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1 Introduction

The goal of data integration is to provide a uniform access to a set of autonomous and possibly
heterogeneous data sources in a particular application domain. This is typically what we
need when, for instance, querying the deep web that is composed of a plethora of databases
accessible through Web forms. We would like to be able with a single query to find relevant
data no matter which database provides it.

A first issue for data integration (that will be ignored here) is social: The owners of some
data set may be unwilling to fully share it and be reluctant to participate in a data integration
system. Also, from a technical viewpoint, the difficulty comes from the lack of interoperability
between the data sources, that may use a variety of formats, specific query processing
capabilities, different protocols. However, the real bottleneck for data integration is logical.
It comes from the so-called semantic heterogeneity between the data sources. They typically
organize data using different schemas even in the same application domain. For instance, each
university or educational institution may choose to model students and teaching programs in
its own way. A French university may use the social security number to identify students
and the attributes NOM, PRENOM, whereas the Erasmus database about European students
may use a European student number and the attributes FIRSTNAME, LASTNAME and HOME

UNIVERSITY.
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Figure 1: Virtual versus Materialized data integration

In this chapter, we study data integration in the mediator approach. In this approach,
data remain exclusively in data sources and are obtained when the system is queried. One
sometimes use the term virtual data integration. This is in contrast to a warehousing approach
where the data is extracted from the data sources ahead of query time, transformed, and
loaded in the warehouse. At query time, the warehouse is accessed but not the data sources.
Warehouses approaches are typically preferred for very complex queries, e.g., for data mining.
On the other hand, to have access to “fresh” information, a mediator approach is preferred
since it avoids having to propagate in real time, data source updates to the warehouse. Figure
1 illustrates these two approaches of data integration.

In the mediator approach, one starts by designing a global schema (also called mediated
schema) that serves as a unique entry point on which global queries are posed by users. A
main issue is then to specify the relationships, namely semantic mappings, between the schemas
of the data sources and the global schema. Based on these mappings, one can answer queries
over the global schema using queries over the data sources. Typically, query answering in the
mediator approach is performed as follows. First, independently of the data in the sources,
the user’s query posed over the global schema is transformed into local queries that refer to the
schemas of the data sources. A global query combines the data provided by sources. Queries
are optimized and transformed into query plans. The local query plans are executed and their
results combined by the global query plan.

In the following, for presentation purposes, we consider that the global schema and the
schemas of the data sources to integrate are all relational. In practice, each non-relational data
source (e.g., XML or HTML) is abstracted as a relational database with the help of a wrapper.
Wrappers are small programs that translate local relational queries into appropriate requests
understood by specific data sources, and transform their results into relations. The role of
wrappers is to allow the mediator to see each data source as relational, no matter which actual
format it uses.
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Let us consider in more detail the specification of semantic mappings between the data
sources and the global schema. Let S1, ..., Sn be the local schemas of n pre-existing data
sources. To simplify the presentation, let us assume that each local schema Si is made of a
single relation that we denote also Si. The relations S1, ..., Sn are called the local relations.
Suppose the global schema G consists of the global relations G1, ..., Gm. The goal is to specify
semantic relations between the local relations Si and the global relations Gj. The Gj are
logically (intentionally) defined by the Si.

An example of simple relationship (not very interesting) is based on equality, e.g., G1 = S1.
One can find more complicated relationships, e.g., G2 = S1 ∪ S2 or G3 = S1 ./ S3. In these
last two examples, a global relation is defined as a query over the local relations. In other
words, the global relation is a view of the local relations. Indeed, one typically prefers more
flexible constraints such as G3 ⊇ S1 ./ S3. Using containment instead of equality leaves open
the possibility for other sources of providing data about G3, e.g., G3 ⊇ σA=”yes”(S4). Because
global relations are constrained by views of the local relations, one uses the term global-as-view
for such specifications.

In a somewhat dual manner, one can use local-as-view constraints such as: S4 ⊆ G1 ./ G3.
This leaves even more flexibility since the contribution of each data source can be specified
(e.g., by its owner) independently of the other sources of the system. This kind of autonomy
is typically well-adapted to a Web setting.

More generally, to express semantic mappings between {S1, ...,Sn} and {G1, ..., Gm}, one
can use inclusion statements, i.e., logical constraints, of the form v(S1, ...,Sn) ⊆ v′(G1, ..., Gm),
where v and v′ are query expressions called views. All the constraints we consider in this
chapter will be of this general form. Now, given an instance I of {S1, ...,Sn} (i.e., an instance
of the data sources), we don’t know the instance J of the global schema. But we know that:

v(I(S1), ..., I(Sn)) ⊆ v′(J(G1), ..., J(Gm))

So, the story of mediator systems is essentially a story of logical constraints and incomplete
information. In this general setting, given I, an answer to a global query q is a fact q(a) that is
true in any instance J that together with I satisfies the mapping constraints, i.e., a fact we can
be sure of as a logical consequence of both the data stored in I and of the logical constraints
expressed by the mappings. Not surprisingly, query answering is thus a complex reasoning
problem that in general may be undecidable. We focus on two particular decidable cases,
for which rewriting algorithms have been designed and implemented. They are based on
semantic mappings that capture typical constraints found in many applications:

Global-As-View (GAV for short). The semantic mappings are of the form

Vi(S1, ...,Sn) ⊆ Gi

also equivalently denoted
Gi ⊇ Vi(S1, ...,Sn)

where each Vi is a view over the local schemas, i.e., a query built on local relations.

Local-As-View (LAV for short). The semantic mappings are of the form

Si ⊆ Vi(G1, ..., Gm)

where each Vi is a view over the global schema, i.e., a query built on global relations.
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In our development, we will consider conjunctive queries. Using negation in queries
greatly complicates the issues. In the next section, we recall some standard material on
containment of conjunctive queries, i.e., of the queries at the heart of our formal development.
In Sections 3 and 4, we study GAV and LAV mediators, respectively. For each of these
languages, we describe appropriate query rewriting algorithms. In Section 5, we show the
impact on query rewriting of adding DL-LITE constraints in the global schema. Finally, in
Section 6, we lay the basis of a peer-to-peer approach for data integration. In contrast with the
mediator approach which offers a unique entry point to data, peer-to-peer data management
systems (PDMS for short) are decentralized data integration systems.

2 Containment of conjunctive queries

In this section, we recall some basic notions on comparing conjunctive queries that we will
use in the following.

We recall that a conjunctive query is an expression of the form:

q(x1, ...xn) :- A1(~u1), ..., Ak(~uk)

where each Ai is an relation, ~u1, ..., ~uk are vectors of constants and variables. Furthermore,
we require that each xi occurs in some ~ui. q(x1, ...xn) is called the head and A1(~u1), ..., Ak(~uk)
the body of the query. The xi variables are called distinguished. The other variables are called
existential.

Given an instance I of the relations appearing in the body of the query, an answer is a
tuple 〈ν(x1), ...,ν(xn)〉 for some valuation ν of the variables in the query, such that for each i,
Ai(ν(~ui)) holds in I. We denote q(I) the set of answers.

We sometimes denote this query q(x1, ...xn) when its body is understood. Observe that
the interpretation of such a conjunctive query in logical terms is:

{x1, ..., xn | ∃y1, ...,∃ym(A1(~u1) ∧ ...∧ Ak(~uk))}

where y1, ...,ym are the variables not occurring in the head.
The data integration techniques rely on conjunctive query containment. This problem has

been extensively studied because it is at the core of query optimization. We use known
techniques that we recall next.

A query q1 is contained in q2, denoted q1 ⊆ q2, if for each I, q1(I) ⊆ q2(I). It is known that
the containment between a conjunctive query q1 and a conjunctive query q2 can be tested by
finding a “homomorphism” from q2 to q1.

Definition 2.1 Let q1(x1, ..., xn) and q2(y1, ...,yn) be two conjunctive queries. A (conjunctive
query) homomorphism from q2 to q1 is a mapping ψ from the variables of q2 to the variables of q1
such that:

1. For each i, ψ(yi) = xi; and

2. For each atom R(~ui) in the body of q2, R(ψ(~ui)) is in the body of q1.

Example 2.2 Consider the following queries:

• q1(x1, x′1) : −A1(x1, x2, x3), A2(x′1, x2, x3)
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• q2(y1,y′1) : −A1(y1,y2,y3), A2(y′1,y2,y′3)

Consider a mapping ψ such that ψ(yi) = xi for each i, ψ(y′1) = x′1 and ψ(y′3) = x3. Then the required
conditions hold, and it follows that q1 ⊆ q2. Intuitively, q2 joins A1 and A2 on the second attribute,
whereas q1 also joins on the third one. The additional condition induces the containment.

The following proposition states that the existence of a homomorphism is a necessary and
sufficient condition for query containment.

Proposition 2.3 (Homomorphism theorem) Let q1 and q2 be two conjunctive queries. Then q1 is
contained in q2 if and only if there exists a homomorphism from q2 to q1.

This provides a simple algorithm for testing conjunctive query containment. In the general
case, deciding whether a conjunctive query is contained in another one is NP-complete in the
size of the two queries. In fact, in many practical cases, there are polynomial-time algorithms
for query containment.

Algorithm 1 checks whether a query q1 is contained in a query q2.

Algorithm 1: The Query containment algorithm
QC(q1,q2)
Input: Two conjunctive queries:

q1(~x) :- g1(~x1), . . . , gn(~xn)
q2(~y) :- h1(~y1), . . . , hm( ~ym)

Output: Yes if q1 ⊆ q2; no otherwise
(1) freeze q1: construct a canonical instance Dcan = {gi(ν(~xi)) | 1≤ i ≤ n}
(2) for some valuation ν mapping each variable in q1
(3) to a distinct constant
(4) if ν(~x) ∈ q2(Dcan) return yes
(5) else return no.

Example 2.4 Consider the queries of Example 2.2. The canonical instance Dcan is A1(a,b, c), A2(a′,b, c).
It is easily verified that q2(Dcan) = (a, a′), which is ν(x, x′).

3 Global-as-view mediation

The main advantage of GAV is its conceptual and algorithmic simplicity. The global schema
is simply defined using views over the data sources and specifies how to obtain tuples of the
global relation Gi from tuples in the sources.

Definition 3.1 (GAV mapping) A GAV mapping is an expression of the form: R(x1, ..., xn) ⊇
q(x1, ..., xn), where q(x1, ..., xn) :- A1(~u1), ..., Ak(~uk) is a conjunctive query of the same arity as R.
The semantics of this mapping is:

∀x1, ..., xn(∃y1, ...,ym(A1(~u1), ..., Ak(~uk)⇒ R(~u)))

where y1, ...,ym are of variables occurring in the body of the rule and not its head.
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We write alternatively this GAV mapping as:

R(x1, ..., xn) ⊇ A1(~u1), ..., Ak(~uk)
R(x1, ..., xn) ⊇ q(x1, ..., xn)
R ⊇ q

by omitting information that is either not needed or that is clear from the context. When we
want to stress which are the existential variables, we write it R(~x) ⊇ q(~x,~y) where ~y is the
vector of existential variables.

Example 3.2 Consider the following four data sources:

• The source relation S1 is a catalog of teaching programs offered in different French universities
with master programs.

S1.Catalogue(nomUniv, programme).

• The source relation S2 provides the names of European students enrolled in courses at some
university within the Erasmus exchange program:

S2.Erasmus(student, course, univ).

• The source relation S3 provides the names of foreign students enrolled in programs of some
French university:

S3.CampusFr(student, program, university).

• The source relation S4 provides the course contents of international master programs:

S4.Mundus(program,course)

Now, suppose we define a global schema with the following unary and binary relations:

MasterStudent(studentName), University(uniName),
MasterProgram(title), MasterCourse(code),
EnrolledIn(studentName,title), RegisteredTo(studentName, uniName).

These relations are defined in terms of the local relations by the following GAV mappings:

MasterStudent(N) ⊇ S2.Erasmus(N,C,U), S4.Mundus(P,C)
MasterStudent(N) ⊇ S3.CampusFr(N,P,U), S4.Mundus(P,C)
University(U) ⊇ S1.Catalogue(U,P)
University(U) ⊇ S2.Erasmus(N,C,U)
University(U) ⊇ S3.CampusFr(N,P,U)
MasterProgram(T) ⊇ S4.Mundus(T,C)
MasterCourse(C) ⊇ S4.Mundus(T,C)
EnrolledIn(N,T) ⊇ S2.Erasmus(N,C,U), S4.Mundus(T,C)
EnrolledIn(N,T) ⊇ S3.CampusFr(N,T,U), S4.Mundus(T,C)
RegisteredTo(N,U) ⊇ S3.CampusFr(N,T,U)
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Note that in a warehousing approach, one would simply evaluate all the queries that define
the global view, and populate the warehouse using standard relational query evaluation. In
a mediator approach, we try to only derive data that is relevant to a specific query posed
on the global view by a user. We show how to rewrite a global query into queries over the
local relations and combine their results. This is achieved by a technical trick that consists in
unfolding the atoms of the global query.

Observe the first two mappings. They specify (using joins) how to obtain tuples of
the unary relation MasterStudent. Now consider the following global query asking for
universities with registered master students:

q(x) :- RegisteredTo(s,x), MasterStudent(s)

The rewriting of this query into source queries is obtained by unfolding, i.e., by replacing
each atom which can be matched with the head of some view, by the body of the correspond-
ing view. (For readers familiar with logic programming, this is some very simple form of
resolution.)

In the example, there is a single mapping whose head can be matched with RegisteredTo(s,x),
and two mappings that match MasterStudent(s). Thus, we obtain the following two unfold-
ings:

q1(x) :- S3.CampusFr(s,v1,x), S2.Erasmus(s,v2,v3), S4.Mundus(v4,v2)
q2(x) :- S3.CampusFr(s,v5,x), S3.CampusFr(s,v6,v7), S4.Mundus(v6,v8)

Observe that q2 can be simplified. Replacing the conjunction of its first two atoms by
the single atom S3.CampusFr(s,v6,x) leads to an equivalent query. We thus obtain the
following two GAV rewritings of the initial query:

r1(x) :- S3.CampusFr(s,v1,x), S2.Erasmus(s,v2,v3), S4.Mundus(v4,v2)
r2(x) :- S3.CampusFr(s,v6,x), S4.Mundus(v6,v8)

The result is obtained by computing r1 ∪ r2. Now, observe that each r` is a conjunctive
query. It can be optimized using standard query optimization to obtain an optimized physical
query plan. Of course, the choice of the particular physical query plan that is selected depends
on the statistics that are available and the capabilities of the sources. For instance, a plan may
consist in querying S3 and then for each value a of v6 (i.e., a particular university program),
asking the query q(X) :- S4.Mundus(a,X) to S4.

We now formalize the simple and intuitive notion of query unfolding.

Definition 3.3 (Query unfolding) Let q(~x) :- G1(~z1), . . . , Gn(~zn) be a query and for each i, Gi(~xi)
⊇ qi(~xi,~yi) be a GAV mapping. An unfolding of q is the query u obtained from q by replacing,
for each i, each conjunct Gi(~zi) by qi(ψi(~xi,~yi)) where ψi is a function that maps ~xi to ~zi, and the
existential variables ~yi to new fresh variables.

The renaming of the existential variables into fresh ones is necessary to avoid the intro-
duction of unnecessary constraints in the unfolding. Indeed, consider an existential variable
y occurring in two distinct atoms, say Gi and Gj. Then, the two atoms should be understood
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as ∃...y...Gi(~zi) and ∃...y...Gj(~zj). The scopes of y in both are disjoint and nothing requires that
the two occurrences of y take the same value. Hence the renaming using fresh variables.

Example 3.4 Suppose we have the two mappings:

F(x,y) ⊇ S(x,z),S(y,z) G(x) ⊇ S(x,y)

and the query q(x) :- F(x,y),G(y). Then we get the following unfolding:

q(x) :- S(x,v1),S(y,v1),S(y,v2)

The variable v1 corresponds to the renaming of the existential variable z in the view defining F, whereas
v2 comes from the renaming of the existential variable y in the view defining G.

We next establish that each unfolding of a query computes a part of the desired results,
and that their union computes the whole set of answers. To do so, we use two propositions.
The first one ignores unfolding and focuses on the “materialization” of the global relations.

Proposition 3.5 Let S1, ...,Sn be a set of source relations; G1, ..., Gm a global schema defined by a set
G of GAV mappings over S1, ...,Sn; and I be an instance over S1, ...,Sn. Let J be the instance over
G1, ..., Gm defined by, for each j,

J(Gj) = ∪{V(I) | Gj ⊇ V(S1, ...,Sn) ∈ G}

Then for each query q over G1, ..., Gm, the answer of q is q(J).

Proof (sketch). Let u be an answer. Then, by definition, q(u) is true in each instance J′

over G1, ..., Gm such that I and J′ together satisfy the mappings. In particular, u belongs to
q(J). Conversely, let u be in q(J). Let J′ be an instance such that I and J′ together satisfy the
mappings. Since J′ satisfies the mappings, J ⊆ J′. Since conjunctive queries are monotone,
q(J) ⊆ q(J′). Thus u ∈ J′. Since u belongs to all such J′, u is an answer. 2

The second proposition deals with unfoldings.

Proposition 3.6 Let S be a set of source relations and G a set of global relations defined by a set G of
GAV mappings over S. Consider the query q(~z) :- Gi1(~zi1), . . . , Gin(~zin) over G and the set {r`} of
unfoldings of q given G. Then for each I over S1, ...,Sn, the answer of q is given by ∪r`(I).

Proof (sketch). Let J be as in Proposition 3.5. By the same proposition, it suffices to show
that q(J) = ∪r`(I).

Soundness. Let u ∈ ∪r`(I). Then u is r`(I) for some unfolding r`. Suppose r` results from the
unfolding defined by selecting for each j, the mapping Gij(~xij) ⊇ qij(~xij , ~yij). It follows
that u ∈ q({~u1}, ...,{~un}) where for each j, ~uj is derived by Gij(~xij) ⊇ qij(~xij , ~yij). Thus,
each ~uj is in J(Gij) and u ∈ q(J(Gi1), ..., J(Gin)) = q(J). Therefore, ∪r`(I) ⊆ q(J).

Completeness. Conversely, consider u in q(J). Then, there exists ~u1 in J(Gi1), ..., ~uj in J(Gij),
...~un in J(Gin) such that u∈ q({~u1}, ...,{~un}). By construction of J, for each j there is some
mapping Gij(~xij) ⊇ qij(~xij , ~yi−1) such that ~uj is in qij(~xij , ~yi−1). Consider the unfolding r`
defined by selecting for each j, this particular mapping. One can verify that u is r`(I).
Hence, u ∈ ∪r`(I) and q(J) ⊆ ∪r`(I).
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2

We can compute the answer using the unfoldings (also called the GAV rewritings). These
unfoldings can be simplified by removing redundant conjuncts that may have been introduced
by the technique. This simplification relies on checking conjunctive query containment. Given
a conjunctive query with body A1(~u1), ..., Am( ~um), we verify whether each query obtained
by removing some Ai(~ui) is equivalent to the initial one. If yes, the atom is redundant and
can be removed. We keep doing this until the query is “minimal”. This simplification test is
costly but the resulting query may be much less expensive to evaluate that the initial one.

We must evaluate all the unfoldings to obtain the complete answer. If we are aware of
some constraints on the local schemas or on the global one, this can be further simplified.
For instance, the constraints may imply that the result of a particular unfolding is empty, in
which case this particular unfolding needs not be evaluated. Also, the constraints may imply
that the result of some unfolding, say r`, is always included in another one. Then r` needs
not be evaluated. For instance, in the previous example, if it is known that students obtained
from the source S2 are European students, while those obtained from the source S3 are non
European students, we can be sure that the GAV rewriting r` obtained by unfolding will not
provide any answer. This requires expressing and exploiting disjointness constraints over the
local relations. Inclusion constraints on local relations would, on the other hand, permit to
detect in advance that a given query plan provides answers that are redundant with those
obtained by another query plan.

A main limitation of GAV is that adding or removing data sources to the integration
system may require deeply revising all the views defining the global schema. In a Web
context where sources may come and go, e.g., because of (non) availability of servers, this is
really too constraining. The LAV approach does not suffer from this disadvantage.

4 Local-as-view mediation

The LAV approach takes a dual approach. The local relations are defined as views over global
relations. The goal is to define the global schema in such a way that individual definitions do
not change when data sources join or leave the integration system except for the definitions
of the sources that are involved in the change.

Definition 4.1 (LAV mapping) A LAV mapping is a mapping of the form: S ⊆ q, for some con-
junctive query q(x1, ..., xn) :- A1(~u1), ..., Ak(~uk) over the global relations. Its semantics is:

∀x1, ..., xn[S(x1, ..., xn)⇒ (∃y1, ...,ym A1(~u1), ..., Ak(~uk))]

where y1, ...,ym are the existential variables.

Again, S(x1, ..., xn) is called the head of the view, whereas A1(~u1), ..., Ak(~uk) is called the
body of the view.

Example 4.2 We define the global schema as consisting of the following relations:
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Student(studentName), EuropeanStudent(studentName),
University(uniName), NonEuropeanStudent(studentName),
FrenchUniversity(uniName), EuropeanUniversity(uniName),
NonEuropeanUniversity(uniName), Program(title),
MasterProgram(title), EnrolledInProgram(studentName,title),
Course(code), EnrolledInCourse(studentName,code),
PartOf(code, title), RegisteredTo(studentName, uniName),
OfferedBy(title, uniName).

The four data sources considered in the previous example can be described by the following LAV
mappings:

m1: S1.Catalogue(U,P) ⊆ FrenchUniversity(U), Program(P), OfferedBy(P,U),
OfferedBy(P’,U), MasterProgram(P’)

m2: S2.Erasmus(S,C,U) ⊆ Student(S), EnrolledInCourse(S,C), PartOf(C,P),
OfferedBy(P,U), EuropeanUniversity(U),
EuropeanUniversity(U’) RegisteredTo(S,U’),
U 6= U’

m3: S3.CampusFr(S,P,U) ⊆ NonEuropeanStudent(S), Program(P),
EnrolledInProgram(S,P), OfferedBy(P,U),
FrenchUniversity(U), RegisteredTo(S,U)

m4: S4.Mundus(P,C) ⊆ MasterProgram(P), OfferedBy(P,U),
OfferedBy(P,U’), EuropeanUniversity(U),
NonEuropeanUniversity(U’), PartOf(C,P)

LAV mappings enable quite fine-grained descriptions of the contents of data sources.
For example, we are able to specify precisely the students that can be found in the Erasmus
source: they are European students enrolled in courses of a given (European) university that
is different from their home (European) University in which they remain registered.

LAV mappings express loose coupling between local and global relations, which is impor-
tant for flexibility and robustness when the participating data sources change frequently. If
we are interested in Master students, we do not need to know in advance (unlike the GAV
approach) how to join two sources. We just define them as a global query:

MasterStudent(E) :- Student(E), EnrolledInProgram(E,M),
MasterProgram(M).

The local sources that must be queried and combined to get the Master students will be
discovered by the rewriting process. Recall that, in the GAV approach, they were predefined
by the two mappings given in Example 3.2.

The price to pay for the flexibility of LAV compared to GAV is that the rewritings are more
complicated to find. We describe three algorithms that achieve this rewriting. The Bucket
algorithm and the Minicon algorithm follow the same approach. They first determine the
local relations that are relevant to the query, then consider their combinations as candidate
rewritings and verify whether they are indeed correct. Minicon is actually an optimization
of Bucket that avoids the last verification step by a trickier first step. The third algorithm,
namely the Inverse-rules algorithm, follows a completely different approach: it consists in
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transforming the logical rules supporting the LAV mappings (which are unsafe rules) into a
set of safe rules with a single global relation. The global query is unfolded using these rules.

4.1 The Bucket algorithm

The principle of the Bucket algorithm is quite simple. It proceeds in three steps:

1. the first step constructs for each atom g of the global query body its bucket, which groups
the view atoms from which g can be inferred;

2. the second step consists in building a set of candidate rewritings that are obtained by
combining the view atoms of each bucket;

3. in a last step, we check whether each candidate rewriting is valid.

Bucket creation

Let g be a query atom. The atoms in bucket(g) are the heads of mappings having in their body
an atom from which g can be inferred. Intuitively, data comes from source relations, and a
(global) query atom is satisfied by (local) data only if it can be matched to a (global) atom in
the body of a mapping whose head can be matched to source facts. A match between g and
some atom in the body of a mapping is thus an indication that the corresponding data source
provides a relevant information for this particular query.

There is an extra constraint that has to be considered to guarantee that g can indeed be
logically inferred, as illustrated next. In fact, the bucket of a query atom g includes a view
atom v only if an atom in the body of v can be matched with g by a variable mapping such
that the variables mapped to the distinguished variables of g are also distinguished variables in
the view defining the mapping.

Let us illustrate this on an example. Consider the LAV mappings of Example 4.2, and the
global query:

q(x) :- RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

Let us consider the query atom g= RegisteredTo(s,x), in which the variable x is
distinguished.

We can find two mappings (m2 and m3) in which a body atom can be matched to
RegisteredTo(s,x).

First, consider the mapping m3:

m3: S3.CampusFr(S,P,U) ⊆ NonEuropeanStudent(S), Program(P),
EnrolledInProgram(S,P), OfferedBy(P,U),
FrenchUniversity(U), RegisteredTo(S,U)

The atom RegisteredTo(s,x) matches the atom RegisteredTo(S,U) with the vari-
able mapping {S/s,U/x}, where U is distinguished in the view defining the mapping (it
occurs in the head of this LAV mapping).

Therefore, applying the variable mapping {S/s,U/x} to the head S3.CampusFr(S,P,U)
of the mapping m3 enforces the matching of RegisteredTo(S,U) with the query atom
RegisteredTo(s,x), and then:
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S3.CampusFr(s,v1,x) ∧ FOL(m3) |= ∃s RegisteredTo(s,x)

Thus S3.CampusFr(s,v1,x) is added in Bucket(g). Note that v1 is simply a fresh vari-
able mapped to the variable P appearing in S3.CampusFr(S,P,U) but not in the variable
mapping {S/s,U/x}.

On the other hand, consider the mapping m2:

m2: S2.Erasmus(S,C,U) ⊆ Student(S), EnrolledInCourse(S,C), PartOf(C,P),
OfferedBy(P,U), EuropeanUniversity(U),
EuropeanUniversity(U’) RegisteredTo(S,U’), U 6= U’

The match this time is between g = RegisteredTo(s,x) and RegisteredTo(S,U’)
by the variable mapping {S/s,U′/x}. The difference with the previous situation is that the
variable U’ is existentially quantified in the view defining the mapping. Applying the variable
mapping {S/s,U′/x} to the head S2.Erasmus(S,C,U) of the mapping m2 do not enforce the
matching of RegisteredTo(S,U’) in its body with the query atom RegisteredTo(s,x).

More formally:

S2.Erasmus(s,v2,v3) ∧ FOL(m2) 6|= ∃s RegisteredTo(s,x).

To see why, consider the LAV mapping m2 and its logical meaning FOL(m2):

FOL(m2): ∀S∀C∀U [ S2.Erasmus(S,C,U)⇒ ∃ P ∃ U’ (
EuropeanStudent(S) ∧ EnrolledInCourse(S,C) ∧
PartOf(C,P) ∧ OfferedBy(P,U)
∧ EuropeanUniversity(U) ∧ RegisteredTo(S,U’)∧ U 6= U’) ]

From the fact that S2.Erasmus(s,v2,v3), it follows that:

∃ s ∃ U’ RegisteredTo(s,U’).

However, this is a strictly weaker statement than ∃ s RegisteredTo(s,x) where x is fixed.
We prove this next. Consider an instance I over the domain ∆ = {s,v2,v3,v4,v5, x} defined
by:

I(S2.Erasmus) = {〈s, v2, v3〉} I(EuropeanStudent) = {s}
I(EnrolledInCourse) = {〈s, v2〉} I(PartOf) = {〈v2, v4〉}
I(OfferedBy) = {〈v4, v3〉} I(EuropeanUniversity) = {v3, v5}
I(RegisteredTo) = {〈s, v5〉}

By the valuation that instantiates respectively the variables S to the constant s, C to the
constant v2, U to the constant v3, P to the constant v4 and U’ to the constant v5, we see
that I satisfies the fact S2.Erasmus(s,v2,v3) and the formula FOL(m2), but that ∃ s
RegisteredTo(s,x) is not satisfied in I.

As a consequence, S2.Erasmus(s,v2,v3) does not belong to the bucket and:

Bucket(RegisteredTo(s,x)) = {S3.CampusFr(s,v1,x)}.

Algorithm 2 constructs the buckets. Proposition 4.3 is a logical characterization of the
view atoms put in the buckets of the atoms of the global query.
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Algorithm 2: The Bucket algorithm
Bucket(g, q, M)
Input: An atom g = G(u1, ...,um) of the query q and a set of LAV mappings
Output: The set of view atoms from which g can be inferred
(1) Bucket(g) : ∅
(2) for each LAV mapping S(~x) ⊆ q(~x,~y)
(3) if there exists in q(~x,~y) an atom G(z1, ...,zm) such that
(4) zi is distinguished for each i such that ui is distinguished in q;
(5) let ψ the variable mapping {z1/u1, ....,zm/um}
(6) extended by mapping the head variables in ~x not
(7) appearing in {z1, ...,zm} to new fresh variables;
(8) add S(ψ(~x)) to Bucket(g);
(9) return Bucket(g);

Proposition 4.3 Let G(u1, ..., um) be an atom of the global query. Let ~u be the (possibly empty) subset
of existential variables in {u1, ...,um}. Let m: S(~x) ⊆ q(~x,~y) be a LAV mapping. Then

S(~v), FOL(m) |= ∃~uG(u1, ...,um)

iff there exists a view atom in Bucket(g) that is equal to S(~v) (up to a renaming of the fresh variables).

The proof is tedious and left as exercise.
In the worst-case, the Bucket algorithm applied to each atom of a query has a time

complexity in O(N ×M×V) and produces N buckets containing each at most M×V view
atoms, where N is the size of the query, M is the maximal size of the LAV mappings and V is
the number of LAV mappings.

Returning to the example, we obtain by the Bucket algorithm, the following buckets for
the three atoms of the query q.

RegisteredTo(s,x) EnrolledInProgram(s,p) MasterProgram(p)
S3.CampusFr(s,v1,x) S3.CampusFr(s,p,v2) S1.Catalogue(v3,v4)

S4.Mundus(p,v5)

Construction of candidate rewritings

The candidate rewritings of the initial global query are then obtained by combining the
view atoms of each bucket. In the worst-case, the number of candidate rewritings is in
O((M×V)N). For instance, in our example, we obtain two candidate rewritings for the query
q:

r1(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2), S1.Catalogue(v3,v4)
r2(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2), S4.Mundus(p,v5)

A candidate rewriting may not be a valid rewriting of the query. By Proposition 4.3, we only
know that each candidate rewriting entails each atom of the query in isolation, i.e., without
taking into account the possible bindings of the existential variables within the query.
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It turns out that, in our example, the first candidate rewriting r1 is not a valid rewriting
of the query q: the body of q is not logically entailed by the conjunction of the view atoms in
the body of r1.

To see why, we first apply to each view atom in the body of r1 the corresponding LAV
mapping to obtain the logical global expression (i.e., built on global relations). This step is
called expanding r1, and its result, the expansion of r1. In our case, the expansion of r1 is the
following query expression:

Exp_r1(x) :- NonEuropeanStudent(s), Program(v1), EnrolledInProgram(s,v1),
OfferedBy(v1,x), FrenchUniversity(x), RegisteredTo(s,x),
Program(p), EnrolledInProgram(s,p), OfferedBy(p,v2),
FrenchUniversity(v2), RegisteredTo(s,v2),
FrenchUniversity(v3), Program(v4),OfferedBy(v4,v3),
OfferedBy(v5,v3), MasterProgram(v5)

Note that new existential variables may be introduced by the expansion of some view
atoms. For instance, the LAV mapping defining S1.Catalogue(v3,v4) contains the exis-
tential variable denoted P’ in the LAV mapping definition. Such variables are renamed with
new fresh variables to avoid unnecessary constraints between the variables. In our example,
this corresponds to variable v5 in the body of Exp_r1(x).

To check whether a rewriting is correct, it suffices to check with the Conjunctive Query
Containment algorithm whether the query Exp_r1(x) is contained in the query q(x). For
each variable v, let the corresponding constant, i.e., ψ(v), be "v". The canonical database
obtained from r1 is given in Figure 2.

NonEuropean- Program EnrolledIn- OfferedBy French- RegisteredTo Master-
Student Program University Program
"s" "v1" ("s", "v1") ("v1", "x") "x" ("s", "x") "v5"

"p" ("s", "p") ("p", "v2") "v2" ("s", "v2")
"v4" ("v4", "v3") "v3"

("v5", "v3")

Figure 2: The canonical database resulting from freezing r1

The evaluation of q(x) over this canonical database yields an empty result because there
is no way of assigning the existential variables s and p to constants of the canonical database
which satisfies the binding of the existential variable p between the two last atoms of the
body of the query.

Expanding the rewriting r2 and checking that it is contained into the query q is left in
exercise. This shows that among the two candidate rewritings, only r2 is a valid rewriting:

r2(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2),S4.Mundus(p,v5)

Remark 4.4 In spite of the apparent redundancy of the two first atoms, this rewriting cannot
be simplified to

r2.1(x) :- S3.CampusFr(s,p,x), S4.Mundus(p,v5)
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It is true that r2.1(x) is contained into r2(x). However, the two queries are not equivalent.
For some data sets, it may be the case that there is a student s and there is a university x such
that (based on S3.CampusFr), s is registered in x and also enrolled in a Mundus master
program offered by another university. The containment would hold under a constraint that
would forbid a student to be registered in more than one universities.

One can prove that each rewriting finally obtained does indeed provide answers and that
their union constitutes the complete answer.

4.2 The Minicon algorithm

The idea underlying Minicon is to avoid putting in a bucket an atom that will only generate
invalid rewritings. As we saw in the discussion of Bucket, the reason for an atom to be useless
is that its binding of a variable does not match with the binding of other occurrences of that
variable. This explains why a candidate rewriting (like r1) is not valid.

We now illustrate the Minicon algorithm by example. Consider the query q:

q(x) :- U(y,z), R(x,z), T(z,y), R(y’,x)

and the two LAV mappings:

V1(u,v) ⊆ T(w,u), U(v,w), R(v,u)
V2(u,v,v’) ⊆ T(w,u), U(v,w), R(v’,w)

Minicon proceeds in two steps that correspond to the first two steps of Bucket.

First step of Minicon: creation of MCDs

Minicon scans each atom in the query, but instead of creating buckets for them, it builds
MCDs (short name for Minicon Descriptions). The first iteration of Minicon determines the
relevance of the different LAV mappings to rewrite the first query atom U(y,z):

• The Bucket algorithm would put V1(v1,y) in the bucket of U(y,z) (where v1 is a fresh
variable), because the variable mapping {v/y,w/z} allows the match between the atom
U(v,w) in the expansion of V1(u,v) and the query atom U(y,z).

Minicon does not consider the query atom U(y,z) in isolation. Instead, since the
variable w is existential in the view defining the mapping, and mapped to the variable
z that has several occurrences in the query, it checks whether the variable mapping
{v/y,w/z} also covers all the query atoms involving variable z, i.e., can be extended
to also match R(x,z) and T(z,y). Because variable w is existential in the expansion
of V1(u,v) (i.e., w does not appear in the head of the mapping), it is the only way
to enforce the several occurrences of z in the query to be mapped to by the same
variable w. Here, matching the query atom R(x,z) with an atom of the form R(_,w)
in the expansion of V1(v1,y) is not possible: there does not exist such an atom in the
expansion of V1(v1,y). Therefore, no MCD is created from V1 for covering the query
atoms including an occurrence of the variable z.
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• When considering V2, though Minicon starts from the same variable mapping {v/y,w/z}
to match U(v,w) in the expansion of V2(u,v,v’) and the query atom U(y,z), the sit-
uation is different for checking whether it can be extended to cover the other query atoms
R(x,z) and T(z,y) containing occurrences of the variable z. Extending the variable
mapping {v/y,w/z} to match R(x,z) with the atom R(v’,w) is possible by adding
the variable mapping v′/x. Now, extending the variable mapping {v/y,w/z,v′/x} to
match T(z,y) with the atom T(w,u) is also possible by adding the variable mapping
u/y. The resulting variable mapping is: {v/y,w/z,v′/x,u/y}. And, V2(y,y,x) is
retained as a rewriting of the corresponding part of the query: a MCD is created for it,
with in addition the positions of the atoms in the query it covers:

MCD1 = (V2(y,y,x)) , {1,2,3} )

The last iteration of building MCDs corresponds to the last query atom: R(y’,x). The
LAV mapping V1 has in its expansion the atom R(v,u) that can be matched to it by the
variable mapping {v/y′,u/x)}. Since the distinguished variable x in the query is assigned to
the distinguished variable (same condition as for adding to a bucket), and since the existential
variable y’ of the query atom has a single occurrence in the query, the following MCD is
created:

MCD2 = ((V1(x,y’), {4})

In contrast, there is no MCD created for R(y’,x) with the second LAV mapping: in the
variable mapping {v′/y′,w/x)} that allows to match the query atom R(y’,x) with the atom
R(v’,w) in the expansion of V2, the distinguished variable x in the query is assigned to the
variable wwhich is not distinguished in the expansion of of V2. As for adding a view atom in a
bucket, a MCD is created for a query atom g only if the variables mapped to the distinguished
variables of g are also distinguished variables in the view defining the mapping.

.

Second step of Minicon: combination of the MCDs

The second step of Minicon replaces the combination of the buckets by the combination of the
MCDs. More precisely, the rewritings are obtained by combining MCDs that cover mutually
disjoint subsets of query atoms, while together covering all the atoms of the query.

Because of the way in which the MCDs were constructed, the rewritings obtained that
way are guaranteed to be valid. No containment checking is needed, unlike in the Bucket
Algorithm. In our example, we would therefore obtain as single rewriting of q(x):

r(x) :- V2(y,y,x), V1(x,y’)

4.3 The Inverse-rules algorithm

This algorithm takes a radically different approach. It transforms the LAV mappings into
GAV mappings (called inverse rules) so that the complex operation of query rewriting using
LAV mappings can then be replaced by the much simpler operation of query unfolding. A
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LAV mapping is replaced by several GAV mappings, one for each atom in the body of the rule.
The subtlety is to keep bindings between the different occurrences of the same existential
variable in the body. This is realized using a simple trick from first-order logic, namely by
introducing Skolem functions.

Let us explain the Inverse-rules algorithm on the example we used for Minicon. A first
important point that distinguishes it from the Bucket and Minicon algorithms is that the
Inverse-rules algorithm is independent of the query. It only considers as input the set of LAV
mappings:

V1(u,v) ⊆ T(w,u), U(v,w), R(v,u)
V2(u,v,v’) ⊆ T(w,u), U(v,w), R(v’,w).

Consider the first LAV mapping and recall that its logical meaning mapping is the formula:

∀u∀v[V1(u,v)⇒ ∃w (T(w,u)∧ U(v,w)) ∧ R(v,u))]

Suppose we know that (a,b) belongs to the source relation V1. From the fact V1(a,b), we
can infer the fact R(b,a), i.e., that the tuple (b,a) is in the extension of the global relation
R, and thus that, for instance, b is an answer for the global query q(x) :- R(x,y).

But we can infer much more. We can also infer that there exists some constant d1 such
that T(d1,a) and U(b,d1) are both true. We do not know the exact value of that constant
d1, but we know it exists and that, in some way, it depends on the constants a,b. Since this
dependency comes from the first rule, we denote this unknown d1 value: f1(a,b).

Creating the inverse rules This motivates the construction of three following GAV map-
pings for which we give also the FOL translation.

IN11 : V1(u,v)⊆ T(f1(u,v),u) FOL(IN11) : ∀u∀v[V1(u,v)⇒ T(f1(u,v),u)]
IN12 : V1(u,v)⊆ U(v,f1(u,v)) FOL(IN12) : ∀u∀v[V1(u,v)⇒ U(v,f1(u,v))]
IN13 : V1(u,v)⊆ R(v,u) FOL(IN13) : ∀u∀v[V1(u,v)⇒ R(v,u)]

They are called the inverse rules of the corresponding LAV mapping.
In the previous rules, the symbol f1 is a Skolem function of arity 2, and f1(u,v) is a

Skolem term denoting some constant that depends on the values instantiating the variables
u,v. Given two distinct Skolem terms, e.g. f1(1,2) and f1(2,v3), we cannot tell whether
they refer to the same constant or not.

The Inverse-rules algorithm just scans the LAV mappings and creates n GAV mappings
for each LAV mapping having n atoms. The result of this algorithm applied to the second
LAV mappings in the example is:

IN21 : V2(u,v,v’)⊆ T(f2(u,v,v’),u)
IN22 : V2(u,v,v’)⊆ U(v,f2(u,v,v’))
IN23 : V2(u,v,v’)⊆ R(v’,f2(u,v,v’))

Obtaining the rewritings by unfolding: The rewritings of any global query is now obtained
by unfolding the query atoms using the (Inverse-rules) GAV mappings corresponding to the
initial set of LAV mappings. The unfolding operation here is a bit trickier than the unfolding
defined in Definition 3.3, because of the Skolem terms. In Definition 3.3, the unfolding
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was based on matching each query atom G(x1, .., xm) with an atom (in the right-hand
side of a GAV mapping) of the form G(z1, .., zm) by equating each pair (zi, xi) of
variables. Proposition 3.6 showed that unfolding each atom of the query in isolation builds
valid rewritings of the query, i.e., conjunctions of view atoms which logically implies the
conjunction of the query atoms. It is not the case anymore when atoms in the right-hand side
of GAV mappings contain Skolem terms.

The unification of two atoms with functions is more complex than just equating variables,
and it may fail. It may require the substitution of some variables with functional terms (in
our case, Skolem terms). This may make impossible to unify the other atoms of the query
with atoms in the right-hand side of GAV mappings.

Let us illustrate on our example the subtleties of unfolding queries in presence of func-
tional terms. Consider again the same query q:

q(x) :- U(y,z), R(x,z), T(z,y), R(y’,x).

The query atom U(y,z) can be unified with the atom U(v,f1(u,v)) in the right-hand side
of the GAV mappings IN12 using a so-called most general unifier (mgu). In this case, the mgu
is the substitution:

σ = {y/v1, v/v1, z/f1(v2,v1), u/v2}

where v1 and v2 are new fresh variables introduced in order to avoid name conflict between
variables that would generate unnecessary constraints. The substitution σ is a unifier of the
two expressions U(y,z) and U(v,f1(u,v)) because the replacement in the two expressions
of the occurrences of the variables y, v, z and u by the corresponding term (variable or Skolem
term) in σ results in two identical expressions:

σ(U(y,z)) = σ(U(v,f1(u,v)))

This substitution that makes the unfolding of the first query atom possible, now constrains
the other occurrences in the query of the variables y and z for the unfolding of the other query
atoms. After the application of σ to the whole body of the query and the unfolding of the first
query atom made possible by σ, we obtain the following (partial) query rewriting:

pr1(x) :- V1(v2,v1), R(x,f1(v2,v1)), T(f1(v2,v1),v1), R(y’,x).

The unfolding of the second atom R(x,f1(v2,v1)) yields V1(f1(v2,v1),x), and we
obtain the (partial) rewriting:

pr2(x) :- V1(v2,v1), V1(f1(v2,v1),x), T(f1(v2,v1),v1), R(y’,x).

It is useless to continue unfolding the remaining query atoms of pr2(x). As soon as
a given unfolding has produced a view atom with Skolem terms, we can be sure that the
evaluation of the query plan under construction will not produce any answer: there is no
way to match V1(f1(v2,v1),x) with any fact in the data source which are of the form
V1(a,b) where a,b are constants. Since we don’t know f1(v2,v1), there is absolutely no
reason to believe that it is equal to a.
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Using the inverse rule IN23 to unfold R(x,f1(v2,v1)) does not help because unify-
ing R(x,f1(v2,v1)) and R(v’,f2(u,v,v’)) fails because of the two different Skolem
functions. Thus, the (partial) rewriting issued from unfolding U(y,z) using the inverse rule
IN12 is abandoned.

Let us try now to unfold U(y,z) using IN22 made possible by the substitution

σ′ = {y/v1, v/v1, z/f2(v2,v1,v3), u/v2, v’/v3}.

We obtain the following (partial) query rewriting:

pr’1(x) :- V2(v2,v1,v3), R(x,f2(v2,v1,v3)), T(f2(v2,v1,v3),v1), R(y’,x).

Now, unfolding R(x,f2(v2,v1,v3)) using the inverse rule IN23 is possible thanks to the
substitution

σ′′ = {v’/x,v3/x,u/v2,v/v1}.

This leads to the (partial) rewriting:

pr’2(x) :- V2(v2,v1,x), V2(v2,v1,x), T(f2(v2,v1,x),v1), R(y’,x),

in which one of the first two atoms can be dropped.
Now, we examine the unfolding of the query atom T(f2(v2,v1,x),v1), which requires

checking whether T(f2(v2,v1,x),v1) and T(f2(u,v,v’),u) are unifiable. This is the
case thanks to the substitution {v2/v3,u/v3,v1/v3,v/v3,v′/x}, which leads to the (partial)
rewriting:

pr’3(x) :- V2(v2,v1,x), V2(v3,v3,x), R(y’,x),

Again, we can remove the first atom that is redundant and obtain the equivalent (partial)
rewriting:

pr’4(x) :- V2(v3,v3,x), R(y’,x).

Finally the unfolding of R(y’,x) using IN23 leads to the final rewriting:

r1(x) :- V2(v3,v3,x), V1(x,y’).

4.4 Discussion

The three algorithms have the same (worst-case) complexity and they guarantee to provide
the correct answer. Some experiments have shown that in practice Minicon outperforms both
Bucket and Inverse-rules. The main advantage of the Inverse-rules algorithm over the Bucket
and Minicon algorithms is that the step producing the inverse rules is done independently of
the queries. Furthermore, the unfolding step can also be applied to Datalog queries, i.e., to
recursive queries.
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The common limitation of the three algorithms is that they do not handle additional
knowledge (ontology statements) that can be known about the domain of application. In the
next section, we see how to extend both the Local-As-Views and Global-As-Views approaches
with DL-LITE ontologies, i.e., we consider global schemas that include constraints expressed
as DL-LITE axioms.

5 Ontology-based mediators

We first show a negative result: as soon as we add functionality constraints over the global
schema, the number of conjunctive rewritings of a query to be considered, may become
infinite. This is a severe limitation for extending the LAV or GAV approaches since such
constraints are rather natural. So these approaches to data integration fail when we consider
the DL-LITEF dialect of previous chapters. On the positive side, we show how to extend the
GAV and LAV approaches to constraints expressible in DL-LITER.

5.1 Adding functionality constraints

We illustrate on an example the problem raised by taking into account functionality constraints
in the global schema. Let us consider a global schema with one unary relation C and two
binary relations R and R’. In both R and R1, we impose that the first attribute is a key. Let us
consider two LAV mappings:

V1: S(P,N)⊆ R(P,A), R1(N,A)
V2: V(P)⊆ C(P)

and the following query:
q(x) :- R(x,z), R(x1,z),C(x1).

The three previous algorithms (Bucket, Minicon, and Inverse-rules) would return no rewriting
at all for q. The proof is left as an exercise. However, we next show that the following rewriting
is valid:

r1(x) :- S(x,v1),S(x1,v1),V(x1)

To prove it, we expand r1(x) and show that the resulting expansion together with the logical
axiom expressing the functionality of R1 logically implies the conjunction of atoms in the body
of the query. The expansion of r1(x) is:

Exp_r1(x) :- R(x,y1),R1(v1,y1),R(x1,y′1),R1(v1,y′1),C(x1)

Now, if we ignore the functional dependencies, it is not true that Exp_r1 ⊆ q. But knowing
them, the inclusion holds. Indeed, the logical axiom expressing the functionality of R1 is:

∀y∀z1∀z2 [R1(y,z1) ∧ R1(y,z2)⇒ z1 = z2]

Therefore, it can be inferred from R1(v1,y1) and R1(v1,y′1) in the body of Exp_r1(x) that
y1 = y′1, and thus:

Exp_r1(x) :- R(x,y1),R1(v1,y1),R(x1,y1),R1(v1,y1),C(x1)
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Hence Exp_r1 ⊆ q with ψ mapping x, x1,z to x, x1,y1, respectively. Thus r1(x) is a valid
rewriting of q(x).

It is important to note that to properly check containment, the standard query containment
algorithm seen in the previous section would have to be modified in a standard manner to
take into account functional dependencies. Intuitively, one would have to proceed pretty
much as we did in the example, equating variables as implied by the functional dependencies.

It turns out that the situation is even more subtle. Surprisingly, this rewriting r1(x) is not
the only one. In fact there exists an infinite number of different rewritings for q(x). Let k≥ 2.
The following query is a valid rewriting of q(x):

rk(x) : S(x,vk),S(xk,vk),S(xk,vk−1),S(xk−1,vk−1), . . . ,S(x2,v1),S(x1,v1),V(x1)

The expansion of rk(x) is:

Exp_rk(x) :- R(x,yk), R1(vk,yk),
R(xk,y′k), R1(vk,y′k),
R(xk,yk−1), R1(vk−1,yk−1),
R(xk−1,y′k−1), R1(vk−1,y′k−1),
. . . , . . .
R(x2,y1), R1(v1,y1),
R(x1,y′1), R1(v1,y′1), C(x1).

To show that this expansion is logically contained in q, we exploit the axioms of functionality
of both R and R1. Since R1 is functional, we get: yk = y′k, and since R is functional, we get:
y′k = yk−1. By induction, we obtain yk = y′k = yk−1 = y′k−1 = · · · = y1 = y′1, and in particular:
yk = y′1. Thus Exp_rk ⊆ q(x). This implies that rk(x) is a valid rewriting of q(x).

One can also show that for each k, each such rewriting may return answers that are not
returned with k − 1. Thus, there exists an infinite number of non redundant conjunctive
rewritings. The reader familiar with Datalog will observe that this infinite collection of
rewritings can be captured in Datalog by the following recursive rewriting:

r(x) :- S(x,v),S(x1,v),V(x1)
r(x) :- S(x,v), P(v,u),S(x1,u),V(x1)
P(v,u) :- S(z,v),S(z,u)
P(v,u) :- S(z,v),S(z,w), P(w,u)

The question of building automatically such conjunctive rewritings is out of the scope of this
book (see Section 7).

5.2 Query rewriting using views in DL-LITER

Querying data through DL-LITER ontologies has been detailed in the previous chapter. It
has been shown how the positive and negative constraints expressed in the ontology are
exploited both for data consistency checking and for query answering. In particular, the first
step of query answering is the query reformulation step which is performed by the PerfectRef
algorithm: using the positive constraints, called the PIs, it computes a set of reformulations,
which are then evaluated over the data to produce the answer set of the original query. The
negative constraints, called the NIs, are used to check data consistency, by translating each
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(declared or entailed) NI into a Boolean conjunctive query qunsat that must be evaluated over
the data.

In this section, we show how to extend both the LAV and GAV approaches to rewrite
queries in term of views when the global schema includes some DL-LITER Tbox.

Two observations explain how this can be realized:

1. First, one can obtain the answer set of a query q(~x) by computing the union of the
answer sets returned by the evaluation over the local data sources of the (GAV or LAV)
relational rewritings of each reformulation of q(~x) as computed by PerfectRef(q(~x),PI).

2. The rewritings that are obtained may be inconsistent with the negative constraints NI
declared or inferred in the Tbox. Therefore, the consistency of each rewriting r(~x) has
to be checked. This can be done by checking containment between the Boolean query
∃~x Exp_r(~x) (where Exp_r(~x) is the expansion of r(~x)) and each of the Boolean queries
qunsat obtained from the NIs.

These two observations follow from the completeness of the PerfectRef and Consistent algo-
rithms for DL-LITER presented in the previous chapter, and that of the rewriting algorithms
of Sections 3 and 4; namely Unfolding for GAV, Minicon, Bucket or Inverse-rules for LAV.

The argument may be somewhat too abstract for some readers. We next illustrate these two
points with examples. We use the global schema considered in Example 4.2 page 10, enriched
with the DL-LITER Tbox of Figure 3. Note in particular that we add the subclass College of
the class University, the subproperty EnrolledInCollege of the property RegisteredTo, for which
the domain is declared as being the class MasterStudent. In addition, we add the property
EnrolledInMasterProgram that we declare as a subproperty of the property EnrolledInProgram.
Finally, we declare a mandatory property for the class College: any college must have students
enrolled in it.

DL notation FOL notation
PIs:
MasterStudentv Student MasterStudent(X)⇒ Student(X)
EuropeanStudentv Student EuropeanStudent(X)⇒ Student(X)
NonEuropeanStudentv Student NonEuropeanStudent(X)⇒ Student(X)
Collegev University College(X)⇒ University(X)
FrenchUniversityv University FrenchUniversity(X)⇒ University(X)
EuropeanUniversityv University EuropeanUniversity(X)⇒ University(X)
NonEuropeanUniversityv University NonEuropeanUniversity(X)⇒ University(X)
∃EnrolledInCollegevMasterStudent EnrolledInCollege(X,Y)⇒MasterStudent(X)
Collegev ∃EnrolledInCollege− College(X)⇒ ∃YEnrolledInCollege(Y,X)
EnrolledInCollegev RegisteredTo EnrolledInCollege(X,Y)⇒ RegisteredTo(X,Y)
MasterStudentv ∃EnrolledInMasterProgram MasterStudent(X)⇒ ∃YEnrolledInMasterProgram(X,Y)
∃EnrolledInMasterProgram− v MasterProgram EnrolledInMasterProgram(X,Y)⇒ MasterProgram(Y)
EnrolledInMasterProgramv EnrolledInProgram EnrolledInMasterProgram(X,Y)⇒ EnrolledInProgram(X,Y)
NIs:
NonEuropeanStudentv ¬EuropeanStudent NonEuropeanStudent(X)⇒¬EuropeanStudent(X)
NonEuropeanUniversityv ¬EuropeanUniversity NonEuropeanUniversity(X)⇒¬EuropeanUniversity(X)
NonEuropeanUniversityv ¬FrenchUniversity NonEuropeanUniversity(X)⇒¬FrenchUniversity(X)

Figure 3: A DL-LITER Tbox enriching the global schema of Example 4.2

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 24

5.2.1 GAV and DL-LITER

We revisit Example 3.2 by adding the data source S5 giving the list of French so-called
Grandes Ecoles. Its local schema is made of the local relation: S5.GrandeEcole(nomEcole).
According to this new source and also to the enriched global schema of Figure 3, we add the
following GAV mappings to the ones already considered in Example 3.2:

College(U) ⊇ S5.GrandeEcole(U)
EuropeanStudent(N) ⊇ S2.Erasmus(N,C,U)
NonEuropeanStudent(N) ⊇ S3.CampusFr(N,P,U)

Consider again the global query looking for universities with registered master students:

q(x) :- RegisteredTo(s,x), MasterStudent(s)

It is left as an exercise to show that the application of the PerfectRef(q(x), PI) algorithm
returns, in addition to q(x) itself, the reformulation:

q1(x) :- College(x)

By unfolding q(x), we obtain the same two rewritings as in Example 3.2:

r1(x) :- S3.CampusFr(s,v1,x), S2.Erasmus(s,v2,v3), S4.Mundus(v4,v2)
r2(x) :- S3.CampusFr(s,v6,x), S4.Mundus(v6,v8)

By unfolding the reformulation q1(x), we get the additional rewriting:

r3(x) :- S5.GrandeEcole(x)

It is important to note that even if we had the GAV mapping

College(U) ⊇ S5.GrandeEcole(U),

the rewriting r3(x) would not have been obtained without reformulated first the initial
query q(x) into q1(x).

Now, in contrast with the standard GAV approach, we have to check the consistency of
each of these rewritings. To do so:

• We first compute the closure of the NI and we translate them into Boolean queries qunsat
(as explained in detail in Section ?? of Chapter ??). This is independent of the rewritings
and can be performed at compile time given the Tbox. From the Tbox in Figure 3, we
obtain only three Boolean queries qunsat:

q1
unsat :- NonEuropeanStudent(x), EuropeanStudent(x)

q2
unsat :- NonEuropeanUniversity(x), EuropeanUniversity(x)

q3
unsat, :- NonEuropeanUniversity(x), FrenchUniversity(x)
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• At query time, we check the consistency of each rewriting by applying the Consistent
algorithm to the canonical instance obtained by expanding each rewriting and freezing
its variables (as explained in detail in Section ?? of Chapter??).

We illustrate the consistency check by checking the consistency of the rewriting r1(x).
First, its expansion replaces each of its local atoms S(~z) with the conjunction of global atoms of
the form G(~z) that can be produced by a GAV mapping G(~x) ⊇ S(~x), if such GAV mappings
exist. For expanding r1(x), we apply the following GAV mappings:

NonEuropeanStudent(N) ⊇ S3.CampusFr(N,P,U)
University(U) ⊇ S3.CampusFr(N,P,U)
RegisteredTo(N,U) ⊇ S3.CampusFr(N,P,U)
EuropeanStudent(N) ⊇ S2.Erasmus(N,C,U)
University(U) ⊇ S2.Erasmus(N,C,U)
MasterProgram(T) ⊇ S4.Mundus(T,C)
MasterCourse(C) ⊇ S4.Mundus(T,C)

As a result, we obtain the following expansion for r1(x):

Exp_r1(x) :- NonEuropeanStudent(s), University(x), RegisteredTo(s,x),
EuropeanStudent(s), University(x), MasterProgram(v4),
MasterCourse(v2)

We then apply the Consistent algorithm. For this, we evaluate q1
unsat, q2

unsat and q3
unsat over

the body of Exp_r1(x) seen as a relational database; i.e., we freeze its atoms to obtain a
canonical instance. Query q1

unsat returns true, so an inconsistency has been detected and the
rewriting r1(x) is rejected.

5.2.2 LAV and DL-LITER

We revisit Example 4.2 by adding the same data source S5 as in Section 5.2.1. The GAV
mapping is also a LAV mapping: S5.GrandeEcole(U) ⊆ College(U)

Consider again the global query considered in Section 4.1:

q(x) :- RegisteredTo(s,x), EnrolledInProgram(s,p), MasterProgram(p)

It is left as an exercise to show that the application of the PerfectRef(q(x), PI) algorithm
returns, in addition to q(x) itself, the following reformulation:

q1(x) :- College(x)

By applying the Minicon algorithm1 to the initial query q(x), we obtain the following
rewriting (as shown in Section 4.1):

r2(x) :- S3.CampusFr(s,v1,x), S3.CampusFr(s,p,v2),S4.Mundus(p,v5)

1The same holds for the Bucket or Inverse-rules algorithm.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 26

By applying the Minicon algorithm to the reformulation q1(x) of the initial query, we
obtain the additional rewriting:

r3(x) :- S5.GrandeEcole(x)

As for the extended GAV approach, the consistency of LAV rewritings is not guaranteed
because of the NIs in the Tbox. We follow the same approach: at compile time, the closure
of the NIs is computed and each (declared or inferred ) NI is compiled into a Boolean query
qunsat. At query time, each of these qunsat queries is evaluated over the canonical instance
corresponding to each rewriting.

6 Peer-to-Peer Data Management Systems

In contrast with the centralized mediator model, a Peer-to-Peer data management system
(PDMS for short) implements a decentralized view of data integration, in which data sources
collaborate without any central authority. In a PDMS, each collaborating data source can
also play the role of a mediator, so is at the same time a data server and a client for other
data sources. Thus each participant to the system is a peer and there are mappings relating
data from the different peers. A PDMS architecture is therefore very flexible in the sense that
there is no need for a global schema defining in advance a set of terms to which each data
source needs to adhere. Over time, data sources can join or leave the PDMS just by adding
or removing mappings between them. PDMS are inspired by P2P file sharing systems but
they enable answering fine-grained queries. Like in the mediator model, answering queries is
performed by reformulating queries based on the mappings, but in a decentralized manner.

Each peer in a PDMS has a peer schema composed of peer relations and peer mappings
that relate its schema to the schemas of other peers. To avoid confusing relations from
different peers, we assume that each relation of peer p is of the form r@p for some local
relation name r. A query to a PDMS is posed using the peer schema of one of the peers. A
query is asked to a particular peer, as a query over his particular schema. It is reformulated
using the peer mappings into a set of queries that may refer to other peer relations. This
captures the intuition that we want to use the information available in the entire P2P system
to answer the query.

For designing the mappings, the distinction made in the mediator model between local
and global relations does not make sense anymore, since each peer relation may play the
role at different times both of a local relation and of a global relation. Therefore, the notions
of GAV and LAV mappings are relaxed to the more appropriate symmetric notion of GLAV
mappings.

Definition 6.1 (GLAV mapping) Let S@i and S@j be the peer schemas of two peers i and j. A
GLAV mapping between these two peers is an inclusion axiom of the form: qi(~x) ⊆ qj(~x), where
qi(~x) and qj(~x) are conjunctive queries over the peer schema S@i, S@j, respectively.

Let qi(~x,~yi) and qj(~x,~yj) be the bodies of qi(~x) and qj(~x)), respectively. The semantics of the
GLAV mapping qi(~x) ⊆ qj(~x) is: ∀~x[∃~yi qi(~x,~yi)⇒ ∃~yj qj(~x,~yj)].

In database terms, a GLAV mapping qi(~x) ⊆ qj(~x) expresses that answers obtained by
asking qi(~x) at peer i should also be considered as answers to qj(~x) asked at peer j. Note

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.



For personal use only, not for distribution. 27

that with this semantics, each local query is assumed to be incompletely answered with local
data since external data may bring in new information to it. As already mentioned, such an
open-world assumption is fully appropriate for Web data.

We next show one negative and one positive result for PDMSs. In Section 6.1, we show
that in general, answering queries with GLAV mappings is undecidable, so without further
restriction, answering queries in a PDMS is undecidable. In Section 6.2, we show that if we
restrict the peer mappings to be DL-LITER inclusion axioms, a decentralized version of the
algorithm for DL-LITER can be used to answer queries in DL-LITER PDMSs.

6.1 Answering queries using GLAV mappings is undecidable

We show that the Dependency Implication Problem (more precisely, the problem of the impli-
cation of an inclusion dependency from a set of inclusion and functional dependencies) can
be reduced to the GLAV Query Answering Problem, i.e., the problem of answering queries
in presence of GLAV mappings. Since the Dependency Implication Problem is known to be
undecidable, this shows that the GLAV Query Answering Problem is also undecidable.

The reduction technique is standard for proving undecidability results. We first recall
how it works and also recall the Dependency Implication Problem. We believe that these notions
are important to know beyond the scope of this book. Finally, we use a reduction to show the
undecidability of answering queries using GLAV mappings.

Reduction from a decision problem B to a decision problem B’

Let B be a Boolean function over a set X. The decision problem B is decidable if there exists an
algorithm (in any computation model equivalent to Turing machines) that terminates on any
input x ∈ B and returns “true” if and only if B(x) is true.

Let B, B′ be two decision problems. A reduction from B to B’ is an algorithm f computing a
function (also denoted f ) from X to X’ such that: B(x) is true⇔ B’(f(x)) is true.

It is immediate to see that if there is a reduction f from B to B′:

• if B′ is decidable then B is. Suppose B′ is decidable. Let fB′ be an algorithm that given
some x′ ∈ X′, decides whether B′(x′) holds. Then for each x, B(x) is true if fB′( f (x)) is
true. This provides an algorithm for deciding for any x if B(x) is true.

• (The contraposite) if B is undecidable, then B′ is also undecidable.

The Dependency Implication Problem

We recall the class of dependencies that are used. Let R be a relation of arity n. Then:

Functional dependencies. A functional dependency over R is an expression R : i1...im → j,
where 1≤ i1, ..., im, j ≤ n, for n = arity(R). An instance I over R satisfies R : i1...im→ j if
for each tuples 〈a1, ...an〉, 〈b1, ...bn〉 in I,

if for each k ∈ [1..m], aik = bik , then aj = bj.

Inclusion dependencies. An inclusion dependency over R1, R2 is an expression R1 : i1...im ⊆
R2 : j1...jm, where the ik are distinct, the jk are distinct, 1 ≤ i1, ..., im ≤ arity(R1), 1 ≤
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j1, ..., jm ≤ arity(R2). An instance I over {R1, R2} satisfies R1 : i1...im ⊆ R2 : j1...jm if for
each tuple 〈a1, ..., an〉 in I(R1), there exists a tuple 〈b1, ...,bn′〉 in I(R2) such that for each
k, 1≤ k ≤ m, aik = bjk .

We will use the following known result:

Theorem 6.2 (Undecidability of the Dependency Implication Problem). Let R = {R1, ..., Rn} be a
relational schema. Given a set Σ of functional and inclusion dependencies and an inclusion
dependency σ over relations in R, one cannot decide whether Σ |= σ (i.e., whether each
instance over R satisfying Σ also satisfies σ).

The problem is undecidable when Σ contains both functional and inclusion dependencies.
Note that the implication problem is decidable for functional dependencies alone, and for
inclusion dependencies alone. Undecidability arises when they are considered together.

Undecidability of the GLAV Query Answering Problem

The GLAV Query Answering Problem is to decide, given a PDMS N defined using a set of
GLAV mappings and a query asked at one of the peers whether some particular tuple is in its
answer.

Let us define a reduction from the Dependency Implication Problem to the GLAV Query
Answering Problem. If we show that such a reduction exists, since the Dependency Implication
Problem is undecidable, this will show that the GLAV Query Answering Problem is undecidable.

Surprisingly, we can show the reduction for a PDMS with a single peer. To do that, we will
use some GLAV mapping of the form q@P ⊇ q′@P, where both sides of the mapping involve
the same peer. Note that the undecidability still holds if such “self” mappings are forbidden.
Indeed, we can simulate such a mapping by using “clones” of relations. For instance, suppose
that we want to enforce the mapping R@P(x1, ..., xn) ⊇ R′@P(y1, ...,yn). Then we can use a
dummy site P̂ and a copy R̂@P̂ of R@P with the mappings:

R@P(x1, ..., xn) ⊇ R̂@P̂(x1, ..., xn)

R̂@P̂(x1, ..., xn) ⊇ R@P(x1, ..., xn)

R̂@P̂(x1, ..., xn) ⊇ R′@P(y1, ...,yn)

So, in the rest of this proof, we consider a single peer, say P, with possibly self mappings. To
simplify a relation R@P is simply denoted R.

Let (Σ,σ) be an instance over {R1, ..., Rn} of the Dependency Implication Problem with Σ a
finite set of functional and inclusion dependencies, and σ an inclusion dependency. We build
a PDMS N defined as follows:

• For each relation Ri, the peer P has a relation Ri.

• For each inclusion dependency R1 : i1...im ⊆ R2 : j1...jm in Σ, we add the GLAV mapping
q1 ⊆ q2, where:

q1(x1, ..., xm) :- R1(~u)
q2(x1, ..., xm) :- R2(~v)

where ~u has xk in position ik for each k and some existential variable xi
j in each other

position j; and similarly for ~v and jk.
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• For each functional dependency Ri : i1...im→ j in Σ, we add the GLAV mapping q ⊆ q′

where q,q′ are defined by:

q(xi1 , ..., xik , xj, x′j) :- Ri(x1, ..., xk), Ri(x′1, ..., x′k), xi1 = x′i1 , ..., xik = x′ik

q′(xi1 , ..., xik , xj, x′j) :- Ri(x1, ..., xk), Ri(x′1, ..., x′k), xi1 = x′i1 , ..., xik = x′ik
,xj = x′j

for some distinct sets x1, ..., xk and x′1, ..., x′k of variables.

It is easy to see that the GLAV mappings force each Ri to satisfy the functional dependen-
cies of Ri, and each Ri, Rj to satisfy the inclusion dependencies between Ri and Rj.

Let us assume that σ = Ri : i1 ⊆ Rj : j1 for some Ri of arity n. (This is without loss of
generality since the implication is already undecidable when σ is unary).

Let Ext(Ri) be the set of tuples t of arity n with values in [1..n] such that:

• t[i1] = 1, for every tuple t in Ext(Ri),

• each tuple t in Ext(Ri) represents an equality pattern between values in tuples of size n.

For instance if n = 3 and i1 = 2, Ext(Ri) = {〈1,1,1〉, 〈1,1,2〉, 〈2,1,1〉, 〈2,1,2〉, 〈2,1,3〉}.
We construct an instance (N , Ext(Ri),q) of the GLAV Query Answering Problem where q is

the query defined by q(x) :- Rj(y1, ..., x, ...yk) where the distinguished variable x is in position
j1, and the existential variables yi are pairwise distinct.

We show that Σ |= σ iff 1 is an answer to q in the PDMS N in which the only data is
Ext(Ri).

(⇒) Suppose that Σ |= σ. Let I be a model of Ext(Ri) satisfying the GLAV mappings of N .
By construction of those GLAV mappings, I is a model of Σ. Because Σ |= σ, I is a model of
σ, and thus for each tuple 〈a1, ..., an〉 in I(Ri), there exists a tuple 〈b1, ...,bk〉 in I(Rj) such that
ai1 = 1 = bj1 . Therefore, I |= ∃y1, ...,ykRj(y1, ...,1, ...yk), i.e., I |= q(1). Thus 1 is an answer to q
given the GLAV mapping of N and the extension Ext(Ri).

(⇐) Conversely, suppose that 1 is an answer to q given the GLAV mapping of N and the
extension Ext(Ri). Note that 1 is also an answer to q if the extension of Ri is reduced to any
tuple of the original Ext(Ri). Suppose that Σ 6|= σ: there exists an interpretation I that satisfies
Σ in which σ is not satisfied. This means that there exists a tuple 〈e1, ..., e, ...en〉 (where e is
in position i1) in I(Ri) such that there does not exists a tuple in I(Rj) with the value e in
position j1. Let t be the tuple of Ext(Ri) which corresponds to the equality pattern between
values of 〈e1, ..., e, ...en〉. By extending I to interpret each value of t by the element ei at the
same position in 〈e1, ..., e, ...en〉, we obtain a new interpretation I′ that satisfies Σ and thus each
GLAV mapping ofN , and Ri(t). Since 1 is an answer to q given the GLAV mapping ofN and
Ri(t), I′ |= q(1), i.e., I′(1) ∈ I′(Rj[j1]). Since I′(1) = e and I′(Rj) = I(Rj), it means that there
exists a tuple in I(Rj) with the value e in position j1, which contradicts our assumption that σ
is not satisfied in I. Hence Σ |= σ. 2

6.2 Decentralized DL-LITER

If we restrict the GLAV mappings in a PDMS to be inclusion statements that are expressible in
DL-LITER, we get what we will call a DL-LITER PDMS. The decidability of query answering
over a DL-LITER PDMS results from the algorithmic machinery described in the previous
chapter for answering queries over DL-LITER knowledge bases. Given a query posed to a
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given peer, the application of the PerfectRef algorithm to the set of all the GLAV mappings
in the PDMS provides a set of reformulations. The union of the answer sets obtained by
evaluating each reformulation provides the answer set of the initial query. Note that a
reformulation is of the form:

R1@i1(~z1), . . ., Rk@ik(~zk)

where the different conjuncts Rj@ij(~zj) may refer to relations of different peer schemas.
Therefore, the evaluation of each reformulation may require the interrogation of different
peers and the combination of the answers returned by each such sub-queries.

This provides a centralized algorithm for computing the reformulations of answering
queries over a decentralized DL-LITER knowledge base. We next present a decentralized
algorithm that computes exactly the same thing, i.e., we present a decentralized version of
the PerfectRef algorithm seen in the previous chapter in order to deploy effectively DL-LITER
PDMSs that avoids having to centralize all the GLAV mappings.

We denote PerfectRef i(q) the reformulation algorithm running on the peer Pi applied to
a query q (asked to the peer Pi). The main procedure is the decentralized reformulation of
each atom of the query using the positive inclusion statements that are distributed over the
whole PDMS. Let us denote AtomRef i(g) the reformulation algorithm running on the peer Pi
to reformulate the atom g (built on a relation of the schema of the peer Pi).

Within each peer Pi we distinguish the local positive inclusion axioms of the form Ci ⊆ Di
where Ci and Di are built over relations in the schema of the peer Pi, from the mappings which
are positive inclusion mappings of the form Cj ⊆ Di or Di ⊆ Cj where Cj denotes a relation of
another peer Pj (while Di refers to a relation in the schema of the peer Pi).

Let us denote LocalRe f (g, PIi) the result of the reformulation of the atom g using the
set PIi of local positive inclusion atoms of the peer Pi. We refer to the previous chapter
(Definition ??, Section ??) for the computation of LocalRe f (g, PIi) by backward application of
the local PIs.

We just recall here that gr(g, I) denotes the reformulation of the atom g using the positive
inclusion axiom I. We also recall that the atoms g that can be found as conjunct of a query q
over a DL-LITER PDMS are of the following forms:

• A@i(x) where A@i is a unary relation in the schema of a peer Pi and x an (existential or
qualified) variable

• P@i(x,_), P@i(_, x) or P@i(x,y) where P@i is a binary relation in the schema of a peer
Pi, and _ denotes an unbounded existential variable of the query, while x and y denote
qualified variables or existential variables which are bounded in the query.

Running the algorithm AtomRef i on the peer Pi for reformulating the atom g consists
first in computing the set LocalRe f (g, PIi) of local reformulations of g, and then, for each
mapping m with a peer Pj applicable to a local reformulation g′, in triggering the application
of AtomRef j(gr(g′,m)) on Pj (by sending a message to Pj). Other peers Pk may be solicited in
turn to run locally AtomRef k.

A loop may occur if a request of reformulation of an atom g initiated by a given peer P
generates a branch of requests reaching a peer P′ which in turn requests P to reformulate g.
Such loops can be easily handled by transmitting with every request the history of the current
reasoning branch. More precisely, an history hist is a sequence [(gk, Pk), . . . , (g1, P1)] of pairs
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(gi, Pi) where gi is an atom of a peer Pi such that for each i ∈ [1..k− 1], gi+1 is a reformulation
of gi using a mapping between Pi and Pi+1.

This is summarized in Algorithm 3, which is the atom reformulation algorithm with
history running on Peer i.

Algorithm 3: The decentralized algorithm with history for reformulating atoms
AtomRefHisti(g, hist)
Input: An atom g in the vocabulary of the peer Pi, an history hist
Output: The set of its reformulations in the PDMS: R
(1) R← ∅
(2) if (g, Pi) ∈ hist return R
(3) else
(4) Let PIi be the local PIs of the peer Pi
(5) Let Mi be the mappings between the peer Pi and other peers
(6) for each g′ ∈ LocalRe f (g, PIi)
(7) for each mapping m ∈ Mi between Pi and a peer Pj applicable to g′

(8) R← R ∪ AtomRe f Histj(gr(g′,m), [(g, Pi)|hist])

Algorithm 4 is the atom reformulation algorithm (denoted AtomRef i) running on peer Pi,
which just calls AtomRefHisti with an empty history.

Algorithm 4: The decentralized algorithm for reformulating atoms
AtomRef i(g)
Input: An atom g in the vocabulary of the peer Pi
Output: The set of its reformulations in the PDMS
(1) AtomRefHisti(g,∅)

The decentralized version of the PerfectRef algorithm that computes all the reformulations
of a conjunctive query q is provided in Algorithm 5. The main difference with the centralized
version is that the simplification of the produced reformulations (which is required for making
some PIs applicable) are delayed after (decentralized) computation of the reformulations of
all the atoms in the query.

We recall here the notation used for denoting the simplification of some atoms within a
query under reformulation, which were introduced in the previous chapter when describing
the PerfectRef algorithm:

• The notation q[g/gr(g, I)] denotes the replacement of the atom g in the body of the
query q with the result gr(g, I) of the backward application of the PI I to the atom g,

• The operator reduce(q, g, g′) denotes the simplification of the body of q obtained by
replacing the conjunction of its two atoms g and g’ with their most general unifier (if g
and g’ can be unified),

• The operator τ replaces in the body of a query all the possibly new unbounded existential
variables with the anonymous variable denoted _.
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For each atom in the query, it computes first (in the decentralized manner explained
previously) the set of all of its reformulations, and then a first set of reformulations of the
original query by building all the conjunctions between the atomic reformulations (denoted
⊕n

i=1AtomRefi(gi) at Line 5). These reformulations are then possibly simplified by unifying
some of their atoms (Lines 8 to 11), and the reformulation process is iterated on these newly
produced reformulations until no simplification is possible (general loop starting on Line 4).

Algorithm 5: The decentralized PerfectRef algorithm running on the peer Pi

PerfectRefi(q)
Input: a conjunctive query q over the schema of the peer Pi
Output: a set of reformulations of the query using the union of PIs and
mappings in the PDMS
(1) PR := {q}
(2) PR′ := PR
(3) while PR′ 6= ∅
(4) (a) foreach q′ = g1 ∧ g2 ∧ . . . ∧ gn ∈ PR′

(5) PR′′ := ⊕n
i=1 AtomRe f i(gi)

(6) PR′ := ∅
(7) (b) foreach q′′ ∈ PR′′

(8) foreach g′1, g′2 ∈ q′′

(9) if g′1 and g′2 unify
(10) PR′ := PR′ ∪ {τ(reduce(q′′, g′1, g′2))}
(11) PR := PR ∪ PR′ ∪ PR′′

(12) return PR

One can prove that the decentralized algorithm computes the same set of facts as the
centralized one, and thus is correct. The proof results (1) from the observation that the
centralized version of PerfectRefi (in which AtomRefi(gi) is computed by iterating the one-
step application of PIs on each atom gi of the query) produces the same results than the
original PerfectRef, and (2) from the completeness of AtomRefi(gi) ensuring the decentralized
computation of all the reformulations of gi.

7 Further reading

The Bucket and Minicon algorithms can be extended ( [LRO96, PH01]) to handle (union
of) conjunctives queries with interpreted predicates. When a query q includes interpreted
predicates, finding all answers to q given the LAV mappings is co-NP hard in the size of the
data. This complexity result shows that answering such queries cannot be fully realized with
a finite set of conjunctive rewriting (unlike what we showed here in absence of interpreted
predicates). The Inverse-rule algorithm does not handle interpreted predicates but is able to
build recursive query plans for data integration [DGL00].

A survey on answering queries using views can be found in [Hal01], and a survey on
query containment for data integration systems in [MHF03].

More material can be found on PDMS in [HIST03, HIDT05].
Distributed reasoning in a peer to peer setting has been investigated in [ACG+06] as a
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basis for querying distributed data through distributed ontologies [GR03, AGR09]. The subtle
point that we have not treated in this chapter concerns consistency checking. In contrast
with the centralized case, the global consistency of the PDMS cannot be checked at query
time since the queried peer does not know all the peers in the PDMS. However, it can get the
identifiers of the peers involved in a reformulation of the query. Then the (local) consistency
of the union of the corresponding knowledge bases can be checked in a decentralized manner.
The important point is that it can be shown that this local consistency is sufficient to guarantee
that the answers obtained by evaluating the reformulations (computed by the decentralized
algorithm that we have described) are well-founded.

The undecidability of the Dependency Implication Problem is shown in [CV85] even if σ is a
unary inclusion dependency. More on this topic may be found in [ARV95])

8 Exercices

Exercise 8.1 By applying the query containment algorithm (see Algorithm 1), determine which query
is contained in which one among the three following queries. Are there equivalent queries ? (two
queries q and q′ are equivalent if q is contained in q′ and q′ is contained in q).

q1(x) :- A(x,y), B(x,y’), A(y,z’)

q2(x) :- A(x,y’), A(y’,z), B(x,x)

q3(x) :- B(x,y), A(x,y’), B(z,z’), A(y’,u)

Exercise 8.2 Consider a global schema defined by the following relations:
emp(E): E is an employee
phone(E,P): E has P as phone number
office(E,O): E has O as office
manager(E,M): M is the manager of E
dept(E,D): D is the department of E
Suppose that the three following data sources are available for providing data:
Source1 provides the phone number and the manager for some employees. It is modeled by the local

relation s1(E,P,M).
Source2 provides the office and the department for some employees. It is modeled by the local

relation s2(E,O,D).
Source3 provides the phone number of employees of the ’toy’ department. It is modeled by the local

relation s3(E,P).

1. Model the content of these sources by GAV mappings.

2. Model the content of these sources by LAV mappings.

3. Consider the global query asking for Sally’s phone number and office:

q(x,y) :- phone(’sally’, x), office(’sally’, y)
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Compute the reformulation of the query in terms of local relations:

• by applying the query unfolding algorithmto the GAV mappings of Question 1,

• by applying the Bucket algorithm to LAV mappings of Question 2.

Which algorithm is easier ?

4. Now Source1 disappears (becomes unavailable) and a new source comes in, that provides the
phone number of their manager for some employees. Do the updates in the GAV and LAV
mappings that are required to take into account these changes. What is the approach (GAV or
LAV) for which updating the mappings between the global and local relations is easier ?

Exercise 8.3 Consider the three following LAV mappings:
V1(x) ⊆ cite(x,y), cite(y,x)
V2(x,y) ⊆ sameTopic(x,y)
V3(x,y) ⊆ cite(x,z), cite(z,x), sameTopic(x,z)

1. Provide the FOL semantics of these LAV mappings

2. Suppose that the global relation cite(x,y) means that the paper x cites the paper y, and that the
global relation sameTopic(x,y) means that the two papers x and y have the same topic. Suppose
that each LAV mapping models the content of different available data sources. Express with an
english sentence which information on papers each data source provides.

3. Apply in turn the Bucket, Minicon and Inverse-rule algorithms to compute the different rewrit-
ings of the following query asking for papers that cite and are cited by a paper having the same
topic:

q(u) :- cite(u,v), cite(v,u), sameTopic(u,v)
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