Distributed Computing at Web Scale

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

November 10, 2011
Outline

1 MapReduce
 - Introduction
 - The MapReduce Computing Model
 - MapReduce Optimization
 - Application: PageRank
 - MapReduce in Hadoop

2 Toward Easier Programming Interfaces: Pig

3 Conclusions
Outline

1 MapReduce
 - Introduction
 - The MapReduce Computing Model
 - MapReduce Optimization
 - Application: PageRank
 - MapReduce in Hadoop

2 Toward Easier Programming Interfaces: Pig

3 Conclusions
Data analysis at a large scale

- **Very large** data collections (TB to PB) stored on distributed filesystems:
 - Query logs
 - Search engine indexes
 - Sensor data

- Need **efficient ways** for analyzing, reformatting, processing them

- In particular, we want:
 - Parallelization of computation (benefiting of the processing power of all nodes in a cluster)
 - Resilience to failure
Centralized computing with distributed data storage

Run the program at client node, get data from the distributed system.

Downsides: important data flows, no use of the cluster computing resources.
Pushing the program near the data

- **MapReduce**: A programming model (inspired by standard functional programming operators) to facilitate the development and execution of distributed tasks.

- Published by Google Labs in 2004 at OSDI [DG04]. Widely used since then, open-source implementation in Hadoop.
MapReduce in Brief

- The programmer defines the program logic as **two functions**:
 - **Map** transforms the input into key-value pairs to process
 - **Reduce** aggregates the list of values for each key

- The MapReduce environment takes in charge **distribution aspects**

- A complex program can be decomposed as a **succession** of Map and Reduce tasks

- Higher-level languages (Pig, Hive, etc.) help with writing distributed applications
Outline

1 MapReduce
 - Introduction
 - The MapReduce Computing Model
 - MapReduce Optimization
 - Application: PageRank
 - MapReduce in Hadoop

2 Toward Easier Programming Interfaces: Pig

3 Conclusions
Three operations on key-value pairs

1. User-defined: \(\textit{map} : (K, V) \rightarrow \text{list}(K', V') \)

   ```
   function \textit{map}(\texttt{uri}, \texttt{document})
   
   \texttt{foreach} distinct term in \texttt{document}
   
   output (term, count(term, document))
   ```

2. Fixed behavior: \(\textit{shuffle} : \text{list}(K', V') \rightarrow \text{list}(K', \text{list}(V')) \) regroups all intermediate pairs on the key

3. User-defined: \(\textit{reduce} : (K', \text{list}(V')) \rightarrow \text{list}(K'', V'') \)

   ```
   function \textit{reduce}(\texttt{term}, \texttt{counts})
   
   output (term, sum(counts))
   ```
Job workflow in MapReduce

Important: each pair, at each phase, is processed independently from the other pairs.

Network and distribution are transparently managed by the MapReduce environment.
Example: term count in MapReduce (input)

<table>
<thead>
<tr>
<th>URL</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>the jaguar is a new world mammal of the felidae family.</td>
</tr>
<tr>
<td>u_2</td>
<td>for jaguar, atari was keen to use a 68k family device.</td>
</tr>
<tr>
<td>u_3</td>
<td>mac os x jaguar is available at a price of us 199 for apple’s new “family pack”.</td>
</tr>
<tr>
<td>u_4</td>
<td>one such ruling family to incorporate the jaguar into their name is jaguar paw.</td>
</tr>
<tr>
<td>u_5</td>
<td>it is a big cat.</td>
</tr>
</tbody>
</table>
Example: term count in MapReduce

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>mammal</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>available</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>2</td>
</tr>
</tbody>
</table>

..

map

output

shuffle input
Example: term count in MapReduce

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>mammal</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>available</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>2</td>
</tr>
</tbody>
</table>

map

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>jaguar</td>
<td>1,1,1,2</td>
</tr>
<tr>
<td>mammal</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1,1,1</td>
</tr>
<tr>
<td>available</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

shuffle input

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

reduce input

output

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: term count in MapReduce

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>mammal</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>available</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1</td>
</tr>
<tr>
<td>jaguar</td>
<td>2</td>
</tr>
</tbody>
</table>

Map

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>jaguar</td>
<td>1,1,1,2</td>
</tr>
<tr>
<td>mammal</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>1,1,1</td>
</tr>
<tr>
<td>available</td>
<td>1</td>
</tr>
</tbody>
</table>

Shuffle output

Reduce input

<table>
<thead>
<tr>
<th>term</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>jaguar</td>
<td>5</td>
</tr>
<tr>
<td>mammal</td>
<td>1</td>
</tr>
<tr>
<td>family</td>
<td>3</td>
</tr>
<tr>
<td>available</td>
<td>1</td>
</tr>
</tbody>
</table>

Final output
Example: simplification of the *map*

```
function map(uri, document)
    foreach distinct term in document
        output (term, count(term, document))
```

can actually be further simplified:

```
function map(uri, document)
    foreach term in document
        output (term, 1)
```

since all counts are aggregated.

Might be less efficient though (we may need a *combiner*, see further)
A MapReduce cluster

Nodes inside a MapReduce cluster are decomposed as follows:

- A **jobtracker** acts as a master node; MapReduce jobs are submitted to it
- Several **tasktrackers** run the computation itself, i.e., *map* and *reduce* tasks
- A given tasktracker may run several tasks in parallel
- Tasktrackers usually also act as **data nodes** of a distributed filesystem (e.g., GFS, HDFS)

+ a client node where the application is launched.
Processing a MapReduce job

A MapReduce job takes care of the distribution, synchronization and failure handling. Specifically:

- the input is split into M groups; each group is assigned to a mapper (assignment is based on the data locality principle)
- each mapper processes a group and stores the intermediate pairs locally
- grouped instances are assigned to reducers thanks to a hash function
- (shuffle) intermediate pairs are sorted on their key by the reducer
- one obtains grouped instances, submitted to the reduce function

Remark: the data locality does no longer hold for the reduce phase, since it reads from the mappers.
Assignment to reducer and mappers

- Each mapper task processes a fixed amount of data (split), usually set to the distributed filesystem block size (e.g., 64MB)
- The number of mapper nodes is function of the number of mapper tasks and the number of available nodes in the cluster: each mapper nodes can process (in parallel and sequentially) several mapper tasks
- Assignment to mapper tries optimizing data locality: the mapper node in charge of a split is, if possible, one that stores a replica of this split (or if not possible, a node of the same rack)
- The number of reducer tasks is set by the user
- Assignment to reducers is done through a hashing of the key, usually uniformly at random; no data locality possible
Distributed execution of a MapReduce job.
Processing the term count example

Let the input consists of documents, say, one million 100-terms documents of approximately 1 KB each.

The split operation distributes these documents in groups of 64 MBs: each group consist of 64,000 documents. Therefore

\[M = \lceil \frac{1,000,000}{64,000} \rceil \approx 16,000 \text{ groups}. \]

If there are 1,000 mapper node, each node processes on average 16 splits.

If there are 1,000 reducers, each reducer \(r_i \) processes all key-value pairs for terms \(t \) such that \(\text{hash}(t) = i \ (1 \leq i \leq 1,000) \)
Processing the term count example (2)

Assume that \(\text{hash('call')} = \text{hash('mine')} = \text{hash('blog')} = i = 100 \). We focus on three Mappers \(m_p, m_q \) and \(m_r \):

1. \(G_p^i = (\ldots, ('mine', 1), \ldots, ('call', 1), \ldots, ('mine', 1), \ldots, ('blog', 1), \ldots) \)
2. \(G_q^i = (\ldots, ('call', 1), \ldots, ('blog', 1), \ldots) \)
3. \(G_r^i = (\ldots, ('blog', 1), \ldots, ('mine', 1), \ldots, ('blog', 1), \ldots) \)

\(r_i \) reads \(G_p^i, G_q^i \) and \(G_r^i \) from the three Mappers, sorts their unioned content, and groups the pairs with a common key:

\[
\ldots, ('blog', <1, 1, 1, 1>), \ldots, ('call', <1, 1>), \ldots, ('mine', <1, 1, 1>)
\]

Our \textit{reduce} function is then applied by \(r_i \) to each element of this list. The output is \(('blog', 4), ('call', 2) \) and \(('mine', 3) \).
Failure management

In case of failure, because the tasks are distributed over hundreds or thousands of machines, the chances that a problem occurs somewhere are much larger; starting the job from the beginning is not a valid option.

The Master periodically checks the availability and reachability of the tasktrackers (heartbeats) and whether map or reduce jobs make any progress.

1. If a reducer fails, its task is reassigned to another tasktracker; this usually require restarting mapper tasks as well (to produce intermediate groups).
2. If a mapper fails, its task is reassigned to another tasktracker.
3. If the jobtracker fails, the whole job should be re-initiated.
Joins in MapReduce

Two datasets, A and B that we need to join for a MapReduce task

- If one of the dataset is small, it can be sent over fully to each tasktracker and exploited inside the map (and possibly $reduce$) functions.
- Otherwise, each dataset should be grouped according to the join key, and the result of the join can be computing in the $reduce$ function.

Not very convenient to express in MapReduce. Much easier using Pig.
Using MapReduce for solving a problem

- Prefer:
 - Simple *map* and *reduce* functions
 - Mapper tasks processing *large data chunks* (at least the size of distributed filesystem blocks)

- A given application may have:
 - A chain of *map* functions (input processing, filtering, extraction...)
 - A sequence of several *map-reduce jobs*
 - No *reduce task* when everything can be expressed in the *map* (zero reducers, or the identity reducer function)

- Not the right tool for everything (see further)
Outline

1. MapReduce
 - Introduction
 - The MapReduce Computing Model
 - MapReduce Optimization
 - Application: PageRank
 - MapReduce in Hadoop

2. Toward Easier Programming Interfaces: Pig

3. Conclusions
Combiners

- A mapper task can produce a large number of pairs with the same key
- They need to be sent over the network to the reducer: costly
- It is often possible to combine these pairs into a single key-value pair

Example

(jaguar,1), (jaguar, 1), (jaguar, 1), (jaguar, 2) → (jaguar, 5)

- combiner : list(V′) → V′ function executed (possibly several times) to combine the values for a given key, on a mapper node
- No guarantee that the combiner is called
- Easy case: the combiner is the same as the reduce function. Possible when the aggregate function α computed by reduce is distributive:
 \[\alpha(k_1, \alpha(k_2, k_3)) = \alpha(k_1, k_2, k_3) \]
Compression

- **Data transfers** over the network:
 - From datanodes to mapper nodes (usually reduced using data locality)
 - From mappers to reducers
 - From reducers to datanodes to store the final output
- Each of these can benefit from **data compression**
- **Tradeoff** between volume of data transfer and (de)compression time
- Usually, **compressing map outputs** using a fast compressor increases efficiency
Optimizing the *shuffle* operation

- Sorting of pairs on each reducer, to compute the groups: *costly operation*
- Sorting much more efficient *in memory* than on disk
- **Increasing the amount of memory** available for *shuffle* operations can greatly increase the performance
- ... at the downside of less memory available for *map* and *reduce* tasks (but usually not much needed)
Speculative execution

- The MapReduce jobtracker tries detecting tasks that take longer than usual (e.g., because of hardware problems)
- When detected, such a task is **speculatively** executed on another tasktracker, without killing the existing task
- Eventually, when one of the attempts succeeds, the other one is killed
Outline

1 MapReduce
 - Introduction
 - The MapReduce Computing Model
 - MapReduce Optimization
 - Application: PageRank
 - MapReduce in Hadoop

2 Toward Easier Programming Interfaces: Pig

3 Conclusions
PageRank computation

PageRank: importance score for nodes in a graph, used for ranking query results of Web search engines. Fixpoint computation, as follows:

2. Let u be the uniform vector of sum 1, $v = u$.
3. Repeat N times:
 - Set $v := (1 - d)G^Tv + du$ (say, $d = \frac{1}{4}$).

Exercise

Express PageRank computation as a MapReduce problem. Main program? map and reduce functions? combiner function?

Illustrate on this graph.
Outline

1. MapReduce
 - Introduction
 - The MapReduce Computing Model
 - MapReduce Optimization
 - Application: PageRank
 - MapReduce in Hadoop

2. Toward Easier Programming Interfaces: Pig

3. Conclusions
Hadoop

- Open-source software, Java-based, managed by the Apache foundation, for large-scale distributed storage and computing
- Originally developed for Apache Nutch (open-source Web search engine), a part of Apache Lucene (text indexing platform)
- Open-source implementation of GFS and Google’s MapReduce
- Yahoo!: a main contributor of the development of Hadoop
- Hadoop components:
 - Hadoop filesystem (HDFS)
 - MapReduce
 - Pig (data exploration), Hive (data warehousing): higher-level languages for describing MapReduce applications
 - HBase: column-oriented distributed DBMS
 - ZooKeeper: coordination service for distributed applications
Hadoop programming interfaces

- Different APIs to write Hadoop programs:
 - A rich Java API (main way to write Hadoop programs)
 - A Streaming API that can be used to write map and reduce functions in any programming language (using standard inputs and outputs)
 - A C++ API (Hadoop Pipes)
 - With a higher-language level (e.g., Pig, Hive)

- Advanced features only available in the Java API

- Two different Java APIs depending on the Hadoop version; presenting the “old” one
Java *map* for the term count example

```java
public class TermCountMapper extends MapReduceBase
    implements Mapper<Text, Text, Text, IntWritable> {

    public void map(
        Text uri, Text document,
        OutputCollector<Text, IntWritable> output,
        Reporter reporter)
    {
        Pattern p=Pattern.compile("[\p{L}]+");
        Matcher m=p.matcher(document);
        while(matcher.find()) {
            String term=matcher.group().
                output.collect(new Text(term), new IntWritable(1));
        }
    }
}
```
Java \textit{reduce} for the term count example

```java
public class TermCountReducer extends MapReduceBase
    implements Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(
        Text term, Iterator<IntWritable> counts,
        OutputCollector<Text, IntWritable> output,
        Reporter reporter)
    {
        int sum = 0;
        while (counts.hasNext()) {
            sum += values.next().get();
        }
        output.collect(term, new IntWritable(sum));
    }
}
```
Java driver for the term count example

```java
public class TermCount {
    public static void main(String args[]) throws IOException {
        JobConf conf = new JobConf(TermCount.class);
        FileInputFormat.addInputPath(conf, new Path(args[0]));
        FileOutputFormat.addOutputPath(conf, new Path(args[1]));

        // In a real application, we would have a custom input
        // format to fetch URI-document pairs
        conf.setInputFormat(KeyValueTextInputFormat.class);

        conf.setMapperClass(TermCountMapper.class);
        conf.setCombinerClass(TermCountReducer.class);
        conf.setReducerClass(TermCountReducer.class);

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        JobClient.runJob(conf);
    }
}
```
Testing and executing a Hadoop job

- Required environment:
 - JDK on client
 - JRE on all Hadoop nodes
 - Hadoop distribution (HDFS + MapReduce) on client and all Hadoop nodes
 - SSH servers on each tasktracker, SSH client on jobtracker (used to control the execution of tasktrackers)
 - An IDE (e.g., Eclipse + plugin) on client

- Three different execution modes:
 - local: One mapper, one reducer, run locally from the same JVM as the client
 - pseudo-distributed: Mappers and reducers are launched on a single machine, but communicate over the network
 - distributed: Over a cluster for real runs
Debugging MapReduce

- Easiest: debugging in local mode
- Web interface with status information about the job
- Standard output and error channels saved on each node, accessible through the Web interface
- Counters can be used to track side information across a MapReduce job (e.g., number of invalid input records)
- Remote debugging possible but complicated to set up (impossible to know in advance where a map or reduce task will be executed)
- IsolationRunner allows to run in isolation part of the MapReduce job
Task JVM reuse

- By default, each *map* and *reduce* task (of a given split) is run in a separate JVM.
- When there is a lot of initialization to be done, or when splits are small, it might be useful to reuse JVMs for subsequent tasks.
- Of course, only works for tasks run on the same node.
Hadoop in the cloud

- Possibly to set up one’s own Hadoop cluster
- But often easier to use clusters in the cloud that support MapReduce:
 - Amazon EC2
 - Cloudera
 - etc.
- Not always easy to know the cluster’s configuration (in terms of racks, etc.) when on the cloud, which hurts data locality in MapReduce
Outline

1. MapReduce

2. Toward Easier Programming Interfaces: Pig
 - Basics
 - Pig operators
 - From Pig to MapReduce

3. Conclusions
Outline

1. MapReduce

2. Toward Easier Programming Interfaces: Pig
 - Basics
 - Pig operators
 - From Pig to MapReduce

3. Conclusions
Pig Latin

Motivation: define high-level languages that use MapReduce as an underlying data processor.

A Pig Latin statement is an operator that takes a relation as input and produces another relation as output.

Pig Latin statements are generally organized in the following manner:

1. A **LOAD** statement reads data from the file system as a *relation* (list of tuples).
2. A series of “transformation” statements process the data.
3. A **STORE** statement writes output to the file system; or, a **DUMP** statement displays output to the screen.

Statements are executed as composition of MapReduce jobs.
Using Pig

- Part of Hadoop, downloadable from the Hadoop Web site
- Interactive interface (Grunt) and batch mode
- Two execution modes:
 - `local` data is read from disk, operations are directly executed, no MapReduce
 - `MapReduce` on top of a MapReduce cluster (pipeline of MapReduce jobs)
Example input data

A flat file, tab-separated, extracted from DBLP.

<table>
<thead>
<tr>
<th>Year</th>
<th>Journal</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>VLDB J.</td>
<td>Model-based approximate querying in sensor net</td>
</tr>
<tr>
<td>1997</td>
<td>VLDB J.</td>
<td>Dictionary-Based Order-Preserving String Compression</td>
</tr>
<tr>
<td>2003</td>
<td>SIGMOD Record</td>
<td>Time management for new faculty.</td>
</tr>
<tr>
<td>2001</td>
<td>VLDB J.</td>
<td>E-Services – Guest editorial.</td>
</tr>
<tr>
<td>2003</td>
<td>SIGMOD Record</td>
<td>Exposing undergraduate students to database systems</td>
</tr>
<tr>
<td>1998</td>
<td>VLDB J.</td>
<td>Integrating Reliable Memory in Databases.</td>
</tr>
<tr>
<td>1996</td>
<td>VLDB J.</td>
<td>Query Processing and Optimization in Oracle Rdb</td>
</tr>
<tr>
<td>1994</td>
<td>SIGMOD Record</td>
<td>Data Modelling in the Large.</td>
</tr>
<tr>
<td>2002</td>
<td>SIGMOD Record</td>
<td>Data Mining: Concepts and Techniques – Book Review</td>
</tr>
</tbody>
</table>
Computing average number of publications per year

-- Load records from the file
articles = load 'journal.txt'
 as (year: chararray, journal:chararray, title: chararray) ;

sr_articles = filter articles by journal=='SIGMOD Record';

year_groups = group sr_articles by year;

avg_nb = foreach year_groups
 generate group, count(sr_articles.title);

dump avg_nb;
The data model

The model allows nesting of bags and tuples. Example: the `year_group` temporary bag.

```plaintext
group: 1990
sr_articles:
{
  (1990, SIGMOD Record, SQL For Networks of Relations.),
  (1990, SIGMOD Record, New Hope on Data Models and Types.)
}
```

Unlimited nesting, but no references, no constraint of any kind (for parallelization purposes).
Flexible representation

Pig allows the representation of heterogeneous data, in the spirit of semi-structured data models (e.g., XML).

The following is a bag with heterogeneous tuples.

```java
{(2005, {'SIGMOD Record', 'VLDB J.'},
     {'article1', 'article2'}),
 (2003, 'SIGMOD Record', {'article1', 'article2'},
     {'author1', 'author2'})
}
```
Outline

1 MapReduce

2 Toward Easier Programming Interfaces: Pig
 - Basics
 - Pig operators
 - From Pig to MapReduce

3 Conclusions
Main Pig operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>foreach</td>
<td>Apply one or several expression(s) to each of the input tuples</td>
</tr>
<tr>
<td>filter</td>
<td>Filter the input tuples with some criteria</td>
</tr>
<tr>
<td>distinct</td>
<td>Remove duplicates from an input</td>
</tr>
<tr>
<td>join</td>
<td>Join of two inputs</td>
</tr>
<tr>
<td>group</td>
<td>Regrouping of data</td>
</tr>
<tr>
<td>cogroup</td>
<td>Associate two related groups from distinct inputs</td>
</tr>
<tr>
<td>cross</td>
<td>Cross product of two inputs</td>
</tr>
<tr>
<td>order</td>
<td>Order an input</td>
</tr>
<tr>
<td>limit</td>
<td>Keep only a fixed number of elements</td>
</tr>
<tr>
<td>union</td>
<td>Union of two inputs (note: no need to agree on a same schema, as in SQL)</td>
</tr>
<tr>
<td>split</td>
<td>Split a relation based on a condition</td>
</tr>
</tbody>
</table>
Example dataset

A simple flat file with tab-separated fields.

1995 Foundations of Databases Abiteboul
1995 Foundations of Databases Hull
1995 Foundations of Databases Vianu
2010 Web Data Management Abiteboul
2010 Web Data Management Manolescu
2010 Web Data Management Rigaux
2010 Web Data Management Rousset
2010 Web Data Management Senellart

NB: Pig accepts inputs from user-defined function, written in Java – allows to extract data from any source.
The group operator

The “program”:

```pig
books = load 'webdam-books.txt'
    as (year: int, title: chararray, author: chararray);
group_auth = group books by title;
authors = foreach group_auth
generate group, books.author;
dump authors;
```

and the result:

```plaintext
(Foundations of Databases,
   {(Abiteboul),(Hull),(Vianu)})
(Web Data Management,
   {(Abiteboul),(Manolescu),(Rigaux),(Rousset),(Senellart)})
```
Unnesting with flatten

Flatten serves to unnest a nested field.

```plaintext
-- Take the 'authors' bag and flatten the nested set
flattened = foreach authors
    generate group, flatten(author);
```

Applied to the previous `authors` bags, one obtains:

(Foundations of Databases, Abiteboul)
(Foundations of Databases, Hull)
(Foundations of Databases, Vianu)
(Web Data Management, Abiteboul)
(Web Data Management, Manolescu)
(Web Data Management, Rigaux)
(Web Data Management, Rousset)
(Web Data Management, Senellart)
The cogroup operator

Allows to gather two data sources in nested fields

Example: a file with publishers:

Fundations of Databases Addison-Wesley USA
Fundations of Databases Vuibert France
Web Data Management Cambridge University Press USA

The program:

```pig
publishers = load 'webdam-publishers.txt' as (title: chararray, publisher: chararray) ;
cogrouped = cogroup flattened by group, publishers by title;
```
The result

For each grouped field value, two nested sets, coming from both sources.

(Foundations of Databases,
{ (Foundations of Databases,Abiteboul),
 (Foundations of Databases,Hull),
 (Foundations of Databases,Vianu)
},
{(Foundations of Databases,Addison-Wesley),
 (Foundations of Databases,Vuibert)
})

A kind of join? Yes, at least a preliminary step.
Joins

Same as before, but produces a flat output (cross product of the inner nested bags). The nested model is usually more elegant and easier to deal with.

```plaintext
-- Take the 'flattened' bag, join with 'publishers'
joined = join flattened by group, publishers by title;
```

(Foundations of Databases, Abiteboul,
 Fundations of Databases, Addison-Wesley)
(Foundations of Databases, Abiteboul,
 Fundations of Databases, Vuibert)
(Foundations of Databases, Hull,
 Fundations of Databases, Addison-Wesley)
(Foundations of Databases, Hull,
 ...
Outline

1. MapReduce

2. Toward Easier Programming Interfaces: Pig
 - Basics
 - Pig operators
 - From Pig to MapReduce

3. Conclusions
Plans

- A Pig program describes a logical data flow
- This is implemented with a physical plan, in terms of grouping or nesting operations
- This is in turn (for MapReduce execution) implemented using a sequence of map and reduce steps
Physical operators

Local Rearrange group tuples with the same key, on a local machine

Global Rearrange group tuples with the same key, globally on a cluster

Package construct a nested tuple from tuples that have been grouped
Translation of a simple Pig program

Logical plan
- LOAD
- GROUP
- FOREACH
- DUMP

Physical plan for // execution
- LOAD
- LOCAL REARRANGE
- GLOBAL REARRANGE
- PACKAGE
- FOREACH
- DUMP

MapReduce plan
- MAP compute keys + group locally by key
- Standard shuffle phase
- REDUCE package (nest on key values) + apply foreach
A more complex join-group program

```pig
books = load 'webdam-books.txt' 
  as (year: int, title: chararray, author: chararray) ;
vianu = filter books by author == 'Vianu';

publishers = load 'webdam-publishers.txt' 
  as (title: chararray, publisher: chararray) ;

joined = join vianu by title, publishers by title;

grouped = group joined by vianu::author;

count = foreach grouped
  generate group, COUNT(joined.publisher);
```

WebDam (INRIA) Distributed Computing at Web Scale November 10, 2011
Translation of a join-group program
Outline

1. MapReduce
2. Toward Easier Programming Interfaces: Pig
3. Conclusions
MapReduce limitations (1/2)

- **High latency.** Launching a MapReduce job has a high overhead, and *reduce* functions are only called after all *map* functions succeed, not suitable for applications needing a quick result.

- **Batch processing only.** MapReduce excels at processing a large collection, not at retrieving individual items from a collection.

- **Write-once, read-many mode.** No real possibility of updating a dataset using MapReduce, it should be regenerated from scratch.

- **No transactions.** No concurrency control at all, completely unsuitable for transactional applications [PPR⁺09].
MapReduce limitations (2/2)

- **Relatively low-level.** Ongoing efforts for more high-level languages: Scope [CJL⁺08], Pig [ORS⁺08, GNC⁺09], Hive [TSJ⁺09], Cascading [http://www.cascading.org/]
- **No structure.** Implies lack of indexing, difficult to optimize, etc. [DS87]
- **Hard to tune.** Number of reducers? Compression? Memory available at each node? etc.
Hybrid systems

- Best of both worlds?
 - DBMS are good at transactions, point queries, structured data
 - MapReduce is good at scalability, batch processing, key-value data

- HadoopDB $[ABPA^+09]$: standard relational DBMS at each node of a cluster, MapReduce allows communication between nodes

- Possible to use DBMS inputs natively in Hadoop, but no control about data locality
Job Scheduling

- Multiple jobs concurrently submitted to the MapReduce jobtracker
- Fair scheduling required:
 - each submitted job should have some share of the cluster
 - prioritization of jobs
 - long-standing jobs should not block quick jobs
 - fairness with respect to users
- Standard Hadoop scheduler: priority queue
- Hadoop Fair Scheduler: ensures cluster resources are shared among users. Preemption (= killing running tasks) possible in case the sharing becomes unbalanced.
Conclusions

What you should remember on distributed computing

MapReduce is a simple model for batch processing of very large collections. ⇒ good for data analytics; not good for point queries (high latency).

The systems brings robustness against failure of a component and transparent distribution and scalability. ⇒ more expressive languages required (Pig)
Resources

- Original description of the MapReduce framework [DG04]
- Documentation for Pig is available at http://wiki.apache.org/pig/
- Excellent textbook on Hadoop [Whi09]
- Online MapReduce exercises with validation http://cloudcomputing.ruc.edu.cn/login/login.jsp
HadoopDB: An Architectural Hybrid of MAPREDUCE and DBMS Technologies for Analytical Workloads.

Sergey Brin and Lawrence Page.
The anatomy of a large-scale hypertextual Web search engine.

Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon Weaver, and Jingren Zhou.
SCOPE: easy and efficient parallel processing of massive data sets.
References II

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing.

A comparison of approaches to large-scale data analysis.

Hive - A Warehousing Solution Over a Map-Reduce Framework.
Tom White.

Hadoop: The Definitive Guide.

O’Reilly, Sebastopol, CA, USA, 2009.