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1 Introduction

As we saw in the previous chapter, ontologies form the backbone of the Semantic Web by
providing a conceptual view of data and services available worldwide via the Web. We
discussed the RDF language for describing knowledge, and a family of languages, called
description logics, that provide formal foundations for ontologies and in particular for the
OWL ontology language recommended by the W3C.

In this chapter, the focus is on querying RDF data. Since massive volumes of RDF sources
are more and more present on the Web, specifying queries for RDF data that can be evaluated
efficiently is becoming every day more and more important.

We will see that the set of query answers strongly depends on the semantic context. We
will study query answering when the ontology is specified in RDFS and then when the
ontology is specified in DL-LITE. The ontology language DL-LITE belongs to the DL family.
It has been designed as a trade-off between the ability to describe a wide range of domains
of interest and query evaluation efficiency. More precisely, we will focus on two important
fragments of DL-LITE, namely DL-LITEg and DL-LITE .

We will observe that the problem of answering queries through ontologies is quite different
from that of answering database queries for the following two essential reasons:

Implicit facts. In a DBMS setting, all the facts are explicit. For instance, the constraint “Every
PhD student is a student” enforces that, before inserting a value v in the PhDStudent
table, this value is also inserted in the Student table (if not already there). In an ontology
context, someone may be a student not explicitly but because of the constraint used as an
inference rule. In addition, the implicit facts may be incompletely known, coming from
constraints such as “A professor teaches at least one master course”. From a fact such
as Professor(dupond), one can infer the two facts Teaches(dupond, x) and MasterCourse(x)
for some unknown value x. Such partially known implicit facts may however be useful
for answering queries such as “Give me all the persons who teach a master course”.
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Inconsistency. In a DBMS setting, the constraint “each course must have a single responsible
is also viewed as a law that cannot be violated. An update of the corresponding
table that would violate this law would simply be rejected. In an ontology context,
such local verifications are not sufficient for checking data inconsistency. Because of
data incompleteness, this may require intricate reasoning on different constraints and
data distributed over different tables. For instance, if in addition of the previous key
constraint, it is declared that “only professors can be responsible of courses in which
they must teach”, “a master course is taught by a single teacher”, and “lecturers are not
professors”, the presence of the three following facts in different tables of the database
makes it inconsistent: Lecturer(jim), TeachesIn(jim,ue431) and MasterCourse(ue431). The
reason is that because of the constraint “only professors can be responsible of courses in
which they must teach”, we can infer that the course ue431 must have a responsible x
who is unknown but for whom we have a partial information: s/he is a professor and
s/he teaches in the course ue431. Without knowing x, the fact that she is a professor is
sufficient to infer that x # jim (since jim is a lecturer and thus not a professor). Therefore,
the course ue431 is taught by two distinct teachers, which is forbidden for a master
course.

From this, it should be clear that query answering through ontologies is more complicated
that in classical databases. We have to reason to find which inferences may participate in
answering a given query. We also have to reason to verify the consistency of our knowledge.

2 Querying RDF data: notation and semantics

In this section, we set the stage for querying RDF data. We also discuss the impact of
ontologies (knowledge on the domain of interest) on the answers. To simplify, we ignore here
blank nodes.

Figure 1 is an enhanced version of the University example that we will use throughout
this chapter. The first column provides RDF data in the triple syntax, while the second column
shows the corresponding facts in FOL.

RDF triples can be asserted in a very flexible way and almost without constraints. The
association of some ontology is not a requirement. Users can update a collection of RDF
statements freely by just adding/removing triples. The only reserved word in the RDF
vocabulary is rdf : t ype that is used to relate constant names to types, i.e., classes in domain
of interest or unary predicates in FOL world.

Let us now consider querying a set of RDF facts, for which the query language SPARQL
has been proposed. We briefly consider it next. query language. We briefly consider it next.

SPARQL (pronounced “sparkle”) is a recursive acronym standing for SPARQL Protocol
And RDF Query Language. It is a W3C recommendation as of 2008. Although it does
borrow some features from XQuery (functions and operators), it is based on the graph model
underlying RDF data.

For instance, the following query expresses in SPARQL the search of all the individuals
who are enrolled in a department led by a Professor.

select x where x EnrolledIn y, z Leads y, z rdf:type Professor
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Subject Predicate Object FOL semantics

dupond Leads infoDept Leads(dupond,infoDept)
dupond rdf:type Professor Professor(dupond)

durand ResponsibleOf uelll ResponsibleOf(durand,uel11)
durand Leads csDept Leads(durand,csDept)

paul TeachesTo pierre TeachesTo(paul,pierre)

paul rdf:type PhdStudent PhDStudent(paul)

paul EnrolledIn infoDept EnrolledIn(paul, infodept)
pierre EnrolledIn infoDept EnrolledIn(pierre, infodept)
pierre rdf:type Undergrad Undergrad(pierre)

pierre RegisteredTo  uelll Registered(pierre, uelll)
uelll OfferedBy infoDept OfferedBy(uelll,infoDept)
uelll rdf:type CSCourse CSCourse(uelll)

jim EnrolledIn csDept EnrolledIn(jim, csDept)
csDept  rdf:type TeachingDept | TeachingDept(csDept)

Figure 1: RDF triple syntax and its FOL semantics

We used here an SQL-like syntax. There exists competing syntaxes for expressing SPARQL
queries. The corresponding query in FOL notation is:

q(x) : — 3y3z[EnrolledIn(x,y) A Leads(z,y) A Professor(z)]

This is a conjunctive query, i.e., a FOL formula without negation or disjunction, of the form

G(x1, 0 Xm) * = Y1, Yn[Re(ur) Ao ARp(up)]

where each u; is a vector of variables in {xy, ..., Xy, Y1, ...,yn } Or constants, and each variable x;
appears in the body of the query (i.e., for each x € {xy,...,x,, }, there exists u; such that x € u;).
In the remainder of this chapter, we use conjunctive queries as the query language for
RDF. From the example, it should be clear that all we say is relevant to SPARQL. We use a
(standard) simplified notation for conjunctive queries. We omit the existential quantifiers and
denote the connector A by a comma. Observe that this does not introduce any ambiguity.
In particular, all variables not occurring in the “head of the query” (i.e., in q(x1,...,Xn)) are
understood as existentially quantified. The variables in x1, ..., x,, are said to be distinguished.
In this simplified form, the example SPARQL query becomes:

g(x) :— EnrolledIn(x,y), Leads(z,y), Professor(z)

Now consider a query in the general form:

q(x1, .y Xm) = Ry(ur),..., Rp(up)

with existential variables y1, ..., y,. Following the standard FOL semantics, the evaluation of

the query consists in finding valuations v of the variables for which the closed fact R;(v(u;))

“holds” for each i. The corresponding answer is then q(v(x1),...,v(xs)). Equally, we may say

that (v(x1),...,v(x)) is an answer for the query 4. When the query is unary (i.e., it has a

single distinguished variable), we either say “g(a) is an answer” or “a is an answer for q”.
An essential issue is in the meaning of “holds” in the previous informal definition.
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Inference with data only. In the simplest case, a fact R;(v(u;)) holds if it is a known fact
(explicitly stated in the data store). For instance, consider the previous conjunctive query in
the University example. The evaluation of the query g(x) against the facts of Figure 1 returns
{paul, pierre} as its answer set. To see why paul is an answer, we just check that, by mapping the
distinguished variable to the constant paul, and the existential variables y and z respectively
to the constants infoDept and dupond, all the conjuncts in the query definition are satisfied by
facts in the database. The same holds if the distinguished variable x is instantiated with the
constant pierre.

More inference using an ontology. Now, let us assume that a fact R;(v(u;)) holds if itis a
known fact or if it is a consequence of the known facts by taking the ontological statements
into account. Suppose now that we also have the knowledge that someone responsible for a
class has to be a professor, that is in DL syntax:

JResponsibleOf T Professor.

Additional answers can then be inferred. For instance, for the query q(x), the additional
answer jim is obtained. It would come from the presence in the data of the facts EnrolledIn(jim,
csDept), Leads(durand, csDept), and from the fact Professor(durand), which, without being
explicitly stated in the data, is logically entailed from the fact ResponsibleOf(durand, ue111)
and JResponsibleOf T Professor.

To see why, we just have to consider the FOL semantics of this DL statement:

VxVy[ResponsibleOf (x,y) = Professor(x)].

This logical implication indeed allows inferring the fact Professor(durand) from the fact
ResponsibleOf(durand, uel11).

More subtly, we can get answers from partially instantiated facts that can be logically
entailed by the knowledge base. Suppose that we know that a professor teaches at least one
course, that is in DL syntax:

Professor C JTeachesIn.

and consider the query g(x) : —TeachesIn(x,y)

From the explicit ground fact Professor(durand) and the contraint Professor C JTeachesIn,
we know that TeachesIn(durand,v) holds for some unknown value v. The valuation of v may
vary in the different “worlds” satisfying the constraint. This is however sufficient to infer that
answer q(durand) is true in all these possible worlds.

Formal definition of answer set. Recall that ¢ |= ¢ (i.e., ¢ implies ) if each interpretation
making ¢ true also makes ¢ true, or equivalently, every model of ¢ is a model of 1. We next
provide a formal definition of the answer set of a query for a DL knowledge base, that captures
the general setting where data (the Abox A) is associated to an ontology (the Tbox 7') to form
a DL knowledge base KK = T U A. A query to the knowledge base is a conjunctive query using
class or property predicates from the given knowledge base with the proper arity. (Class
predicates have arity one and property predicates arity 2.)

A valuation v of a set of variables {z1,...,z,} is a substitution (denoted {z1/ay,...,zy/a,})
that assigns each variable z; to a constant 4; (two distinct variables may be assigned to a
same constant). Given two valuations v and v’ of two disjoint sets of variables {z1, ...,z }
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and {vy,...,v¢} , v o v/ denotes the valuation assigning the variables z; to the corresponding
constants in v, and the variables v; to the corresponding constants in v'.
We can now formally define the notion of answers.

Definition 2.1 Let q(x1,...,xu) @ — Ry(u1),...,Rp(up) be a query to a knowledge base K. An
answer is a ground fact q(v(x1),...,v(x)) for some valuation v of the distinguished variables such
that in every model of KC there exists a valuation v’ of the existential variables for which R;(v o v'(u;))
is true for each i. The answer set of g for IC is the set of all such answers. It is denoted q(IC).

Consider again the previous University query example. We have seen that its answer set
varies depending on the knowledge base against which it is evaluated. In particular, if A is
the set of facts of Figure 1 and 7T is {3ResponsibleOf T Professor}, we have:

e q(A) = {paul,pierre}.
o q(AUT) = {paul,pierre,jim}.

Boolean queries. To conclude this section, we consider a particular interesting case of
queries, that of Boolean queries. The arity of a query is the number of its distinguished
variables. A query of arity 0, i.e., a query of the form g() : ..., is called a Boolean query. Note
that there is a single possible answer, namely g(). In this case, we see that as a positive answer
to the query, i.e., as true. If the answer set is empty, we see that as false.

To see an example, consider the query

g’ () :— Student (x), TeachesTo(x,y)

This Boolean query asks whether there exists a student teaching to other students. Suppose
T’ = {PhDStudent C Student}. Then we can distinguish two cases:

e 7/(A) =@ and the answer is no.
* (A T")={q9 ()} and the answer is yes.

In the second case, the fact Student(paul), although not in the Abox A, can be inferred from the
fact PhDStudent(paul) in A and the inclusion statement PhDStudent C Student in T'. Together
with the fact TeachesTo(paul,pierre) present in the Abox, it makes the body of the query g’
satisfied.

3 Querying through RDFS ontologies

In this section, we consider RDF data without blank nodes (that can be seen as an Abox),
associated to an RDFS ontology (that can be seen as a very simple Tbox). RDF data and RDFS
statements can be denoted and stored as triples. However, the important point is that RDFS
statements have a logical semantics which can be operationalized as a set of inference rules
(see Section ?? in Chapter ??). We illustrate here how this can be used to answer queries.

Figure 2 is an example of an RDFS ontology that can be associated to the RDF data in
Figure 1. The RDFS statements composing the ontology are given in three notations: the triple
notation, the DL notation, and the corresponding FOL notation.
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RDFS notation

DL notation

FOL notation

AcademicStaff rdfs:subClassOf Staff)
Professor rdfs: subClassOf AcademicStaff)
Lecturer rdfs: subClassOf AcademicStaff)
PhDStudent rdfs:subClassOf Lecturer)
PhDStudent rdfs: subClassOf Student)
TeachesIn rdfs:domain AcademicStaff)
TeachesIn rdfs: range Course)
ResponsibleOf rdfs:domain Professor)
ResponsibleOf rdfs:range Course)
TeachesTo rdfs : domain AcademicStaff)

AcademicStaff T Staff
Professor & AcademicStaff
Lecturer T AcademicStaff
PhDStudent C Lecturer
PhDStudent C Student
ITeachesIln T AcademicStaff
JTeachesIn™ T Course
JIResponsibleOf T Professor
IResponsibleOf ~ T Course
ITeachesTo T AcademicStaff

AcademicStaff (X) = Staff (X)
Professor(X) = AcademicStaff (X)
Lecturer(X) = AcademicStaff (X)
PhDStudent(X) = Lecturer(X)
PhDStudent(X) = Student(X)
TeachesIn(X,Y) = AcademicStaff (X)
TeachesIn(X,Y) = Course(Y)
ResponsibleOf (X,Y) = Professor(X)
ResponsibleOf (X,Y) = Course(Y)
TeachesTo(X,Y) = AcademicStaff (X)

dTeachesTo™ C Student
JLeads T AdminStaff
JLeads™ T Dept
JRegisteredIn T Student
JRegisteredIn™ T Course
ResponsibleOf T TeachesIn

TeachesTo rdfs: range Student)

Leads rdfs:domain AdminStaff)

Leads rdfs: range Dept)

RegisteredIn rdfs:domain Student)

RegisteredIn rdfs: range Course)

ResponsibleOf rdfs: subPropertyOf TeachesIn)

TeachesTo(X,Y) = Student(Y)
Leads(X,Y) = AdminStaff (X)
Leads(X,Y) = Dept(Y)
RegisteredIn(X,Y) = Student(X)
RegisteredIn(X,Y) = Course(Y')
ResponsibleOf (X,Y) = TeachesIn(X,Y)

o~ e~~~ o~~~ o~ o~~~ o~~~

Figure 2: An RDFS ontology expressed in different notations

As already said, these RDFS statements can be used to infer new triples (i.e., new facts)
from the RDF database. For example, the RDF triple (durand ResponsibleOf uel1l) in Figure 1
corresponds to the fact ResponsibleOf (durand,uel11), and the RDFS statement (ResponsibleOf
rdfs:domain Professor) corresponds to the logical rule: ResponsibleOf (X,Y) = Professor(X).
The condition of this rule can be mapped with the fact ResponsibleOf (durand,uelll) by the
substitution {X/durand, Y/uelll}, and thus the corresponding instantiation of the con-
clusion Professor(durand) can be inferred. This new fact can in turn trigger a rule such as
Professor(X) = AcademicStaff (X), thereby allowing the inference of additional facts such as
AcademicStaff (durand).

More generally, RDFS statements correspond to rules that can be applied in a forward-
chaining manner to the initial set of facts until saturation, i.e., until no more fact can be
inferred. It is important to see that the variables in the head of rule all occur in the body. In
other words, no variable is quantified existentially. So rules always infer new ground facts.
Such rules are said to be safe. We will use unsafe rules when we consider DL-LITE, which will
render query processing more complicated.

The simple forward-chaining Algorithm 1 starts with the set of initial facts and repeats
inference steps until saturation.

Figure 3 shows the facts resulting from the application of Algorithm 1 to the facts of
Figure 1 and the rules of Figure 2.

To answer queries from RDF facts associated to an RDFS ontology, one can proceed as
follows. First one compute all the inferred facts (in a bottom-up manner) with the previous
algorithm. Each step of the loop can be computed, for instance, using a standard relational
query engine. This yields a new database consisting of the set of all the facts (asserted
or inferred). Then one can evaluate the query directly on that database using a standard
relational query engine.

For example, the standard evaluation against the set of (asserted + inferred) facts in
Figure 3 of the query

q(x) : — Envrolled(x,y),Leads(z,y), Professor(z)
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Algorithm 1: The Saturation algorithm
Saturation(A,T)

Input: An Abox A and an RDFS Tbox T
Output: The set of facts that are inferred: Ay

(1) F+ A

(2) Ag+— A

3) repeat A < @

4) foreach rule condition = conclusion in T,

5) if there exists a substitution ¢ such that o.condition € Ag
(6) and o.conclusion ¢ F

7) add o.conclusion to Aq

(8) F+— FUMN

9) Ny — N

(10) untilA =0

(searching for individuals enrolled in a department led by a Professor) returns {paul, pierre, jim}
as its answer set. If we evaluate the same query against the set of asserted facts only, we do
not find the answer jim.

Complexity analysis. It is interesting to estimate both the maximum number of inferred
triples and the worst-case time complexity for inferring them. Of course, this depends on the
number of asserted triples (i.e., the size of the data) and also on the number of axioms in the
ontology (i.e., the size of the ontology).

Let M be the number of facts in the Abox and N the number of axioms in the Tbox. From
the presence of some initial fact C(a), one can derive a number of new facts C'(a) for some
class C’. Note that the number of such C’(a) is bounded by the number of axioms in the
ontology, i.e., it is less than N. Now consider some initial fact R(a,b). From it, one can
derive some facts R'(a,b) or R'(b,a) as well as some facts C'(a) or C'(b) for some R" and C'.
Again, one can observe that for a particular R(a,b), the number of new facts one can derive is
bounded by the number of axioms in the ontology, i.e., it is less than N. Since the number
of initial facts is M, the number of facts one can derive is bounded by M x N. Observe in
particular that it is linear in the number of database facts.

Now consider the worst-case time complexity for inferring them by the Algorithm 1. We
have to perform at most M x N iterations. Each iteration can be performed in polynomial
time. So the algorithm is in PTIME. One can show more precisely that it is in 0((M x N)?).

4 Answering queries through DL-LITE ontologies

In this section, we consider two important fragments of the DL-LITE ontology language of
the DL family. As we will see, querying is feasible for these two languages even though
they provide a quite rich framework for describing semantics. We study querying through
ontologies expressed in these two fragments.
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Asserted facts Inferred facts
Leads(dupond,infoDept) AdminStaff(dupond)
Professor(dupond) Dept(infoDept)
ResponsibleOf(durand,uelll) | AcademicStaff(dupond)
Leads(durand,csDept) Professor(durand)
TeachesTo(paul,pierre) Course(uelll)
PhDStudent(paul) AcademicStaff(durand)
EnrolledIn(paul, infodept) AdminStaff(durand)
EnrolledIn(pierre, infodept) Dept(csDept)
Undergrad(pierre) AcademicStaff(paul)
Registered(pierre, uelll) Student(pierre)
OfferedBy(uelll,infoDept) Student(paul)
CSCourse(uelll) Student(pierre)
EnrolledIn(jim, csDept) Lecturer(paul)
TeachingDept(csDept) AcademicStaff(paul)
Staff(paul)
Staff(dupond)
Staff(durand)

41 DL-LITE

A DL-LITE ontology may contain axioms corresponding (up to the syntax) to those allowed
in an RDFS ontology. Besides, it may contain other axioms, of three kinds: positive inclusions
(PI for short), negative inclusions (NI) and key constraints (Key). Figure 4 shows examples
of these three kinds of DL-LITE axioms with their corresponding FOL semantics. These

constraints are not expressible in RDFS.

DL notation

Figure 3: Inferred facts from RDF facts and an associated RDFS ontology

Corresponding logical rule

PI | Professor C 3TeachesIn Professor(X) = JYTeachesIn(X,Y)
Course T JRegisteredIn™ | Course(X) = JYRegisteredIn(Y,X)
NI | Student C —Staff Student(X) = —Staff (X)
Key | (funct ResponsibleOf ~) | ResponsibleOf (Y,X) A ResponsibleOf (Z,X) =Y =Z

Figure 4: Examples of DL-LITE axioms not expressible in RDFS

We next consider in turn these new kinds of axioms.

Positive inclusion and incompleteness.
of the following forms:

A positive inclusion axiom is an expression of one
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DL notation Corresponding logical rule
BC 3P B(X) = 3YP(X,Y)

3QC 3P Q(X,Y) = 3ZP(X,Z)

BC 3P~ B(X) = 3YP(Y,X)

JQC 3P~ Q(X,Y)=3ZP(Z,X)
PCQ or PPCQ | PXY)= QX

where P and Q denote properties and B denotes a class. Recall that P~ denotes the inverse of
P,ie., P~ (x,y) iff P(y,x) for all x,y.

Observe that expressions of the form 3P C B belong to DL-LITE since they already are in
RDFS. Expressions of the form P T Q (so equivalently P~ T Q™) also belong to DL-LITE for
the same reason.

It is important to note that the logical rules corresponding to PI axioms expressible in
DL-LITE are not necessarily safe (as opposed to RDFS that uses only safe rules.) Consider the
rule

VX (Professor(X) = 3Y (TeachesIn(X,Y)))

The variable Y is existentially quantified. As already mentioned, the main issue is that, as a
consequence, such an axiom does not produce new facts (i.e., ground atoms) from initial facts,
but only an incomplete information in the form of atoms that may be partially instantiated. For
example, from the fact Professor(durand), the previous axiom permits to infer that there exists
some course(s) y that durand teaches. In other words, we know that there exists some fact of
the form TeachesIn(durand,y) that is true but we do not know the value of y. This makes it
difficult to apply the bottom-up approach described in Section 3. Such an approach is not
appropriate for answering queries through DL-LITE ontologies.

Negative inclusion and inconsistencies. A negative inclusion axioms is an expression that
takes one of the forms:

DL notation
B1 € —B,
Ri € =R,

where
* B; and B, are either classes or expressions of the form 3P or 3P~ for some property P
e where R; and R; are either properties or inverses of properties.

The corresponding logic rules are left as an exercise. An example of NI (expressing the
constraint “Students do not teach courses”) and the corresponding logical rule are as follows:

DL notation Corresponding logical rule
Student C —JTeachesIn | Student(X) = —3YTeachesIn(X,Y)
or equivalently, 3YTeachesIn(X,Y) = —Student(X)

NIs express disjointness constraints between classes or between properties, and thus
introduce negation in the language. Therefore, the knowledge base against which the queries
have to be evaluated may be inconsistent, i.e., a model of the corresponding theory may not
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exist. Note that this is not possible with RDFS ontologies: we showed an algorithm that
computed a model (indeed the smallest model).

For example, adding the NI Student T —Staff to the ontology of Figure 2 leads to the incon-
sistency of the knowledge base made of the facts in Figure 1 and of the axioms in the ontology
of Figure 2 enriched with that NI. The reason is that from the fact PhDStudent (paul), and the
inclusion axiom PhdStudent C Student, we can infer the fact Student(paul), and in turn the
literal —Staff (paul) from the NI Student C —Staff. On the other hand, the fact Staff (paul) can
be inferred from the fact PhDStudent(paul) and the inclusion axioms PhdStudent C Lecturer,
Lecturer C AcademicStaff and AcademicStaff T Staff.

Key constraints and more inconsistencies. Key constraints are expressed by functionality
axioms of the form (functP) or (functP~ ) where P is a property and P~ denotes the inverse
property of P. Figure 5 shows their logical semantics in the form of logical rules.

DL notation | corresponding logical rule
(funct P) PX,Y)NP(X,Z)=Y=Z
(functP™) PY,X)ANP(ZX)=Y=Z

Figure 5: Functionality axioms expressible in DL-LITE and not in RDFS

Observe that key constraints may also lead to inconsistencies. This is the case if we
attempt to equate two distinct constants, e.g., durand and dupond. For instance, the axiom
(funct ResponsibleOf ) expresses that a course must have a unique professor responsible for
it. Therefore, a knowledge base containing this axiom and the two facts:

ResponsibleOf (durand, uel11) and ResponsibleOf (dupond, uelll),

would be inconsistent. This is because we assume implicitly that an individual is denoted
by a single constant. This natural (in practice) assumption is called in logic the unique name
assumption.

We will consider the following two fragments of DL-LITE:

DL-LITER is obtained by extending the axioms of RDFS with the PI and NI axioms.

DL-LITE is obtained by extending the axioms of RDFS with key constraints, the PI and NI
axioms, but excluding inclusion between properties. Note that, since DL-LITE r does
not permit to express inclusion between properties, RDEFS is not included in DL-LITE .

One may wonder why one would choose such a convoluted language. Why not simply
extend RDFS with the 3 kinds of axioms? This is because functional constraints interact with
inclusion constraints in intricate ways. Query evaluation when they are all present is much
more complex. This will be illustrated by an example in Section 4.4.

From the previous discussion, there are two fundamental differences between query
answering in the context of RDFS and of DL-LITE knowledge bases:

Inconsistency. RDFS does not permit expressing any form of negation, so an RDFS knowl-
edge base is always consistent. On the other hand, a DL-LITE knowledge base may be
inconsistent. Thus, answering queries through DL-LITE ontologies requires to make
sure that the data is consistent with respect to the constraints expressed in the ontology.
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Incompleteness. The rules corresponding to RDFS axioms are safe thereby allowing the
simple bottom-up algorithm we described. On the other hand, axioms in DL-LITE may
correspond to unsafe rules. Thus a bottom-up approach may infer atoms that are not
ground, i.e., some incomplete facts. Therefore, we will have to use a top-down approach
for evaluating the queries that is more appropriate than the bottom-up approach.

In Section 4.2, we show an algorithm for checking consistency of a DL-LITE knowledge
base, and in Section 4.3 an algorithm for answering conjunctive queries posed to a DL-LITE
knowledge base. The particularity of these two algorithms is that they work in two-steps:

1. in a first step, we reason with the Tbox alone (i.e., the ontology without the data) and
some conjunctive queries;

2. in the second step, we evaluate these conjunctive queries against the data in the Abox.

Separating ontology reasoning from data processing is typically a desired feature (when
possible). In particular, such an approach has the practical interest that it makes it possible
to use an SQL engine for the second step, thus taking advantage of well-established query
optimization strategies supported by standard relational data management systems. In the
first step, we deal with the Tbox only, typically of much smaller size.

In Section 4.4, we show by an example that DL-LITEg and DL-LITEr are two maximal
fragments of the DL-Lite family for which reformulating queries into SQL is possible: com-
bining constraints expressible in DL-LITER and DL-LITE 7 may result in an infinite number of
non redundant SQL reformulations for some queries.

4.2 Consistency checking

Towards consistency checking, the first step uses the Tbox alone. It consists in computing
the deductive closure of the Tbox, i.e., all the inclusion axioms that are logically entailed by the
axioms declared in the Tbox. More precisely, the deductive closure (closure for short) of a
DL-LITE Tbox is defined as follows.

Definition 4.1 (Closure of a Tbox) Let 7 be a DL-LITEf or a DL-LITER Tbox. The closure of
T, denoted by cl(T), is inductively defined as follows:

1. All the statements in T are also in cI(T ).

If By C Byand By T By arein cl(T), then By C Bz isin cl(T).
IfRy E Ryand 3R, T Barein cl(T), then 3Ry T Bisin cl(T).
IfR1 E Ryand 3R, T Barein cl(T), then 3Ry T Bisin cl(T).

S

IfRy C Ryand Ry C Ryarein cl(T), then Ry C Ry isin cl(T).

S

IfRi T Ryisincl(T), then Ry TR, isincl(T).
If By C By and By C =B (or B3 C —By) are in cl(T'), then By C =B is in cI(T).

If Ry C Ry and 3R, T —B (or BC —3Ry) arein cl(T ), then 3R; C =B is in cl(T).

© o N

IfRi € Ry and 3R, T =B (or BC —~3R; ) arein cl(T ), then 3Ry T —Bisin cl(T).
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10. If R{ C Ry and Ry C —R3 (or R3 © —Rp) arein cl(T), then Ry C =Rz is in cl(T).
11. If Ry C =Ry or Ry T =Ry isin cl(T), then Ry € —~Ry isin cl(T).

12.  (a) In the case in which T is a DL-LITEx Tbox, if one of the statements 3R T —3R or
JR™ C —3R" isin cl(T), then both such statements are in cI(T ).

(b) In the case in which T is a DL-LITER Tbox, if one of the statements 3R T —-3R, IR~ C
—3R~, or RC —Risin cl(T), then all three such statements are in cI(T).

Observe that although all axioms should be considered to construct this closure, only
negative inclusions and key constraints can raise an inconsistency. The set of all the negative
inclusions and key constraints in c/(7) is called the NI-closure. For example, consider the
Tbox of Figure 6 made of the RDFS ontology shown in Figure 2 enriched with the PIs and NI
shown in Figure 4. The NI-closure of that Tbox is shown in Figure 7.

DL notation FOL notation

AcademicStaff T Staff AcademicStaff (X) = Staff (X)
Professor C AcademicStaff | Professor(X) = AcademicStaff (X)
Lecturer C AcademicStaff Lecturer(X) = AcademicStaff (X)

PhDStudent T Lecturer PhDStudent(X) = Lecturer(X)
PhDStudent T Student PhDStudent(X) = Student(X)
ITeachesIn T AcademicStaff | TeachesIn(X,Y) = AcademicStaff (X)
ITeachesIn™ C Course TeachesIn(X,Y) = Course(Y)

JResponsibleOf T Professor | ResponsibleOf (X,Y) = Professor(X)
JResponsibleOf ~ T Course | ResponsibleOf (X,Y) = Course(Y)
JTeachesTo T AcademicStaff | TeachesTo(X,Y) = AcademicStaff (X)

JTeachesTo™ C Student TeachesTo(X,Y) = Student(Y)
dLeads C AdminStaff Leads(X,Y) = AdminStaff (X)
JLeads™ C Dept Leads(X,Y) = Dept(Y)

JRegisteredIn T Student RegisteredIn(X,Y) = Student(X)
JRegisteredIn™ T Course RegisteredIn(X,Y) = Course(Y)
ResponsibleOf T TeachesIn | ResponsibleOf (X,Y) = TeachesIn(X,Y)

Professor C JTeachesIn Professor(X) = 3YTeachesIn(X,Y)
Course C JRegisteredIn™ Course(X) = JYRegisteredIn(Y,X)
Student C —Staff Student(X) = —Staff (X)

Figure 6: A DL-LITE Tbox

This example shows that it is possible to infer an important number of new NIs. In fact,
we have to compute all the consequences. But as we will see there is at most a polynomial
number of consequences.

We use three propositions for analyzing the consistency problem: one for evaluating the
complexity of evaluating the closure and the last two for showing the logical soundness and
completeness of this closure. Finally, a fourth proposition will show how to use these results
for data consistency checking.

Proposition 4.2 (Size of the closure of a Tbox and complexity of its computation) Let T be
a DL-LITE or a DL-LITER Tbhox.

1. The number of statements in cl(T) is at most polynomial in the size of T .
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DL notation

FOL notation

Student T —Staff

PhDStudent C —Staff
ITeachesTo™ T —Staff
JRegisteredIn T —Staff
Lecturer C” —Student

Lecturer ©” —PhDStudent
Lecturer _ —3TeachesTo™
Lecturer © —3RegisteredIn
Professor C —Student

Professor C ~PhDStudent
Professor © —3TeachesTo™
Professor T —~dRegisteredIn
AcademicStaff T —Student
AcademicStaff © ~PhDStudent
AcademicStaff © —3TeachesTo™
AcademicStaff © —3RegisteredIn
Staff T —Student

Staff T ~PhDStudent

Staff C —~3TeachesTo™

Staff C —~3JRegisteredIn
dTeachesTo T —Student
JTeachesTo © —~PhDStudent
JTeachesTo T —ITeachesTo™
JTeachesTo T —~3RegisteredIn
dTeachesIn C —Student
JTeachesIn C —~PhDStudent
JTeachesIn T —3TeachesTo™
dTeachesIn T —~3RegisteredIn

Student(X) = —Staff (X)

PhDStudent(X) = —Staff (X)
TeachesTo(Y,X) = —Staff (X)
RegisteredIn(X,Y) = —Staff (X)
Lecturer(X) = —Student(X)

Lecturer(X) = —PhDStudent(X)
Lecturer(X) = —3Y[TeachesTo(Y, X)]
Lecturer(X) = —3Y[RegisteredIn(X,Y)]
Professor(X) = —Student(X)

Professor(X) = —PhDStudent(X)
Professor(X) = —3Y[TeachesTo(Y, X)]
Professor(X) = —3Y [RegisteredIn(X,Y)]
AcademicStaff (X) = —Student(X)
AcademicStaff (X) = —~PhDStudent(X)
AcademicStaff (X) = —3Y[TeachesTo(Y,X)]
AcademicStaff (X) = —3Y[RegisteredIn(X,Y)]
Staff (X) = —Student(X)

Staff (X) = —=PhDStudent(X)

Staff (X) = —3Y[TeachesTo(Y,X)]

Staff (X) = —3Y[RegisteredIn(X,Y)]
TeachesTo(X,Y) = —Student(X)
TeachesTo(X,Y) = —PhDStudent(X)
TeachesTo(X, Y) = —3Z[TeachesTo(Z, X)]
TeachesTo(X,Y) = —3Z[RegisteredIn(X,Z)]
TeachesIn(X,Y) = —Student(X)
TeachesIn(X,Y) = —PhDStudent(X)
TeachesIn(X,Y) = —3Z[TeachesTo(Z,X)]
TeachesIn(X,Y) = —~3Z[RegisteredIn(X,Z)]

Figure 7: The NI-closure of the Tbox in Figure 6

2. ¢l(T) can be computed in polynomial time in the size of T .

Proof (sketch).
or a DL-LITER Tbox.

(1.) Follows from the form of the statements that are allowed in a DL-LITE ¢

For (2.), consider the items (2.) to (12.) in Definition 4.1. These are closure rules that are

exhaustively applied to the Tbox until saturation. Let 7y =

T. For each i, let A; be the set

of statements that can be derived from 7; directly using the closure rules (2.) to (12.). Let

Tit

= T; U A;. Clearly, for each i, 7; C cI(T), so its size is polynomial in the size of 7.

Now since the size of 7; is polynomial in the size of T, each step of the computation
can clearly be performed in PTIME. Since the number of steps is less than the number of
statements in ¢I(7"), the entire computation can be performed in PTIME. O

The next proposition states the soundness of the closure.

Proposition 4.3 (Soundness of the closure of a Tbox) Foreach T, T = cI(T). In other words,
for each Abox A satisfying a Thox T, A also satisfies cl(T).

Proof (sketch).

cl(T) =T, since T is included in cI(7T). Clearly, the application of each

closure rule is sound. So for each i, 7; = 7;;1. By induction, 7 = 7y |= 7; for each i. Thus
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TEc(T),soT =cl(T). O
The next proposition establishes the completeness of the closure of a Tbox T: cl(T)

contains all the PIs, NIs and key constraints that are logically entailed by that Tbox (up to
equivalence).

Proposition 4.4 (Completeness of the closure of a Tbox) Let 7 bea DL-LITEr ora DL-LITER
Tbox. Then

1. Lt XCYbeaNloraPLIfT EXC X
then X C =X € cl(T),
otherwise T EXCY iff XCY €cl(T)or =Y T =X €cl(T).

2. T E (funct R) iff (funct R) € cl(T ) or 3R E =3R € cl(T).

Proof (sketch). We build a canonical interpretation I of the classes and properties appearing
in 7 as follows: for each X such that X C =X € cI(7T), I(X) = @; for the other classes
or properties, we associate a constant (respectively a pair of constants) with each class
(respectively each property) and we initialize their interpretations with those (pairs of)
constants. Then, we complete these interpretations by applying the positive inclusions in
cl(T) as logical rules in a bottom up manner until saturation. For instance, if A C 3P is in
cl(T), from the initial state where a is I(A), and (p1, p2) is in I(P), we add a new constant p3
in the domain of interpretation and the pair (a,p3) in I(P). Now, if 3P C 3Q is alsoin cI(T),
we add two new constants p4 and ps in the domain and the pairs (4, ps) and (p1, ps) to I(Q).

Clearly, by construction, I is a model of each Plin 7. It is also a model of each NI X C Y
in 7. Suppose that this not the case: there would exist a constant x which is in I(X) and in
I(Y). By construction of I, it would exist a chain of positive inclusions in cI(7 ) between X
and Y and thus X C Y would be in ¢l(7), and therefore X C =X would be in cI(7") too, and
in this case I(X) would be empty, which contradicts that I is not a model of X T Y.

To prove (1), if 7 |= X C =X, in every model of 7, X must be empty, in particular in I. By
construction of I, this means that X = =X € ¢I(7T). Otherwise, consider a PI X C Y such that
T E X LC Y. Since I isamodel of T, I(X) C I(Y). By construction of I, this means that there
exists a chain of positive inclusions in ¢I(7) between X and Y and thus X C Yisin cI(7T).

Consider now a NI X T —Y such that neither X C =Y nor Y C —X belong to cI(7). Let us
define the interpretation | such that

* J(Z) = @ for each class or property Z appearing in the right-hand side of a NI in cI(7")
of the form X C -U or U C =X,

e J(A) = D (where D is the whole domain of interpretation) for the other classes, and
J(P) = D x D for the other properties.

In particular J(X) = D (since X C =X isnotin ¢/(7)), and J(Y) = D (since neither X C =Y
nor Y C =X belong to ¢l(7)). Clearly, | is a model of 7, but it is not a model of X C =Y.
Therefore, 7 = X C =Y. This ends the proof of (1).

For proving (the contraposite of) (2), we adapt the above canonical interpretation I by
initializing with {(p,q),(p,7)} the interpretation of all the properties R such that neither
(functR) nor 3R C —3R belong to cI(T ). And we show that the resulting interpretation I’ is
a model of 7 in which the constraints of functionality of such R is not satisfied. O
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Finally, the last proposition establishes that checking consistency can be reduced to check
whether the data in A satisfy every NI in the closure.

Proposition 4.5 (Consistency checking using NI-closure) Let 7 bea DL-LITE r ora DL-LITEg
Tbox. Let A be an Abox associated to T. (T, A) is unsatisfiable iff there exists a NI or a key constraint
in the closure of T which is violated by some facts of A.

Proof (sketch). For every constant a appearing in the Abox A, we define .A(a) as the set of
facts extracted from A as follows:

e if A(a) € A, then A(a) is added in A(a)
e if P(a,b) € A, then (3P)(a) is added in A(a) and (3P~ )(b) is added in A(D)

We first show that if (7,.A) is unsatisfiable, there exists a constant a4 such that (7,.A(a)) is
unsatisfiable. In fact we show the contrapositive: suppose that for every constant a, (7,.A(a))
is satisfiable: for each 4, there exists an interpretation I, satisfying the inclusions in 7" and all
the facts in A(a). It is easy to show that the interpretation I defined on the union of domains
of interpretations as follows is a model of (7,.4) (which is then satisfiable):

e for every class or property X: I(X) = U, L,(X)
e for every constant a: I(a) = I,(a)

Then, since each .A(a) is a conjunction of facts of the form X(a), if (7,.A) is unsatis-
fiable, there exists a constant a such that 7,X;(a) A ... A X, (a) is unsatisfiable. Therefore,
T,3x(X1(x) A... A X, (x)) is unsatisfiable. This entails: 7 = Vx(—=X;(x) V...V =X, (x)), which
in DL notation corresponds to: 7 |= X; C =X, L... LI = X,,. Because of the form of the inclusion
allowed in DL-LITE, there must exist i such that 7 |= X; C —X;. According to Proposition 4.4,
this entails that the corresponding NI X; C —X; is in the closure of 7 and that A violates it
(since it includes X1 (a) and X;(a)).

Conversely, it is easy to show that if a NI in the closure of 7 is violated by some facts in
the Abox, then (7, .A) is unsatisfiable. If it were not the case, since according Proposition 4.3
T and cI(7T) have the same models, there would be a model in which all the NIs in the closure
of 7 would be satisfied by the facts in A. O

The second step of consistency checking, after the NI-closure is computed, does not require
any further computation on the Tbox 7. This second step simply consists in evaluating against
the Abox A (seen as a relational database) a Boolean query corresponding to each negated
NI in the NI-closure of the Tbox. If one of those Boolean queries is evaluated to true against
A, it means that some data in the Abox A violates the corresponding NI, and therefore the
knowledge base K = (T,.A) is inconsistent.

For example, consider the NI: 3TeachesTo C —~PhDStudent. Its corresponding FOL formula
@ and its negation are:

Vx,y'[TeachesTo(x,y') = ~PhDStudent(x)] ¢
Jx,y [TeachesTo(x,y') A PhDStudent(x)] -

and the corresponding Boolean query is:

Gunsat() : — TeachesTo(x,y"), PhDStudent(x)
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i.e., the direct translation of the negation of the NL
Consider the evaluation of the g5+ query against the Abox A of Figure 1. It evaluates to
true: consider valuation v with v(x) = pierre, v(y') = paul and the facts

PhDStudent(paul) and TeachesTo(paul, pierre).

Thus, the knowledge base K made of the Tbox of Figure 6 and the Abox of Figure 1 is
inconsistent.

The transformation of NIs into Boolean queries that correspond to their negation is
described in Definition 4.6.

Definition 4.6 (Transformation of NIs into Boolean queries) The transformation  of Nls into
Boolean queries corresponding to their negation is defined as follows:

5(B1E-B2) = qGuusat : — Y1(x),72(x) such that
Yi(x) = Ai(x) if Bi = A,
vi(x) = Pi(x,y;) if B; = 3P;
vi(x) = Pi(yi,x) if By = 3P,
5(R1 C _‘RZ) = Qunsat * — P1 (x,y) ’ Pz(X,y) such that
0i(x,y) = Pi(x,y) if R; = Pi
pi(x,y) = Pi(y,x) if R; = P,
5((ﬁ’mCt P)) Qunsat * — P(x,y) ’ P(x,z) Y #2
0((functP™)) = qunsat: — P(x,y), P(z,y), x #z

This second step of consistency checking is summarized in the Consistent Algorithm
(Algorithm 2). In the algorithm, for each NI clause «, the query guusat« is an SQL query
computing the Boolean conjunctive queries é(«). Also, db(.A) denotes the A set in a relational
database.

Algorithm 2: The Consistent algorithm

Consistent(T, A)

Input: aKB K = (T, A)

Output: true if K is satisfiable, false otherwise

@) Gunsat = D (i-€., Gunsat is false)

() foreach « € cIn(T) et Guusat = Gunsat U Gunsat,o (Ab(A))

®)
4) if Guusat = @ return true
5) else return false

It is important to emphasize that this two-step approach for consistency checking does
not require any inference on the data. The only inferences concern the Tbox and consist in
computing the deductive closure of its axioms, from which the NI-closure (denoted cIn(7) in
the Algorithm) is extracted.

Consider the Abox A’ obtained from the inconsistent Abox A in Figure 1 by deleting the
fact PhDStudent (paul). The knowledge base made of the Abox A’ in Figure 8 and the Tbox 7
in Figure 6 is consistent. (See Exercise 6.4.)
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Subject Predicate Object FOL semantics

dupond Leads infoDept Leads(dupond,infoDept)
dupond rdf:type Professor Professor(dupond)

durand ResponsibleOf uelll ResponsibleOf(durand,uel11)
durand Leads csDept Leads(durand,csDept)
paul TeachesTo pierre TeachesTo(paul,pierre)
pierre EnrolledIn infoDept EnrolledIn(pierre, infodept)
pierre rdf:type Undergrad Undergrad(pierre)

pierre RegisteredTo  uelll Registered(pierre, uelll)
uelll OfferedBy infoDept OfferedBy(uelll,infoDept)
uelll rdf:type CSCourse CSCourse(uelll)

jim EnrolledIn csDept EnrolledIn(jim, csDept)
csDept  rdf:type TeachingDept | TeachingDept(csDept)

Figure 8: A’: an Abox consistent w.r.t the Tbox of Figure 6

4.3 Answer set evaluation

In the previous section, the negative constraints played the main role. Once we know the
knowledge base is consistent and move to query answering, the positive constraints take
over.

Answering queries to a DL-LITE knowledge base is done in two steps. The first step is
the query reformulation, which consists in translating the original query ¢ into a set Q of
queries. The second step consists in evaluating the queries in Q over the Abox (again seen
as a relational database). The beauty of the approach is that this will provide the answer set.
Of course, simply evaluating g over the Abox would possibly yield an incomplete answer.
Completeness is achieved by the “reasoning” in the reformulation step. During this step, we
access only the Tbox and not the data.

The query reformulation step is performed by the PerfectRef (Algorithm 3). It consists in
reformulating the initial query by using the PIs in 7 as rewriting rules. The intuition is that
PIs are seen as logical rules that are applied in backward-chaining to query atoms in order to
expand them (in a resolution style). In databases, this is called a chase.

The queries we consider, i.e., the conjunctive queries, consist of several atoms. In general,
because of the existential variables, new variables are introduced in queries. So we could be
lead to generate more and more queries with new variables. It turns out that we will be able
to control this process and generate only a finite number of distinct queries. This is due to the
limitations of the constraints allowed in the Tbox. As outlined in Section 4.4, as soon as we
allow the combination of key constraints with inclusions of properties, we may generate an
infinite number of non redundant queries.

Consider a PI rule « = . Applicability of the rule to an atom of a query is defined by:

e It is applicable to an atom A(x) of a query if A occurs in B.

e It is applicable to an atom P(x1,x;) of a query if

- a = B1is arole inclusion assertion and P or P~ occurs in f3;
- xo =_and Bis 3P;
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- x1=_and Bis dP".

As usual, _ denotes here an unbounded existential variable of a query.
The following definition defines the result gr(g, I) of the goal reduction of the atom g using
the PI I, which is at the core of PerfectRef.

Definition 4.7 (Backward application of a PI to an atom) Let I be an inclusion assertion that is
applicable to the atom g. Then, gr(g,1) is the atom defined as follows:

if §=A(x) and I=A; C A, then gr(g,1) = Ap(x)

if g=A(x) and 1=3PLC A, then g¢r(g,I)=P(x,_)

if g=A(x) and =3P~ C A, then gr(g,I)=P(_x)

if ¢=P(x,_) and I=AC3P, then g¢r(g,I) = A(x)

if ¢=P(x,_) and 1=3P C3P, then gr(g,I)=Di(x,_)
if ¢g=P(x,_) and =3P C3P, then g¢r(g,I)=Pi(_x)
if ¢g=P(x) and I=AC3P, then g¢r(g,I)=A(x

if ¢=P(_x) and [=3P;C 3P, then gr(g,I)=Pi(x,_)
if §=P(_x and =3P C 3P, then g¢r(g,I)=Pi(_x)
if §=P(x1,x2) and either=PiCPorl=P TP~ then gr(gI)=Pi(x1,x2)
if §=P(x1,x2) and eitherI=PiEP orl=P TP then gr(gI)=Pi(x2,x1)

The subtle point of PerfectRef is the need of simplifying the produced reformulations, so
that some PIs that were not applicable to a reformulation become applicable to its simpli-
fications. A simplification amounts to unify two atoms of a reformulation using their most
general unifier and then to switch the possibly new unbounded existential variables to the
anonymous variable denoted _.

Let us illustrate the reformulation step of the following query using the PIs in the Tbox 7
of Figure 6:

g(x) :— TeachesIn(x,y), RegisteredIn(z,y), Student(z).

Figure 9 shows the result returned by PerfectRef (q(x),T ).

We detail here the inference chain leading to some reformulations that are particularly
interesting for getting answers for g from the data in the Abox A’ of Figure 8. This also
illustrates the need of the simplification step. The reformulation:

g4 (x) :— TeachesIn(x,y), RegisteredIn(_,y) .

is obtained by:

e the backward application to the atom Student(z) of q(x) of the PI: JRegisteredIn T
Student, which leads to the reformulation

q'(x) : — TeachesIn(x,vy), RegisteredIn(z,y), Registered(z, _)

in which the anonymous variable _ appearing in the atom Registered(z,_) denotes the
unbounded existential variable produced by the backward application of the PI,
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Initial query

q(x):- TeachesIn(x,y), RegisteredIn(z,y), Student(z)

Reformulations applied PI Reformulated query
q1(x):- ResponsibleOf(x,y), RegisteredIn(z,y), Student(z) ResponsibleOf T TeachesIn | q(x)
q2(x):- TeachesIn(x,y), RegisteredIn(z,y), PhDStudent(z) PhDStudent C Student q(x)
q3(x):- TeachesIn(x,y), RegisteredIn(z,y), TeachesTo(_,z) dTeachesTo™ T Student q(x)
qa(x):- TeachesIn(x,y), RegisteredIn(_,y) dRegisteredIn T Student q(x)
gs(x):- ResponsibleOf(x,y), RegisteredIn(z,y), PhDStudent(z) | PhDStudent T Student qu(x)
gs(x):- ResponsibleOf(x,y), RegisteredIn(z,y), TeachesTo(_,z) | 3TeachesTo™ T Student q1(x)
q7(x):- ResponsibleOf(x,y), RegisteredIn(_,y), JRegisteredIn T Student q1(x)
qs(x):- ResponsibleOf(x,y), RegisteredIn(z,y), PhDStudent(z) | ResponsibleOf T TeachesIn | qa(x)
qo(X):- ResponsibleOf(x,y), RegisteredIn(z,y), TeachesTo(_,z) | ResponsibleOf T TeachesIn | qz(x)
q10(x):- ResponsibleOf(x,y), RegisteredIn(_,y) ResponsibleOf T TeachesIn | qa(x)
q11(x):- TeachesIn(x,y), Course(y) Course T JRegisteredIn qa(x)
q12(x):- TeachesIn(x,_) dTeachesIn™ T Course qu1(x)
q13(x):- ResponsibleOf(x,_) ResponsibleOf T TeachesIn | qi2(x)
q14(X):- Professor(x) Professor © 3TeachesIn q12(x)

Figure 9: A query and its reformulations obtained by PerfectRef applied to the Tbox of Figure 6

¢ followed by a simplification step, consisting in unifying the two redundant atoms in the
body of g': the atom Registered(z,y) is kept instead of the atom Registered(z,_) because y
is an existential variable which is bounded within the body of 4'. But now, the existential
variable z is unbounded within the body of ¢’: it is replaced by the anonymous variable

In turn, g4(x) can be reformulated by the backward application of the PI Course T
JRegisteredIn” to the atom RegisteredIn(_,y), which results in the reformulation g11(x):

gll(x) :— TeachesIn(x,y), Course(y).

Then, the reformulation g1(x) is produced by the backward application of the PI 3
TeachesIn™ T Course, and the simplification by unification of the two atoms followed by the
replacement of the existential variable y, now unbounded, with the anonymous variable _.

gl2 (x) :— TeachesIn(x,_).

Finally, the reformulations ¢13(x) and g14(x) are obtained from the backward application
of the PIs ResponsibleOf T TeachesIn and Professor © JTeachesIn respectively.

gl3 (x) :— ResponsibleOf (x,_) .

gl4d (x) :— Professor (x) .

It is important to notice that the answers durand and dupond are obtained for the initial
query g(x) thanks to those reformulations g13(x) and g14(x): they would not be returned by
the standard evaluation of the query q(x) against the Abox A’ of Figure 8.

@ Serge Abiteboul, loana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 21

In the PerfectRef algorithm (Algorithm 3):

e The notation q[g/gr(g,I)] (Line 7) denotes the replacement of the atom g in the body of
the query g with the result ¢r(g, I) of the backward application of the PI to the atom g,

e The operator reduce(q,g,8’) (Line 10) denotes the simplification of the body of ¢ obtained
by replacing the conjunction of its two atoms ¢ and ¢’ with their most general unifier (if g
and g’ can be unified),

* The operator 7 (Line 10) replaces in the body of a query all the possibly new unbounded
existential variables with the anonymous variable denoted _.

Algorithm 3: The PerfectRef algorithm
PerfectRef(q,T)

Input: a conjunctive query g and a Tbox T
Output: a union of conjunctive queries: PR

(1) PR:={q}

(2) repeat

3 PR':=PR

4) foreach g € PR’

(5) (a) foreach g € g

(6) ifaPII < 7T is applicable to g

(7) PR:=PRU{q(g/gr(g )]}

(8) (b) foreach g1,$2 € g

) if g1 et ¢» sont unifiables

(10) PR := PRU {t(reduce(q,81,2))}

(11) until PR’ = PR

Figure 9 shows the result returned by PerfectRef (q(x),T ), where g(x) is the query of the
previous example, and 7 is the Tbox of Figure 6. The second column makes explicit the PI
used for obtaining the corresponding reformulation. Note that equivalent reformulations can
be produced by different inferences, such as for example the reformulations g4(x) and g7(x).

Although we will not prove it here, the following properties hold:

soundness. All the facts computed using PerfectRef are correct query answers.
completeness. All query answers are obtained.

complexity. Since we touch the data only for the evaluation of FOL queries, the worst-case
complexity is PTIME in the size of the Abox. The number of reformulations is PTIME in
the size of the Tbox. Therefore, the complexity of evaluating a query againsta DL-LITEg
or DL-LITE r knowledge base is PTIME in the size of the knowledge base.

4.4 Impact of combining DL-LITER and DL-LITEr on query answering

In this section, we exhibit an example showing that the interaction of key constraints (the
specificity of DL-LITEr) with inclusion constraints between properties (the specificity of
DL-LITER) may lead to a reformulation of a query into an infinite number of conjunctive
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rewritings, each one likely to bring additional answers. This makes an algorithmic approach
such as the one we used for DL-LITEg and DL-LITEf in isolation incomplete for query
answering when DL-LITER and DL-LITE r are combined together.

Consider a Tbox made of the following inclusion axioms, in which R and P are two
properties and S is a class:

RCP
(functP)
SC R
JRTC 3R

Let us consider the following query:

g(x) :- R(z,x)

The following query expression is a valid reformulation for the query g:
r1(x) - S(x1),P(x1,x)

To see this, we observe that from the fact S(x;) and the PI S C 3R, it can be inferred
that there exists y such that R(xz,y) holds, and thus P(x7,y) holds too (since R C P). From
the functionality constraint on P and the conjunct P(x1,x) in the body of ri, we can now
infer that y = x, and thus that R(x7,x) holds. Therefore, 3zR(z,x) is logically entailed by
Jx1S(x7) A P(x1,x), i.e., r1(x) is contained in the query g(x), and thus is a valid reformulation
of the query g(x).

It turns out that the situation is even more subtle. Surprisingly, this reformulation r; (x) is
not the only one. In fact there exists an infinite number of different reformulations for q(x).
Let k > 2. The following query is a valid reformulation of q(x):

re(x) == S(xp.), P(x, Xk—1), ..., P(xq, %)

To show that r,(x) is logically contained in g(x), we exploit again the axiom of functionality
of P and the inclusion axiom between R and P: from the fact S(x;) and the PI S C 3R, it can
be inferred that there exists y such that R(xy, yx) holds, and thus P(xg, ;) holds too (since
R C P). Since P is functional, we get: yx = x;_1, and thus R(xy, xx_1) holds. Now, based on the
PI 3R~ C IR, there exists y;_; such that R(x;_1,x_1) holds, and with the same reasoning as
before, we get yx_1 = xx_p, and thus R(x;_7,x;_») holds. By induction, we obtain that R(x,x)
holds, i.e., r¢(x) is logically contained in the query g(x).

One can also show that for each k, there exists an Abox such that the reformulation 7}
returns answers that are not returned by the reformulation 7 for k' < k. Thus, there exists an
infinite number of non redundant conjunctive reformulations.

It can be shown that if we combine key constraints and inclusions of properties in a
restricted way, this problem can be avoided. For instance, if key constraints are forbidden on
properties involved in right-hand side of an inclusion axiom, there is a finite number of non
redundant conjunctive reformulations and they can be found by the Per fectRef algorithm.
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5 Further reading

The spreading of RDF data on the Web and the importance of queries for such data is
illustrated by the Billion Triple Track of the Semantic Web Challenge !. The idea is to “do
something” efficiently with one billion of RDEFS triples.

RDFS. Reasoners for RDEFS are available on line and can be downloaded, like for instance
the Jena2 ontology API [Jen], which implements the forward-chaining algorithm we described.
A SPARQL [W3CO08] engine included in the same programmatic Jena environment enables
storing and querying data sets made of (asserted + inferred) triples. In fact, since RDFS
statements are also stored as RDF triplets, SPARQL can also be used to query the schema,
and not only the RDF data. For guaranteeing the completeness of the answers to a schema
query, all the inference rules that we have given Figure ?? ( section describing RDFS) in
Chapter ?? must be taken into account, and not only the subset that we considered in the
forward-chaining algorithm we described.

We mentioned the practical advantage of separating the computation over a Tbox from
that over the Abox. This is useful also from a theoretical point of view. This gives a bound
on the data complexity (the complexity in terms of the Abox only) of consistency checking
and of query answering. We showed that they can be performed using FOL queries and it is
known [Var82, ARV95] that evaluating FOL queries over a relational database is in LOGSPACE
in the size of the database.

DL-lite. DL-LITER has been recently incorporated into the version OWL2 [W3C09] of
OWL as the profile called OWL2 QL. The proof that the PerfectRef Algorithm computes the
whole answer is shown in [CGL*07]. It follows that the complexity of query answering by
reformulation in these fragments of DL-LITE is polynomial in the size of the Tbox, and in
LOGSPACE in the size of the Abox.

A major result in [CGL*07] is that DL-LITEg and DL-LITE r are two maximal fragments
of the DL-Lite family supporting tractable query answering over large amounts of data. It
has been shown in [CGL*07] that consistency checking and instance recognition (which a
particular case of query answering), while being LOGSPACE both for DL-LITEg and DL-LITE £
Tboxes, are PTIME-COMPLETE for the languages that combine the axioms of both (denoted
DL-LITEg r). This complexity result shows it is unlikely that an approach based on query
reformulation would provide a complete query answering algorithm for DL-LITER r.

QuOnto (JACG™05]) is a JAVA tool implementing the DL-Lite family of ontology represen-
tation languages. It permits the declaration of an ontology as a DL-LITE Tbox, the construction
of an associated Abox that can be stored and as a MySQL database. The consistency checking
of the resulting DL-LITE knowledge base, and query answering by reformulation are the core
functionalities of QuOnto, based on the implementation in Java of the algorithms presented
in this chapter.

Datalog®~. Recent research [AGL09b, AGL09a] has extended the Datalog database query
language towards query answering over ontologies. This has resulted in a unifying framework
based on a family of expressive extensions of Datalog, called Datalog™ ™, that captures DL-
LITER and DL-LITE ¢.

Thttp:/ /challenge.semanticweb.org /
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6 Exercises

Exercise 6.1 With the University example, find a new query that has a different answer:
1. on the RDF data vs. the RDF data together with the RDFS ontology.

2. on the RDF data vs. the RDF data together with the DL-LITE ontology.
Exercise 6.2 Prove that the Saturation algorithm runs in 0((M x N)?).
Exercise 6.3 Prove that the rules used for computing the TBox closure are sound.

Exercise 6.4 Consider Abox A in Figure 1 and A’ obtained by deleting the fact PhDStudent (paul),
and the Tbox T in Figure 6. Show that:

1. The knowledge base AU T is inconsistent.

2. The knowledge base A’ U T is consistent.
Exercise 6.5 Give the FOL rule corresponding to the different cases of negative inclusion axioms.
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