Distributed Data Management

Serge Abiteboul
INRIA Saclay, College de France, ENS Cachan

y 4

m[olmn“ques,maIhemauques

LR —

#M COLLEGE WS
WY ¥ DE FRANCE

1530 C A CH AN

Distributed computing

A distributed system is an application that coordinates the actions
of several computers to achieve a specific task.

Distributed computing is a lot about data
— System state
— Session state including security information
— Protocol state
— Communication: exchanging data
— User profile
— ... and of course, the actual “application data”

Distributed computing is about querying, updating, communicating

data 7™ distributed data management

5/16/12 2

Parallelism and distribution

Sequential access: 166 minutes | 100MB/s
(more than 2 hours and a half) to
read a 1 TB disk

Parallel access: With 100 disks
working in parallel, less than 2mn 100MB,

Distributed access: With 100 -
computers, each disposing of its
own local disk: each CPU
processes its own dataset ,_network

1TB

1TB 1TB) 1TB 1TB

This is scalable

1TB 1TB 1TB 1TB

Organization

Data management architecture
Parallel architecture

Zoom on two technologies
Cluster (grappe): MapReduce
P2P: storage and indexing
Limitations of distribution

s = W

Conclusion

5/16/12

Data management architecture

Deployment architecture

Centralized

e Multi-user mainframe & terminals

Client-Server

e Multi-user server & terminals

workstation

e C(Client: application & Graphical interface

e Server: database system

5/16/12

®. ®.

T~

e~

Application

Database system

I

%\%{L“ @ Application

API (e.g., JDBC)

Database server

—]

Deployment architecture — 3 tier

15
Client is a browser that r @@
Browser

— Displays content, e.g. in HTML

— Communicates via HTTP HTTP
Central tier —

— Generates the content for the client APIEEon

— Runs the application logic API (e.g., IDBC)

— Communicates with the database

Data server tier TCP/IP

— Serves data just like in the client/server case Database server

]

5/16/12 7

Another dimension: Server architecture

Deployment: client/server

e Example 1 * Example 2

— Server: single machine — Server: parallel machine

o o
~—8(@) Application %\fgb\ {@) Avplication
Database server DB server DB server DB server

o — I

Server architecture: Query vs. page/object

@

Query server Data server

Application

Application

Application [€—= Application [€—3}

evel queries | Answers

Relational server Page or object
server
i — W =

Parallel architecture

Parallel architecture

The architecture of a server is typically
* multi-CPU, multi-memory, multi-disk

 Based on very fast network
Architectures

 Shared memory

SR NON0
D000

Comparison

Shared memory

— The bus becomes the bottleneck beyond 32-64 processors

— Used in practice in machine of 4 to 8 processors
Shared disk

— Inter-CPU communication slower

— Good for fault-tolerance

— Bottleneck pushed to hundreds of processors
No sharing — only for very parallelizable applications

— Higher communication cost

— Scaling to thousands of processors

— Adapted for analysis of large data sets

5/16/12 12

Main memory database

Beyond 100 cores
Blade server | serveur lame

Beyond 10 Tb memory

8}16
E}’ Blade —* RAM
14 0,5—-1TB

Complex programming | |CPU — L2 cache
to leverage parallelism 1-4 Mb

a)s
Issue: computing Core > L1 cache
power and memory — 16 — 32 Kb

throughput augment —
latency augments

N
much less - / 13

Massive parallelism and partitioning

e Line store e Column store
- - = >
SN— -
N— -~
— = -
SN—— _
_
Horizontal Vertical
Partitioning | — > Partitioning i
5/16/12 ~—— —— 14

Line vs. column store

Lines

e Read/write a full tuple: fast

 Read/write an attribute for
the entire relation: slow

* Limited compression
e Slow aggregation

 Adapted to transactional
applications

5/16/12

Columns

Read/write a full tuple: slow

Read/write an attribute for
the entire relation: fast

Excellent compression
Fast aggregation

Adapted to decisional
applications

15

Massive parallelism & column store

Parallelism Column store
SGBD-R : Teradata Sybase I1Q
Neteeza(IBM) Kickfire (Teradata)

DATAIllegro (Microsoft)
Open source : Hadoop
(in a few minutes...)

—|—> Parallelism & column store <:

Exasol

Vertica

Greenplum (EMC)
Opensource: Hadoop HBase

:0Open source MonetDB

5/16/12

16

Cluster: MapReduce

. to analyze) large

MapReduce

MapReduce : a computing model based on heavy distribution that
scales to huge volumes of data

e 2004 : Google publication

e 2006: open source implementation, Hadoop

Principles

e Data distributed on a large number of shared nothing machines

* Parallel execution; processing pushed to the data

5/16/12 18

MapReduce

Three operations on key-value pairs

Map user-defined (transforme)
Shuffle fixed behavior (mélange)
Reduce user-defined (réduire)

User defined

User defined
Data flow MapReduce

r....-..--.

split 2 }“

5/16/12

MapReduce example

 Count the number of occurrences of each word in a large
collection of documents

ul jaguar world mammal

felidae family.

u2 jaguar atari keen use
68K family device.

u3 mac os jaguar available
price us 199 apple new
family pack

ud such ruling family
incorporate jaguar their
name

5/16/12

Jaguar 1

Atari 1

Felidae 1

Jaguar 1...
Jaguar 1
Available 1
Apple 1
Jaguar

2...

22

Shuffle

Jaguar 1,1,1,2
Mammal 1
Family 1,1,1
Available 1

Jaguar 1
Atari 1
Felidae 1
Jaguar 1..

Reduce

Jaguar 5

Jaguar 1,1,1,2

Mammal 1 Mammal ;
| Family 3
Family 1,1,1 Available 1

Available 1

MapReduce functionalities

Map: (K, V) =2 list (K’, V') ; typically:
— Filter, select a (new) key, project, transform
— Split results in M files for M reducers

Shuffle: list (K’, V') =2 list (K’, list (V*))

— Regroup the pairs with the same keys
Reduce: (K’, list (V’)) =2 list (K", V") ; typically:

— Aggregation(COUNT, SUM, MAX)

— Combination, filtering (example join)
Optional optimization : combine: list(V’) 2 V’

— Run on a mapper to combine pairs with the same key into a single
pair

5/16/12 25

Hadoop

Open source, Apache implementation in Java

Main contribution from Yahoo

Main components

Hadoop file system (HDFS)

MapReduce (MR)

Hive: simple data warehouse based on HDFS and MR
Hbase: key-value column store on HDFS

Zookeeper: coordination service for distributed applications

Pig: dataflow language on HDFS and MR I~

Java and C++ API

— Streaming API for other language

Very active community

5/16/12

26

For some author, count
how many editors this

Pig Latin

author has
NINF model
Example
Books = LOAD ’'book.txt’ AS (title: chararray, author: chararray,..);
Abiteboul = FILTER Books BY author == ’'Serge Abiteboul’;
Edits LOAD 'editors.txt’ AS (title: chararray, editor: chararray);

Joins JOIN Abiteboul BY title, Edits BY title;

Groups = GROUP Joins BY Abiteboul::author;

Number = FOREACH groups GENERATE group, COUNT (Joins.editor) ;
DUMP Number

Compilation in MapReduce

I ;
LOAD | FILTER LOAD —>| JOIN > GROUP > FOREACH > DUMP

‘ MAP >/ REDUCE —> MAP > REDUCE

5/16/12 27

What’s going on with Hadoop

* Limitations
— Simplistic data model & no ACID transaction
— Limited to batch operation
— Limited to extremely parallelisable applications

 Good recovery to failure
e Scales to huge quantities of data

— For smaller data, it is simpler to use large flash memory or
main memory database

* Main usage today (sources: TDWI, Gartner)
— Marketing and customer management
— Business insight discovery

5/16/12 28

Where does this technology fit

Business
Storage :
Intelligence

Data warehouse

P2P: storage and indexing

uantities of data

Peer-to-peer architecture

P2P: Each machine is both a server and a client

Use the resources of the network
— Machines with free cycles, available memory/disk)

e Communication: Skype

* Processing: seti@home, foldit
e Storage: emule

5/16/12

31

Power of parallelism

Performance, availability, etc.

Server saturates P2P scales Parallel loads

Managing a large collection

My

SRR

Col. Col. portion Col. portion Col. portion Col. portion

P2P approach

Difficulties

* Peers are autonomous, less reliable
 Network connection is much slower (WAN vs. LAN)

 Peers are heterogeneous
— Different processor & network speeds, available memories

* Peers come and go

— Possibly high churn out (taux de désabonnement)

* Possibly much larger number
* Possible to have peers “nearby on the network”

5/16/12 34

And the index?

Centralized index: a central server keeps a general index
— Napster

Pure P2P: communications are by flooding
— Each request is sent to all neighbors (modulo time-to-life)

— Gnutella 0.4, Freenet

Structured P2P: no central authority and indexing using an
"overlay” network (réseau surimposé)

— Chord, Pastry, Kademlia
— Distributed HASH table: index search in O (log(n))

5/16/12 35

Implementation: Chord Ring @

Hashing is modulo 2"

H distributes the peers
around the (0.. 2") ring In charge of all

O < H(pid) < 2" keyS from H(Mi)
We assume no two peers have to H(I\/I)
i+1

the same H(pld)

Perform a search in log(n)

 Each node has a routing table with : « fingers »
* Key k with

e 4<13<23 54 _
?H(k) 52 LA

60 O3

Forward the

Search in log(n)

* Ask any peer for key k

* This peers knows log(n) peers and the smallest key of each
e Ask the peer with key immediately less than H(k)

* In the worst case, divide by 2 the search space

e After log(n) in the worst case, find the peer in charge of k

 Same process to add an entry for k
* Or to find the values for key k

5/16/12 38

M joins

Joining the DHT

3) Receives all the
entries between
H(M) and H(M.,,)

2) Contacts peer M.
In charge of
H(M)

In charge of all In charge of all
keys from H(M.) keys from H(M)
to to H(M,,)

Leaving the DHT M leaves

1) Sends to previous
peer on the ring
all its entries
(between

H(M) and H(M,,,))

In charge of all In charge of all
keys from H(M.) keys from H(M)
to H(M) to H(M.,,)

Issues

 When peers come and go, maintenance of finger tables is
tricky

* Peer may leave without notice: only solution is replication

— Use several hash function H1, H2, H3 and maintain each piece of
information on 3 machines

Advantages & disadvantages

 Advantages
— Scaling
— Cost effective: take advantage of existing resources
— Performance, availability, reliability (potentially because of
redundancy but rarely the case in practice)
* Disadvantages
— Servers may be selfish, unreliable ~ hard to guarantee service quality
— Communication overhead
— Servers come and go ~ need replication
replication overhead
— Slower response
— Updates are expensive

5/16/12 42

Limitations of distribution: CAP theorem

Main idea

Use heavy distribution
Use heavy replication (at least for popular data)

Is this the magical solution to any management of huge data?

Yes for very parallelizable problems and static data
collections

If there are many updates:

Overhead: for each update,
we have to realize as many Problem: the replicas start
updates as there are diverging

replicas

Properties of
distributed data management systems

Scalability refers to the ability of a system to continuously
evolve in order to support a growing amount of tasks
Efficiency
— response time (or latency): the delay to obtain the first item, and

— throughput (or bandwidth): the number of items delivered in a given
period unit (e.g., a second)

5/16/12 45

CAP properties

Consistency = all replicas of a fragment are always equal
— Not to be confused with ACID consistency
— Similar to ACID atomicity: an update atomically updates all replicas
— At a given time, all nodes see the same data

Availability
— The data service is always available and fully operational
— Even in presence of node failures
— Involves several aspects:
Failure recovery
Redundancy: Data replication on several nodes

5/16/12

46

CAP properties

Partition Tolerance
— The system must respond correctly even in presence of node failures
— Only accepted exception: total network crash

— However, often multiple partitions may form; the system must
e prevent this case of ever happening
* Or tolerate forming and merging of partitions without producing failures

5/16/12

47

Distribution and replication: limitations

CAP theorem: Any highly-scalable distributed storage system
using replication can only achieve a maximum of two

properties out of consistency, availability and partition
tolerance

* Intuitive; main issue is to formalize and prove the theorem
— Conjecture by Eric Brewer
— Proved by Seth Gilbert, Nancy Lynch

* |n most cases, consistency is sacrificed
— Many application can live with minor inconsistencies

— Leads to using weaker forms of consistency than ACID

5/16/12

48

Conclusion

Trends

The cloud
Massive parallelism
Main memory DBMS

ce software

Trends (continued)

Big data (OLAP)
— Publication of larger and larger volumes of interconnected data

— Data analysis to increase its value
* Cleansing, duplicate elimination, data mining, etc.

— For massively parallel data, a simple structure is preferable for
performance

* Key /value > relational or OLAP
e But arich structure is essential for complex queries

Massive transactional systems (OLTP)
— Parallelism is expensive

— Approaches such as MapReduce are not suitable

5/16/12 51

3 principles?

New massively parallel systems ignore the 3 principles
— Abstraction, universality & independence

Challenge: Build the next generation of data management
systems that would meet the requirements of extreme
applications without sacrificing any of the three main
database principles

5/16/12

52

Reference

Again the Webdam book:
webdam.inria.fr/Jorge

Partly based on some joint
presentation with Fernando Velez
at Data Tuesday, in Microsoft Paris

Also:

Principles of distributed database
systems, Tamer Ozsu, Patrick
Valduriez, Prentice Hall

5/16/12

Web Data
Management

1y

Serge Abiteboul, loana Manolescu, Philippe Rigaux
Marie-Christine Rousset, Pierre Senellart

CAMBRIDGE

y 4

m[olma“ques,malhemalfques

ZlA—

C ACH AN

Gerhard Weikum

e Max-Planck-Institut fuir Informatik

* Fellow: ACM, German Academy of
Science and Engineering

* Previous positions: Prof. Saarland
University, ETH Zurich, MCC in Austin,
Microsoft Research in Redmond

* PC chair of conferences like ACM
SIGMOD, Data Engineering, and CIDR

* President of the VLDB Endowment

e ACM SIGMOD Contributions Award in
2011

5/16/12 55

