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So far, the discussion on distributed systems has been limited to data storage, and to a

few data management primitives (e.g., write(), read(), search(), etc.). For real applications, one
also needs to develop and execute more complex programs that process the available data
sets and effectively exploit the available resources.

The naive approach that consists in getting all the required data at the Client in order to
apply locally some processing, often looses in a distributed setting. First some processing
may not be available locally. Also centralizing all the information then processing it, would
simply miss all the advantages brought by a powerful cluster of hundreds or even thousands
machines. We have to use distribution. One can consider two main scenarios for data
processing in distributed systems.

Distributed processing and workflow. In the first one, an application disposes of large data-
sets and needs to apply to them some processes that are available on remote sites.
When this is the case, the problem is to send the data to the appropriate locations,
and then sequence the remote executions. This is a workflow scenario that is typically
implemented using web services and some high-level coordination language.

Distributed data and MAPREDUCE. In a second scenario, the data sets are already dis-
tributed in a number of servers, and, conversely to the previous scenario, we “push”
programs to these servers. Indeed, due to network bandwidth issues, it is often more
cost-effective to send a small piece of program from the Client to Servers, than to transfer
large data volumes to a single Client. This leads to the MAPREDUCE approach that we
present in this chapter.

This second scenario is illustrated in Figure 1. Ideally, each piece of program running as a
process on a server n should work only on the data stored locally at n, achieving an optimal
reduction of network traffic. More practically, we should try to limit communications by
applying local processing as much as possible. We refer to this as the data locality principle, i.e.,
the distribution strategy must be such that a program component operates, as much as possible, on data
stored on the local machine. In such a setting, the Client plays the role of a coordinator sending
pieces of code to each server, initiating, and possibly coordinating a fully decentralized
computation.
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Figure 1: Distributed computing with distributed data storage

Enabling a sound, efficient and reliable distributed data processing gives rise to the
following complex issues:

Parallelization. Can we split a particular task into tasks executing concurrently on indepen-
dent data sets and cooperating to compute a final result? It is not always clear how to
answer that question and take advantage of distributed resources. The important word
here is independence. If a relevant data set can be partitioned, and each part be processed
independently, the answer is: yes. Also, if, on the other hand, a program can be split in
several tasks that operate independently, the answer is also: yes. If both conditions are
satisfied, this is even better. For complex tasks, the answer may not be that simple. In
other words, it is not always obvious to see which part of a program can take advantage
of parallelization

Failure resilience. When there are a large number of participants involved in a complex task,
it becomes necessary to cope with potential system failures. Trying to address them
with traditional programming environments used in everyday application develop-
ment would be a daunting task. What is called for is a programming model, and an
associated software support, to facilitate the deployment, monitoring and control of
such distributed programs.

In the first part of the chapter, we introduce MAPREDUCE, a programming model for
large-scale parallel computing that addresses these issues. Even if developing applications
with MAPREDUCE greatly reduces the effort of applications programmers, the task remains
very challenging. In the second part, we present the PIGLATIN language that, based on
a rich model and high-level language primitives, further allows simplifying the design of
distributed data processing applications.

At the time of writing, considerable research and development efforts are devoted to
the design of high-level languages that express parallel and distributed data processing.
MAPREDUCE is often nowadays taken as a kind of de facto standard for the robust execution
of large data-oriented tasks on dozens of computer, at least at a low, “physical” level. However,
MAPREDUCE is by no means the universal solution to parallel data processing problems. The
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area is still a moving territory subject to debates and alternative proposals. The last section of
the chapter attempts, as usual, to provide useful references and discussions.

1 MAPREDUCE

Initially designed by the Google labs and used internally by Google, the MAPREDUCE

distributed programming model is now promoted by several other major Web companies
(e.g., Yahoo! and Amazon) and supported by many Open Source implementations (e.g,
HADOOP, COUCHDB, MONGODB, and many others in the “NoSQL” world). It proposes a
programming model strongly influenced by functional programming principles, a task being
modeled as a sequential evaluation of stateless functions over non-mutable data. A function
in a MAPREDUCE process takes as input an argument, outputs a result that only depends
on its argument, and is side-effect free. All there properties are necessary to ensure an easy
parallelization of the tasks.

Let us start by highlighting important features that help understand the scope of this
programming model within the realm of data processing:

Semistructured data. MAPREDUCE is a programming paradigm for distributed processing
of semistructured data (typically, data collected from the web). The programming
model is designed for self-contained “documents” without references to other pieces of
data, or at least, very few of them. The main assumption is that such documents can be
processed independently, and that a large collection of documents can be partitioned at
will over a set of computing machines without having to consider clustering constraints.

Not for joins. Joins (contrary to, say, in a relational engine) are not at the center of the picture.
A parallel join-oriented computing model would attempt, in the first place, to put
on the same server, documents that need to be joined. This is a design choice that is
deliberately ignored by MAPREDUCE. (We will nonetheless see how to process joins
using simple tweaks of the model.)

Not for transactions. MAPREDUCE is inappropriate to transactional operations. In a typical
MAPREDUCE computation, programs are distributed to various servers and a server
computation typically involves a scan its input data sets. This induces an important
latency, so is not adapted to a workload consisting of many small transactions.

So, how come such an approach that does not seem to address important data processing
issues such as joins and transactions, could become rapidly very popular? Well, it turns out to
be very adapted to a wide range of data processing applications consisting in analyzing large
quantities of data, e.g., large collections of Web documents. Also, its attractiveness comes
from its ability to natively support the key features of a distributed system, and in particular
failure management, scalability, and the transparent management of the infrastructure.

1.1 Programming model

Let us begin with the programming model, ignoring for the moment distribution aspects. As
suggested by its name, MAPREDUCE operates in two steps (see Figure 2):
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1. The first step, MAP, takes as input a list of pairs (k,v), where k belongs to a key
space K1 and v to a value space V1. A map() operation, defined by the programmer,
processes independently each pair and produces (for each pair), another list of pairs
(k′,v′) ∈ K2 ×V2, called intermediate pairs in the following. Note that the key space and
value space of the intermediate pairs, K2 and V2, may be different from those of the
input pairs, K1 and V1.

2. Observe that the MAP phase may produce several pairs (k′1,v′1), · · · , (k′1,v′p), · · · , for the
same key value component. You should think that all the values for the same key as
grouped in structures of type (K2, list(V2)), for instance (k′1, 〈v′1, · · · ,v′p, · · · 〉).

3. The second step, REDUCE, phase operates on the grouped instances of intermediate
pairs. Each of these instances is processed by the procedure independently from the
others. The user-defined reduce() function outputs a result, usually a single value. On
Figure 2, the grouped pair (k′1, 〈v′1, · · · ,v′p, · · · · · · 〉) is processed in the REDUCE phase
and yields value v′′.

  ... ,(kn, vn) , ... , (k2,v2), (k1, v1)

Input: a list of (key, value) pairs

 map(k1, v1)

Map operator
(k' 1, v'1)
...
(k'2, v'2)
...
(k'1, v'p)
...
(k'1, v'q)
...

 reduce(k'1, <v'1, v'p, v'q, ...>)

 (k'2, <v'2, ...>)

Reduce operator

(v")

 (k'1, <v'1, v'p, v'q, ...>)

Intermediate
structure

Figure 2: The programming model of MAPREDUCE

Example 1.1 As a concrete example, consider a program CountWords() that counts the number
of word occurrences in a collection of documents. More precisely, for each word w, we want
to count how many times w occurs in the entire collection.

In the MAPREDUCE programming model, we will use a user-defined function mapCW
that takes as input a pair (i,doc), where i is a document id, and doc its content. Given such a
pair, the function produces a list of intermediate pairs (t, c), where t is a term occurring in the
input document and c the number of occurrences of t in the document. The MAP function
takes as input a list of (i,doc) pairs and applies mapCW to each pair in the list.

mapCW(String key, String value):
// key: document name
// value: document contents

// Loop on the terms in value
for each term t in value:
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let result be the number of occurrences of t in value
// Send the result
return (t,result);

Now as a result of the MAP phase, we have for each word w, a list of all the partial counts
produced. Consider now the REDUCE phase. We use a user-defined function reduceCW
that takes as input a pair (t, list(c)), t being a term and list(c) a list of all the partial counts
produced during the MAP phase. The function simply sums the counts.

reduceCW(String key, Iterator values):
// key: a term
// values: a list of counts
i n t result = 0;

// Loop on the values list; accumulate in result
for each v in values:
result += v;

// Send the result
return result;

The REDUCE function applies reduceCW to the pair (t, list(c)) for each t occurring in any
document of the collection. Logically, this is all there is in MAPREDUCE. An essential feature
to keep in mind is that each pair in the input of either the MAP or the REDUCE phase is
processed independently from the other input pairs. This allows splitting an input in several
parts, and assigning each part to a process, without affecting the program semantics. In
other words, MAPREDUCE can naturally be split into independent tasks that are executed in
parallel.

Now, the crux is the programming environment that is used to actually take advantage of
a cluster of machines. This is discussed next.

1.2 The programming environment

The MAPREDUCE environment first executes the MAP function and stores the output of the
MAP phase in an intermediate file. Let us ignore the distribution of this file first. An important
aspect is that intermediate pairs (k′,v′) are clustered (via sorting or hashing) on the key value.
This is illustrated in Figure 2. One can see that all the values corresponding to a key k are
grouped together by the MAPREDUCE environment. No intervention from the programmer
(besides optional parameters to tune or monitor the process) is required.

Programming in MAPREDUCE is just a matter of adapting an algorithm to this peculiar
two-phase processing model. Note that it not possible to adapt any task to such a model,
but that many large data processing tasks naturally fit this pattern (see exercises). The
programmer only has to implement the map() and reduce() functions, and then submits
them to the MAPREDUCE environment that takes care of the replication and execution of
processes in the distributed system. In particular, the programmer does not have to worry
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about any aspect related to distribution. The following code shows a program that creates a
MAPREDUCE job based on the above two functions1.

// Include the declarations of Mapper and Reducer
// which encapsulate mapWC() and reduceWC()
# include "MapWordCount.h"
# include "ReduceWourdCount.h"

// A specification object for \mapreduce/ execution
MapReduceSpecification spec;

// Define input files
MapReduceInput* input = spec.add_input();
input->set_filepattern("documents.xml");
input->set_mapper_class("MapWordCount");

// Specify the output files:
MapReduceOutput* out = spec.output();
out->set_filebase("wc.txt");
out->set_num_tasks(100);
out->set_reducer_class("ReduceWourdCount");

// Now run it
MapReduceResult result;
i f (!MapReduce(spec, &result)) abort();
// Done: ’result’ structure contains info
// about counters, time taken, number of
// machines used, etc.
return 0;

}

The execution of a MAPREDUCE job is illustrated in Figure 3. The context should be now
familiar to the reader. The job is distributed in a cluster of servers, and one of these servers
plays the special role of a Master. The system is designed to cope with a failure of any of its
components, as explained further.

The Client node is, as usual, a library incorporated in the Client application. When the
MapReduce() function is called, it connects to a Master and transmits the map() and reduce()
functions. The execution flow of the Client is then frozen. The Master considers then the
input data set which is assumed to be partitioned over a set of M nodes in the cluster. The
map() function is distributed to these nodes and applies to the local subset of the data set
(recall the data locality principle), called “bag” in what follows. These bags constitute the
units of the distributed computation of the MAP: each MAP task involved in the distributed
computation works on one and only one bag. Note that the input of a MAPREDUCE job can be
a variety of data sources, ranging from a relational database to a file system, with all possible
semistructured representations in between. In the case of a relational system, each node hosts
a DBMS server and a bag consists of one of the blocks in a partition of a relational table. In
the case of a file system, a bag is a set of files stored on the node.

1This piece of C++ code is a slightly simplified version of the full example given in the original Google paper
on MAPREDUCE.
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Figure 3: Distributed execution of a MAPREDUCE job.

Whatever the data source, it must support an iterator-like mechanisms that extracts pieces
of data from the local bag. A piece of data may be a row in a relational DB, or a line from a
file. More generally it is a self-contained object that we call document in the following of the
chapter.

Example 1.2 Turning back to the WordCount() example, suppose the input consists of a
collection of, say, one million 100-terms documents of approximately 1 KB each. Suppose we
use as data source a large-scale file system, say GFS, with bags of 64 MBs. So, each bag consists
of 64,000 documents. Therefore the number M of bags is d1,000,000/64,000e ≈ 16,000 bags.

The number of REDUCE tasks, is supplied by the programmer, as a parameter R, along
with a hash() partitioning function that can be used to hash the intermediate pairs in R bags
for sharding purposes. If, for example, the intermediate keys consist of uniformly distributed
positive integer values, the simple modulo(key, R) partitioning function is an acceptable
candidate. In general, a more sophisticated hash function, robust to skewed distribution, is
necessary.

At runtime, the MAPREDUCE Master assigns to the participating servers, called Mappers,
the MAP task for their local chunks. The mapper generates a local list of (k2,v2) intermediate
pairs that are placed into one of the R local intermediate bags based on the hash value of k2
for some hash function. The intermediary bags are stored on the local disk, and their location
is sent to the Master. At this point, the computation remains purely local, and no data has
been exchanged between the nodes.

Example 1.3 Consider once more the WordCount() example in a GFS environment. Each
chunk contains 64,000 documents, and 100 distinct terms can be extracted from each document.
The (local) MAP phase over one bag produces 6,400,000 pairs (t, c), t being a term and c its
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count. Suppose R = 1,000. Each intermediate bag i,0 ≤ i < 1000, contains approximately
6,400 pairs, consisting of terms t such that hash(t) = i.

At the end of the MAP phase, anyway, the intermediate result is globally split into R
bags. The REDUCE phase then begins. The tasks corresponding to the intermediary bags
are distributed between servers called Reducers. A REDUCE task corresponds to one of the R
bags, i.e., it is specified by one of the values of the hash function. One such task is initiated
by the Master that sends to an individual Reducer the id of the bag (the value of the hash
function), the addresses of the different buckets of the bag, and the reduce() function. The
Reducer processes its task as follows:

1. the Reducer reads the buckets of the bag from all the Mappers and sorts their union by
the intermediate key; note that this now involves data exchanges between nodes;

2. once this has been achieved, the intermediate result is sequentially scanned, and for each
key k2, the reduce() function is evaluated over the bag of values 〈v1,v2, · · · , 〉 associated
to k2.

3. the result is stored either in a buffer, or in a file if its size exceeds the Reducer capacity.

Each Reducer must carry out a sort operation of its input in order to group the intermediate
pairs on their key. The sort can be done in main memory or with the external sort/merge
algorithm detailed in the chapter devoted to Web Search.

Example 1.4 Recall that we assumed R = 1,000. We need 1,000 REDUCE tasks Ri, i ∈ [0,1000[.
Each Ri must process a bag containing all the pairs (t, c) such that hash(t) = i.

Let i = 100, and assume that hash(’call’) = hash(’mine’) = hash(’blog’) = 100. We focus on
three Mappers Mp, Mq and Mr, each storing a bag Gi for hash key i with several occurrences
of ’call’, ’mine’, or ’blog’:

1. Gp
i =(〈 . . . , (’mine’, 1), . . . , (’call’,1), . . . , (’mine’,1), . . . , (’blog’, 1) . . . 〉

2. Gq
i =(〈 . . . , (’call’,1), . . . , (’blog’,1), . . . 〉

3. Gr
i =(〈 . . . , (’blog’, 1), . . . , (’mine’,1), . . . , (’blog’,1), . . . 〉

Ri reads Gp
i , Gq

i and Gr
i from the three Mappers, sorts their unioned content, and groups

the pairs with a common key:

. . . , (’blog’, 〈 1, 1, 1, 1〉 ), . . . , (’call’, 〈 1, 1〉 ), . . . , (’mine’, 〈 1, 1, 1〉 )

Our reduceWC() function is then applied by Ri to each element of this list. The output is
(’blog’, 4), (’call’, 2) and (’mine’, 3).

When all Reducers have completed their task, the Master collects the location of the R
result files, and sends them to the Client node, in a structure that constitutes the result of the
local MapReduce() function. In our example, each term appears in exactly one of the R result
files, together with the count of its occurrences.
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As mentioned before, the ideal situation occurs when R servers are idle and each can
process in parallel a REDUCE task. Because of the two-phases process, a server playing the
role of a Mapper may become a Reducer, and process (in sequence) several REDUCE tasks.
Generally, the model is flexible enough to adapt to the workload of the cluster at any time.
The optimal (and usual) case is a fully parallel and distributed processing. At the opposite, a
MAPREDUCE job can be limited to a single machine.

1.3 MAPREDUCE internals

A MAPREDUCE job should be resilient to failures. A first concern is that a Mapper or a
Reducer may die or become laggard during a task, due to networks or hardware problems.
In a centralized context, a batch job interrupted because of hardware problem can simply be
reinstantiated. In a distributed setting, the specific job handled by a machine is only a minor
part of the overall computing task. Moreover, because the task is distributed on hundreds or
thousands of machines, the chances that a problem occurs somewhere are much larger. For
these reasons, starting the job from the beginning is not a valid option.

The interrupted task must be reassigned to another machine. The Master periodically
checks the availability and reacheability of the “Workers” (Mapper or Reducer) involved in a
task. If the Worker does not answer after a certain period, the action depends on its role:

Reducer. If it is a Reducer, the REDUCE task is restarted by selecting a new server and
assigning the task to it.

Mapper. If it is a Mapper, the problem is more complex, because of the intermediate files.
Even if the Mapper finished computing these intermediary files, a failure prevents this
server to serve these files as input to some reducers. The MAP task has to be re-executed
on another machine, and any REDUCE task that has not finished to read the intermediate
files from this particular failed node must be re-executed as well.

This leads to the second important concern: the central role of the Master. In summary:

1. It assigns MAP and REDUCE tasks to the Mappers and the Reducers, and monitors their
progress;

2. It receives the location of intermediate files produced by the Mappers, and transmits
these locations to the Reducers;

3. It collects the location of the result files and sends them to the Client.

The central role of the Master is a potential architectural weakness. If the Master fails,
the MAPREDUCE task is jeopardized. However, there is only one Master, and many more
workers. The odds for the Master to fail are low. So it may be tolerable for many applications
that when a Master fails, its clients resubmit their jobs to a new master, simply ignoring all
the processing that has already been achieved for that task. Alternatively, one can realize
that the issue is not really the failure of a Master but the loss of all the information that had
been gathered about the computation. Using standard techniques based on replication and
log files, one can provide recovery from Master failure that will avoid redoing tasks already
performed.
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It should be clear to the reader how complex data processing tasks can be performed
using MAPREDUCE. However, the reader may be somewhat afraid by the complexity of
the task facing the application programmer. In a second part of this chapter, we present the
PIGLATIN language. The goal is to use a rich model and high-level language primitives, to
simplify the design of distributed data processing applications.

2 PIG

The MAPREDUCE processing model is low-level. The computation of complex tasks with
MAPREDUCE typically requires combining several jobs. Frequently used operations such as
sort or group must be repeatedly introduced in applications as map/reduce functions, and
integrated with more application specific operations. To design large-scale data processing
applications, it would be definitely useful to dispose of a language that would save the burden
of these low-level tasks while preserving the assets of MAPREDUCE. In some sense, this can
be compared to introducing declarative languages such as SQL in databases, to facilitate
the task of developing applications and thereby improve the productivity of application
programmers.

To illustrate the use of high-level language primitives, we present the PIG environment
and PIG (or PIGLATIN) language. In spite of sometimes clumsy ad hoc features, the language
is in general quite adapted to standard large scale data processing tasks. Another advantage
is that it can be tested with minimal installation overhead. PIG brings two important features
with respect to the MAPREDUCE approach: (i) a richer data model, with nested data structures,
and (ii) expressive data manipulation primitives that can be combined in data flows to obtain
complex operations.

In brief, a PIG program takes as input a “bag” represented in a file. We will detail the bag
data structure further, but it is a roughly speaking a nested relation, i.e., a relation where the
entries may themselves be relations. A PIG program also produces a bag, either stored in a
file or displayed on screen.

We begin with a short illustrative session, and then develop the data and processing
model of PIG. The Putting into Practice chapter devoted to HADOOP gives practical hints and
exercises to experiment with PIG.

2.1 A simple session

Consider the following simple example: given a file with a list of publications in a scientific
journal, determine the average number of papers published each year. We use data coming
from DBLP, a large collection of information on scientific publications, publicly available2 in
XML.

The PIG loader accepts a variety of input formats. We use here the default file format that
it accepts. Each line of the file is interpreted as an entry (here a publication). Within a line, the
attributes are separated by tabs. Suppose the input consists of the following lines:

2005 VLDB J. Model-based approximate querying in sensor networks.
1997 VLDB J. Dictionary-Based Order-Preserving String Compression.
2003 SIGMOD Record Time management for new faculty.

2http://www.sigmod.org/dblp/db/index.html
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2001 VLDB J. E-Services - Guest editorial.
2003 SIGMOD Record Exposing undergraduate students to system internals.
1998 VLDB J. Integrating Reliable Memory in Databases.
1996 VLDB J. Query Processing and Optimization in Oracle Rdb
1996 VLDB J. A Complete Temporal Relational Algebra.
1994 SIGMOD Record Data Modelling in the Large.
2002 SIGMOD Record Data Mining: Concepts and Techniques - Book Review.
...

Each line gives the year a publication was published, the journal it was published in (e.g.,
the VLDB Journal) and its title.

Here is the complete PIG program that computes the average number of publications per
year in SIGMOD RECORD.

-- Load records from the journal-small.txt file (tab separated)
articles = load ’../../data/dblp/journal-small.txt’

as (year: chararray, journal:chararray, title: chararray) ;
sr_articles = f i l t e r articles BY journal==’SIGMOD Record’;
year_groups = group sr_articles by year;
avg_nb = foreach year_groups generate group, COUNT(sr_articles.title);
dump avg_nb;

When run on a sample file, the output may look as follows:

(1977,1)
(1981,7)
(1982,3)
(1983,1)
(1986,1)
...

The program is essentially a sequence of operations, each defining a temporary bag
that can be used as input of the subsequent operations. It can be viewed as a flow of data
transformation, that is linear in its simplest form but can more generally be an acyclic workflow
(i.e., a directed acyclic graph).

We can run a step-by-step evaluation of this program with the grunt command interpreter
to better figure out what is going on.

Load and filter. The load operator produces as temporary result, a bag named articles.
PIG disposes of a few atomic types (int, chararray, bytearray). To “inspect” a bag,
the interpreter proposes two useful commands: describe outputs its type, and illustrate
produces a sample of the relation’s content.

grunt> DESCRIBE articles;
articles: {year: chararray,journal: chararray,title: chararray}

grunt> ILLUSTRATE articles;
---------------------------------------------------------------------------
| articles | year: chararray | journal: chararray | title: chararray |
---------------------------------------------------------------------------

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 13

| | 2003 | SIGMOD Record | Call for Book Reviews.|
---------------------------------------------------------------------------

The file contains a bag of tuples, where the tuple attributes are distinguished by position.
After loading, articles also contains a bag of tuples, but the tuple attributes are now
distinguished by name.

The filter operation simply selects the elements satisfying certain conditions, pretty much
like a relational selection.

Group. In the example, the bags resulting from the load or from the filter do not look
different than standard relations. However, a difference is that they may have two identical
elements. This would happen, in the example, if the file contains two identical lines. Note that
this cannot happen in a relation that is a set of tuples. Bags allow the repetition of elements.
Furthermore, like nested relations, PIG bags can be nested. The result of a group for instance
is a nested bag. In the example, the group operation is used to create a bag with one element
for each distinct year:

grunt> year_groups = GROUP sr_articles BY year;

grunt> describe year_groups;
year_groups: {group: chararray,

sr_articles: {year: chararray,journal: chararray,title:chararray}}

grunt> illustrate year_groups;
group: 1990
sr_articles:
{
(1990, SIGMOD Record, An SQL-Based Query Language For Networks of Relations.),
(1990, SIGMOD Record, New Hope on Data Models and Types.)

}

PIG represents bags, nested or not, with curly braces {}. Observe the year_groups ex-
ample provided by the illustrate command. Note that the grouping attribute is by convention
named group. All the elements with the same year compose a nested bag.

Before detailing PIG, we summarize its main features essentially contrasting it with SQL:

• Bags in PIG allow repeated elements (therefore the term bag) unlike relations that are
sets of elements.

• Bags in PIG allow nesting as in nested relations, but unlike classical relations.

• As we will see further, in the style of semistructured data, bags also allow further
flexibility by not requiring any strict typing, i.e., by allowing heterogeneous collections.

• For processing, PIG is deliberately oriented toward batch transformations (from bags to
bags) possibly in multiple steps. In this sense, it may be viewed as closer to a workflow
engine than to an SQL processor.

Note that these design choices have clear motivations:

• The structure of a bag is flexible enough to capture the wide range of information
typically found in large-scale data processing.
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• The orientation toward read/write sequential data access patterns is, of course, moti-
vated by the distributed query evaluation infrastructure targeted by PIG program, and
(as we shall see) by the MAPREDUCE processing model.

• Because of the distributed processing, data elements should be processable indepen-
dently from each other, to make parallel evaluation possible. So language primitives
such as references or pointers are not offered. As a consequence, the language is not
adapted to problems such as graph problems. (Note that such problems are notoriously
difficult to parallelize.)

The rest of this section delves into a more detailed presentation of PIG’s design and
evaluation.

2.2 The data model

As shown by our simple session, a PIG bag is a bag of PIG tuples, i.e., a collection with possibly
repeated elements. A PIG tuple consist of a sequence of values distinguished by their positions
or a sequence of (attribute name, attribute value) pairs. Each value is either atomic or itself a
bag.

To illustrate subtle aspects of nested representations, we briefly move away from the
running example. Suppose that we obtain a nested bag (as a result of previous computations)
of the form:

a : { b : chararray, c : { c’ : chararray }, d : { d’ : chararray } }

Examples of tuples in this bag may be:

〈a : { 〈b : 1, c : {〈c′ : 2〉, 〈c′ : 3〉},d : {〈d′ : 2〉}〉, 〈b : 2, c : ∅,d : {〈d′ : 2〉, 〈d′ : 3〉}〉 }〉

Note that to represent the same bag in the relational model, we would need identifiers for
tuples in the entire bag, and also for the tuples in the c and d bags. One could then use a
relation over bidb, one over bidcidc and one over biddidd:

bid b bid cid c bid did d
i1 1 i1 j1 2 i1 j2 2
i2 2 i1 j3 3 i2 j4 2

i2 j5 3

Observe that an association between some b, c and d is obtained by sharing an id, and requires
a join to be computed. The input and output of a single PIG operation would correspond to
several first-normal-form relations3. Joins would be necessary to reconstruct the associations.
In very large data sets, join processing is very likely to be a serious bottleneck.

As already mentioned, more flexibility is obtained by allowing heterogeneous tuples to
cohabit in a same bag. More precisely, the number of attributes in a bag (and their types)
may vary. This gives to the programmer much freedom to organize her dataflow by putting
together results coming from different sources if necessary.

3A relation is in first-normal-form, 1NF for short, if each entry in the relation is atomic. Nested relations are also
sometimes called not-first-normal-form relations.
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Returning to the running example, an intermediate structure created by our program
(year_groups) represents tuples with an atomic group value (the year) and a nested
article value containing the set of articles published that year.

Also, PIG bags introduce lots of flexibility by not imposing a strong typing. For instance,
the following is a perfectly valid bag in PIG:

{
(2005, {’SIGMOD Record’, ’VLDB J.’}, {’article1’, article2’} )
(2003, ’SIGMOD Record’, {’article1’, article2’}, {’author1’, ’author2’})

}

This is essentially semistructured data, and can be related to the specificity of applications
targeted by PIG. Input data sets often come from a non-structured source (log files, documents,
email repositories) that does not comply to a rigid data model and needs to be organized
and processed on the fly. Recall also that the application domain is typically that of data
analysis: intermediate results are not meant to be persistent and they are not going to be used
in transactions requiring stable and constrained structures.

PIG has a last data type to facilitate look-ups, namely maps. We mention it briefly. A map
associates to a key, that is required to be a data atom, an arbitrary data value.

To summarize, every piece of data in PIG is one of the following four types:

• An atom, i.e., a simple atomic value.

• A bag of tuples (possibly heterogeneous and possibly with duplicates).

• A PIG tuple, i.e., a sequence of values.

• A PIG map from keys to values.

It should be clear that the model does not allow the definition of constraints commonly
met in relational databases: key (primary key, foreign key), unicity, or any constraint that
needs to be validated at the collection level. Thus, a collection can be partitioned at will, and
each of its items can be manipulated independently from the others.

2.3 The operators

Table 1 gives the list of the main PIG operators operating on bags. The common characteristic
of the unary operations is that they apply on a flow of tuples, that are independently processed
one-at-a-time. The semantics of an operation applied to a tuple never depends on the previous
or subsequent computations. Similarly, for binary operations: elementary operations are
applied to a pair of tuples, one from each bag, independently from the other tuples in the two
bags. This guarantees that the input data sets can be distributed and processed in parallel
without affecting the result.

We illustrate some important features with examples applied to the following tiny data
file webdam-books.txt. Each line contains a publication date, a book title and the name of an
author.

1995 Foundations of Databases Abiteboul
1995 Foundations of Databases Hull
1995 Foundations of Databases Vianu
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Operator Description
foreach Apply one or several expression(s) to each of the input tuples.
filter Filter the input tuples with some criteria.
order Order an input.
distinct Remove duplicates from an input.

cogroup Associate two related groups from distinct inputs.
cross Cross product of two inputs.
join Join of two inputs.
union Union of two inputs (possibly heterogeneous, unlike in SQL).

Table 1: List of PIG operators

2010 Web Data Management Abiteboul
2010 Web Data Management Manolescu
2010 Web Data Management Rigaux
2010 Web Data Management Rousset
2010 Web Data Management Senellart

-- Load records from the webdam-books.txt file (tab separated)
books = load ’../../data/dblp/webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
group_auth = group books by title;
authors = foreach group_auth generate group, books.author;
dump authors;

Figure 4: Example of group and foreach

The first example (Figure 4) shows a combination of group and foreach to obtain a bag
with one tuple for each book, and a nested list of the authors.

The operator foreach applies some expressions to the attributes of each input tuple. PIG

provides a number a predefined expressions (projection/flattening of nested sets, arithmetic
functions, conditional expressions), and allows User Defined Functions (UDF) as well. In the
example, a projection expressed as books.authors is applied to the nested set result of the
group operator. The final authors nested bag is:

(Foundations of Databases,
{(Abiteboul),(Hull),(Vianu)})

(Web Data Management,
{(Abiteboul),(Manolescu),(Rigaux),(Rousset),(Senellart)})

The flatten expression serves to unnest a nested attribute.

-- Take the ’authors’ bag and f l a t t e n the nested set
flattened = foreach authors generate group, f l a t t e n(author);
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Applied to the nested bag computed earlier, flatten yields a relation in 1NF:

(Foundations of Databases,Abiteboul)
(Foundations of Databases,Hull)
(Foundations of Databases,Vianu)
(Web Data Management,Abiteboul)
(Web Data Management,Manolescu)
(Web Data Management,Rigaux)
(Web Data Management,Rousset)
(Web Data Management,Senellart)

The cogroup operator collects related information from different sources and gathers
them as separate nested sets. Suppose for instance that we also have the following file
webdam-publishers.txt:

Fundations of Databases Addison-Wesley USA
Fundations of Databases Vuibert France
Web Data Management Cambridge University Press USA

We can run a PIG program that associates the set of authors and the set of publishers for
each book (Figure 5).

--- Load records from the webdam-publishers.txt file
publishers = load ’../../data/dblp/webdam-publishers.txt’

as (title: chararray, publisher: chararray) ;
cogrouped = cogroup flattened by group, publishers by title;

Figure 5: Illustration of the cogroup operator

The result (limited to Foundations of databases) is the following.

(Foundations of Databases,
{ (Foundations of Databases,Abiteboul),

(Foundations of Databases,Hull),
(Foundations of Databases,Vianu)

},
{(Foundations of Databases,Addison-Wesley),
(Foundations of Databases,Vuibert)

}
)

The result of a cogroup evaluation contains one tuple for each group with three attributes.
The first one (named group) is the identifier of the group, the second and third attributes
being nested bags with, respectively, tuples associated to the identifier in the first input bag,
and tuples associated to the identifier in the second one. Cogrouping is close to joining the
two (or more) inputs on their common identifier, that can be expressed as follows:

-- Take the ’flattened’ bag, join with ’publishers’
joined = join flattened by group, publishers by title;
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The structure of the result is however different than the one obtained with cogroup.

(Foundations of Databases,Abiteboul,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Abiteboul,Fundations of Databases,Vuibert)
(Foundations of Databases,Hull,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Hull,Fundations of Databases,Vuibert)
(Foundations of Databases,Vianu,Fundations of Databases,Addison-Wesley)
(Foundations of Databases,Vianu,Fundations of Databases,Vuibert)

In this example, it makes sense to apply cogroup because the (nested) set of authors and
the (nested) set of publishers are independent, and it may be worth considering them as
separate bags. The join applies a cross product of these sets right away which may lead to
more complicated data processing later.

The difference between cogroup and join is an illustration of the expressiveness brought
by the nested data model. The relational join operator must deliver flat tuples, and inter-
mediate states of the result cannot be kept as first class citizen of the data model, although
this could sometimes be useful from a data processing point of view. As another illustration,
consider the standard SQL group by operator in relational databases. It operates in two,
non-breakable steps that correspond to a PIG group, yielding a nested set, followed by a
foreach, applying an aggregation function. The following example is a PIG program that
computes a 1NF relation with the number of authors for each book.

-- Load records from the webdam-books.txt file (tab separated)
books = load ’webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
group_auth = group books by title;
authors = foreach group_auth generate group, COUNT(books.author);
dump authors;

The possible downside of this modeling flexibility is that the size of a tuple is unbounded:
it can contain arbitrarily large nested bags. This may limit the parallel execution (the extreme
situation is a bag with only one tuple and very large nested bags), and force some operators
to flush their input or output tuple to the disk if the main memory is exhausted.

2.4 Using MAPREDUCE to optimize PIG programs

The starting point of this optimization is that a combination of group and foreach operators
of PIG can be almost directly translated into a program using MAPREDUCE. In that sense, a
MAPREDUCE job may be viewed as a group-by operator over large scale data with build-in
parallelism, fault tolerance and load balancing features. The MAP phase produces grouping
keys for each tuple. The shuffle phase of MAPREDUCE puts these keys together in intermediate
pairs (akin to the nested bags, result of the PIG group). Finally, the REDUCE phase provides
an aggregation mechanism to cluster intermediate pairs. This observation is at the core of
using a MAPREDUCE environment as a support for the execution of PIG programs.

Basically, each (co)group operator in the PIG data flow yields a MAPREDUCE tasks that
incorporates the evaluation of PIG operators surrounding the (co)group. As previously
explained, a join, can be obtained using a cogroup followed by a flattening of the inner nested
bags. So, joins can also benefit from the MAPREDUCE environment.
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To conclude, we illustrate such a MAPREDUCE evaluation with two of the examples
previously discussed.

Example: group and foreach. In a first example, we use the program given in Figure 4,
page 16. Following the classical query evaluation mechanism, the compilation transforms this
program through several abstraction levels. Three levels are here represented. The “logical”
level directly represents the dataflow process. At this point, some limited reorganization may
take place. For instance, a filter operator should be “pushed” as near as possible to the load
to decrease the amount of data that needs to be processed.

Figure 6: Compilation of a PIG program in MAPREDUCE

The second level represents the sequence of physical operations that need to be executed
in a parallel query processing environment. PIG targets several parallel execution models,
and this intermediate level provides the means to describe and manipulate a physical plan
independently from a specific infrastructure.

The blocks in the physical plan introduce some new operators, namely REARRANGE

(LOCAL and GLOBAL), and PACKAGE. REARRANGE denotes a physical operator that groups
tuples with the same key, via either hashing or sorting. The distinction between LOCAL and
GLOBAL stems from the parallelization context. The LOCAL operator takes place on a single
node, whereas the GLOBAL operator needs to collect and arrange tuples initially affected to
many nodes. The algorithms that implement these variants may therefore be quite different.

PACKAGE relates to the PIG data model. Once a set of tuples sharing the same key are put
together by a REARRANGE, a nested bag can be created and associated with the key value to
form the typical nested structure produced by the (co)group operation. Expressions in the
foreach operator can then be applied.

The lower level in Figure 4 shows the MAPREDUCE execution of this physical plan. There
is only one MAPREDUCE job, and the physical execution proceeds as follows:

1. MAP generates the key of the input tuples (in general, this operation may involve the
application of one or several functions), and groups the tuples associated to given key
in intermediate pairs;

2. the GLOBAL REARRANGE operator is natively supported by the MAPREDUCE frame-
work: recall that intermediate pairs that hash to a same value are assigned to a single
Reducer, that performs a merge to “arrange” the tuples with a common key together;

3. the PACKAGE physical operator is implemented as part of the reduce() function, that
takes care of applying any expression required by the foreach loop.
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Example: join and group. Our second example involves a join followed by a group. It
returns the number of publishers of Victor Vianu. Note that one might want to remove
duplicates from the answer; this is left as an exercise.

-- Load records from the webdam-books.txt file (tab separated)
books = load ’../../data/dblp/webdam-books.txt’

as (year: int, title: chararray, author: chararray) ;
-- Keep only books from Victor Vianu
vianu = f i l t e r books by author == ’Vianu’;
--- Load records from the webdam-publishers.txt file
publishers = load ’../../data/dblp/webdam-publishers.txt’

as (title: chararray, publisher: chararray) ;
-- Join on the book title
joined = join vianu by title, publishers by title;
-- Now, group on the author name
grouped = group joined by vianu::author;
-- Finally count the publishers (nb: we should remove duplicates!)
count = foreach grouped generate group, COUNT(joined.publisher);

Figure 7: A complex PIG program with join and group

Figure 8 shows the execution of this program using two MAPREDUCE jobs. The first one
carries out the join. Both inputs (books and publishers) are loaded, filtered, sorted on the title,
tagged with their provenance, and stored in intermediate pairs (MAP phase). Specifically, the
map() function receives rows:

1. either from the books input with year, title, and author.

2. or from the publishers input with title and publisher. again recording provenance.

Each row records its provenance, either books or publishers.
These intermediate pairs are sorted during the shuffle phase, and submitted to the reduce()

function. For each key (title), this function must take the set of authors (known by their
provenance), the set of publishers (idem), and compute their cross product that constitutes a
part of the join result. This output can then be transmitted to the next MAPREDUCE job in
charge of executing the group.

Figure 8: A multi-jobs MAPREDUCE execution
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Clearly, this complex query would require an important amount of work with MAPRE-
DUCE programming, whereas it is here fulfilled by a few PIG instructions. The advantage is
more related to the software engineering process than to the efficiency of the result. the Due
to the rather straighforward strategy applied by the PIG evaluator, early performance reports
show that PIG execution is, not surprisingly, slightly worse than the equivalent MAPREDUCE

direct implementation. This is notably due to the overhead introduced by the translation
mechanism. The next section mentions alternative approaches that pursue similar goal that
PIG.

3 Further reading

Distributed computing now has a long history, with Web services as a recent popular outcome.
We refer the reader to the general references [TvS01] for distributed systems and [Ble96] for
parallel algorithms. At the center of distributed computing we find the possibility of activating
some computation on a distant machine. This leads to remote procedure call, an abstraction
that allows interacting with a remote program while ignoring its details. Some data is sent
as argument of the call. The remote program is activated with this data as input. Its result
is shipped back to the caller. Note that this involves transmission of data in both directions,
from the caller to the callee (parameters of the call) and back (results).

To support such communications, one needs to provide end-points for these communica-
tions, e.g. sockets. A communication happens between a local socket and a remote one. To
understand each other, they need to use some common protocol for the messages, e.g., TCP,
UDP, raw IP, or, in the Web Services realm, SOAP.

Based on such communications, middleware systems have been developed since the
1960’s, the so-called message-oriented middleware. They are based on asynchronous calls,
i.e., the call is made and the caller is not blocked waiting for an answers. The messages are
managed in queues. Examples of such systems are IBM Websphere and Microsoft MQ serie.

The object-oriented paradigm proved to be very successful for distributed computing.
Indeed, it is very natural to see an external resource as an object, i.e., a black box with a set of
methods as interface. This lead to very popular systems, object brokers.

From a data management perspective, one may want to support transactions between the
distributed machines. This leads to transaction processing monitors, , e.g., IBM CICS or BEA
Tuxedo. Such systems provide support for persistence, distributed transactions, logging and
error recovery.

By merging, object brokers and TP monitors, one obtains the object monitors. These systems
became popular in the 1990’s, notably with Corba from the Object Management Group and
DCOM by Microsoft

Closer to us and targeting the Web, we find XML-RPC (in the late 1990’s) that, as indicated
by its name, is based on remote procedure calls using XML as underlying data format. The
calls are performed using HTTP-POST.

Finally, we briefly discuss Corba that had a very important influence in the evolution
of distributed computing. Corba stands for Common Object Request Broker Architecture. As
previously mentioned, it is based on RPC and the object-oriented paradigm. The development
of Corba-based components is somewhat independent of the programming language, e.g.,
C++ or Java may be used. An implementation of Corba consists of the deployment of a
system (called an ORB) that provides the interoperability between applications distributed
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on different machines. The ORB provides a large set of services, e.g., persistence, transaction,
messaging, naming, security, etc. Corba and DCOM were the main supports for distribution
before Web services.

There is a long history of research on so-called nested relations, e.g., [AB86], or complex
objects, e.g., [AB95], that somehow paved the way for semistructured data models. An
algebra for bags, vs. sets of tuples, is considered in [GM99].

Parallel query processing is an old research topic. Issues related to scalable query execution
in shared-nothing architecture have been investigated since the emergence of relational
systems. See [DGG+96, FKT86] for important milestones, and [DG92] for a position paper.
The proposed techniques are now available in several commercial systems, including Teradata
(http://www.teradata.com), a leading datawarehouse software company. The systems based on
Google technology, and in particular MAPREDUCE have been criticized for ignoring previous
advances in database technology [DS87]. A detailed discussion of the MAPREDUCE limits
and contributions, viewed in a database perspective, is reported in [SAD+10]. MAPREDUCE

is suitable for text processing, and more generally for data sets where relational schema does
not fit. It is also a convenient tool for cost-effective environments (e.g., commodity hardware)
that allow an inexpensive horizontal scalability but lead to unreliable infrastructures where
the resilience brought by MAPREDUCE is a valuable asset.

In practical terms, a major restriction of MAPREDUCE is the high latency that stems from
both the initial dissemination of a program in the cluster prior to any execution, and the need
to fully achieve the MAP phase before running the REDUCE one. This is justified for batch
analysis of large data sets but make it unsuitable for transactional applications [PPR+09]. Its
attractiveness on the other hand lies in its scalability and fault-tolerance, two features where
parallel databases arguably show their limits, at least for web-scale data sets.

Recently, research attempts to benefit from the best of the two worlds have been under-
taken. HADOOPDB [ABPA+09] is an “hybrid” distributed data management system that
uses a standard relational DBMS (e.g., PostgreSQL) at each node, and uses MAPREDUCE

as a communication layer between nodes. The relational system instance acts as a source to
MAPREDUCE jobs, with the advantage of being able to run complex SQL query plans that
exploit database index, saving the otherwise mandatory full scan of the data sets. Other
approaches aims at providing high-level data processing languages which can then be exe-
cuted in a MAPREDUCE-like environment: SCOPE [CJL+08], PIG [ORS+08, GNC+09], JAQL
http://code.google.com/p/jaql/, and Hive [TSJ+09] are examples of some recent or
ongoing efforts.

4 Exercises

Exercise 4.1 (Log processing with MAPREDUCE) A big company stores all incoming emails in
log files. How can you count the frequency of each email address found in these logs with MAPRE-
DUCE?

Exercise 4.2 (Optimizing the MAP and REDUCE phases) The REDUCE phase needs to down-
load intermediate pairs produced by the mappers. How can we reduce the cost of this exchange? The
following gives some hints:

1. Consider again the WordCount example; propose a post-processing step, running on the mapper,
that reduces the size of the files sent to the reducers.
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2. Now, consider a MAPREDUCE task aiming at retrieving the inverse document frequency; does
the foregoing optimization still help?

3. Finally, one could sort the intermediate pairs before sending them to the reducer; discuss the
pros and cons of this approach.

Exercise 4.3 (SP relational queries) A Selection-Projection-Aggregation relational query corre-
sponds to the simple SQL syntax:

SELECT <list-attributes>
FROM <someTable>
WHERE <list-conditions>
GROUP BY <attribute>

Propose a MAPREDUCE job (using pseudo-code for map() and reduce()) for the following queries:

1.
SELECT title, year
FROM paper
WHERE author=’Jeff Ullman’
AND published=’ACM’

2.
SELECT title, count(author)
FROM paper
WHERE year=2011
GROUP BY title

When is the reduce function really useful? How would you express these queries with PIG.

Exercise 4.4 (Sorting with MAPREDUCE) How can you obtain a parallel sort with MAPREDUCE?
For instance, what would be the MAPREDUCE parallel execution of the following SQL query:

SELECT title
FROM paper
ORDER BY year

Hint: partition the input in R intervals with map(), then sort each local interval with reduce().

Exercise 4.5 (Joins with MAPREDUCE) And, finally, how can you express joins? For instance:

SELECT title, journalName
FROM paper p, journal j
WHERE p.idJournal = j.id

Hint: this requires to somewhat distord the MAPREDUCE principles. The reduce() function should
receive pairs (id,< p1, · · · , pn >) where id is a journal id and each pi is a row from paper. By
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unnesting the structure, one gets the expected result. Note that the reduce phase does not reduce at all
the output in that case! Such a tweak may not be accepted by all MAPREDUCE environments.

Exercise 4.6 (Distributed Monte Carlo) We want to create a distributed program that approxi-
mates π. The method is based on the inscription of a circle in a square (Fig. 9).

Figure 9: A method to computing π

Note that the area of the square is As = (2r)2 = 4r2; the area of the circle is Ac = π× r2. Therefore

π = 4× Ac

As

1. Propose a parallel program that computes an approximation of π; how can you express such a
program in MAPREDUCE?

2. The previous computation of π is actually a simple instance of the classical Monte Carlo method.
Assume now a very large data set of geographic regions. Each region is identified by a key, we
know its contour and can test whether a point belongs to a region thanks to a point-in-polygon
(PinP()) function. We can also obtain the minimal bounding box of aa region thanks to the
mbb() function. We want to calculate their areas. Propose a distributed implementation based
on MAPREDUCE.

Exercise 4.7 (Distributed inverted file construction) Describe a MAPREDUCE job that constructs
an inverted file for a very large data set of Web documents. Give the map() and reduce() functions in
pseudo-code, and explain the data flow in a distributed system.

Exercise 4.8 (Distributed PageRank) Describe a MAPREDUCE job that computes one iteration of
the PageRank algorithm over a collection of documents. Some hints:

1. the map() function takes as input the doc id, the list of URLs that refer to the document, and the
current rank;

2. the reduce() takes as input a URL and a list of ranks; you can assume that the damping factor is
a constant in this function.

Exercise 4.9 (PIG) Refer to the Putting into Practice chapter on HADOOP (page ??) for a list of PIG

queries.
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