the parent of nt in the tree pattern query. If the
edge above nt is a parent edge, then parent can only correspond to the parent
node of nd. Otherwise, parent may be built from the parent or another ancestor of
nd.

– (descendant conditions) the (possibly empty) array of matches that were created
out of nd’s children or descendants, for each child of nt in the query. Such matches
for nt children are mapped in the children structure on the PatternNode children
of nt.

– a pointer st to a TPEStack (standing for tree pattern query evaluation stack). As
we will see, we associate a TPEStack to each node in the pattern. Then st points
to the stack associated to the pattern node nt.

• For each node p in the tree-pattern, a TPEStack is created, on which the matches
corresponding to this pattern node are pushed as they are created. Observe that a
TPEStack contains a “regular” Stack in which Match objects are pushed and from
which they are popped. The extra structure of a TPEStack serves to connect them to
each other according to the structure or the query. More specifically, each TPEStack

corresponding to a pattern node p points to:

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 7

– the TPEStack spar corresponding to the parent of p, if p is not the pattern root.

– a set childStacks of the TPEStacks corresponding to the children of p, if any.

• The Match and TPEStack structures are interconnected, i.e., each Match points to the
(unique) TPEStack on which the Match has been pushed upon creation.

The main features of the Match and TPEStack classes are summarized in Table 1. In our
discussion of the algorithms, unless otherwise specified, we use the term “stack” to refer to a
TPEStack.

The StackEval algorithm The algorithm evaluates C-TP queries based on the SAX XML
document processing model. More specifically, the query evaluation algorithm runs suitable
handlers of the methods:

startElement (String nameSpaceURI, String localName, String

rawName, Attribute attributes)

endElement (String nameSpaceURI, String localName, String

rawName)

described in Section ??. For simplicity, within startElement we only use the localName

and Attributes, whereas from the parameters of endElement we only use localName. As a
consequence, the evaluation algorithm we describe does not take into account namespaces.
Extending it to include the support of namespaces does not raise interesting algorithmic
issues.

The StackEval class (Table 2) contains the stack corresponding to the query root. It also
stores an element counter called currentPre, from which pre number will be assigned to
new Match objects. Finally, it stores a stack of all pre numbers of elements currently open but
whose end has not been encountered yet.

The startElement handler is notified that an element with a given localName and a set
of attributes has just started. The handler seeks to identify the stack (or stacks) associated to
query nodes which the newly started element may match. To this purpose, it enumerates all
the stacks created for the query (by getting all descendants of the root stack), and for each
stack it checks two conditions. The first condition is that the label of the starting node matches
the label of the query nodes for which the stacks were created. A second condition applies
in the case of a stack s created for a query node p having a parent in the query: we push a
new match on s if and only if there is an open match on the parent stack of s, namely p.spar.
Such an open match signifies that the newly started element appears in the right context,
i.e. all the required ancestors have been matched above this element. In this case, a Match is
created with the current pre number (which is incremented). The Match is open by default
when created. Finally, the currentPre and preOfOpenNodes are updated to reflect the new
element.

Since tree-patterns may also require matches in XML attributes, the next lines in the
startElement handler repeat the previously described procedure for each of the attributes
whose presence is signaled in the same call to startElement.

The endElement handler (Table 3) plays a dual role with respect to the startElement one.
Ancestor conditions for a potential query node match are enforced by startElement when
the element starts; descendant conditions are checked by endElement when the element’s

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8

class StackEval extends DocumentHandler {

TreePattern q;

TPEStack rootStack; // stack for the root of q

// pre number of the last element which has started:

int currentPre = 0;
// pre numbers for all elements having started but not ended yet:

Stack <Integer> preOfOpenNodes;

startElement(String localName, Attribute attributes){

for(s in rootStack.getDescendantStacks()){

if(localName == s.p.name && s.spar.top().status == open){

Match m = new Match(currentPre, s.spar.top(), s);

// create a match satisfying the ancestor conditions

// of query node s.p

s.push(m); preOfOpenNodes.push(currentPre);

}

currentPre ++;

}

for (a in attributes){

// similarly look for query nodes possibly matched

// by the attributes of the currently started element

for (s in rootStack.getDescendantStacks()){

if (a.name == s.p.name && s.par.top().status == open){

Match ma = new Match(currentPre, s.spar.top(), s);

s.push(ma);

}

}

currentPre ++;

}

}

Table 2: StartElement handler for the StackEval tree-pattern evaluation algorithm.

traversal has finished, because at this time, all the descendants of the XML node for which the
match was created have been traversed by the algorithm. Thus, we know for sure what parts
of the queries could be matched in the descendants of the current node. The endElement

handler plays two roles:

• prune out of the stacks those matches which satisfied the ancestor constraints but not
the descendant constraints;

• close all Match objects corresponding to the XML element which has just finished (there
may be several such matches, if several query nodes carry the same label). Closing
these Matches is important as it is required in order for future tests made by the
startElement handler to work.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 9

class StackEval{ ...

endElement(String localName){

// we need to find out if the element ending now corresponded

// to matches in some stacks

// first, get the pre number of the element that ends now:

int preOflastOpen = preOfOpenNodes.pop();

// now look for Match objects having this pre number:

for(s in rootStack.getDescendantStacks()){

if (s.p.name == localName && s.top().status == open &&)

s.top().pre == preOfLastOpen){

// all descendants of this Match have been traversed by now.

Match m = s.pop();

// check if m has child matches for all children

// of its pattern node

for (pChild in s.p.getChildren()){

// pChild is a child of the query node for which m was created

if (m.children.get(pChild) == null){

// m lacks a child Match for the pattern node pChild

// we remove m from its Stack, detach it from its parent etc.

remove(m, s);

}

}

m.close();

}

}

}

}

Table 3: EndElement handler for the StackEval tree-pattern evaluation algorithm.

Instructions Based on the previous explanation:

1. Implement an evaluation algorithm for C-TP tree-patterns. At the end of the execution,
the stacks should contain only those Match objects that participate to complete query
answers.

2. Implement an algorithm that computes the result tuples of C-TP tree patterns, out of
the stacks’ content.

3 Extensions to richer tree-patterns

Once this is implemented, the reader might want to consider implementing the extensions
previously outlined. For all these extensions, a single traversal of the document suffices.

More precisely, one can consider:

1. Extend the evaluation algorithm developed in (1.) at the end of the previous section to

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 10

“*” wildcards. For this, Stack objects are allowed to be created for *-labeled query tree
nodes. Also the startElement and endElement handlers are adapted.

2. Extend the evaluation algorithm to optional nodes, by modifying the tests performed
in endElement (looking for children which the Match should have) to avoid pruning a
Match if only optional children are missing.

3. Extend the algorithm developed in (2.) to handle optional nodes, by filling in partial
result tuples with nulls as necessary.

4. Extend the evaluation algorithm to support value predicates, by (i) implementing a
handler for the characters(...) SAX method, in order to record the character data
contained within an XML element and (ii) using it to compare the text values of XML
elements for which Match objects are created, to the value predicates imposed in the
query.

5. Extend the algorithm in (2.) to return subtrees and not only preorder numbers. The
subtrees are represented using the standard XML syntax with opening/closing tags.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

	Tree-pattern dialects
	CTP evaluation
	Extensions

