

Asking the Right Questions in Crowd Data Sourcing

Tova Milo

Outline

- Introduction to crowd (data) sourcing
- Databases and crowds
- Declarative is good
- How to best use resources
- Conclusion

Ack: Some slides are borrowed (with permission) from the VLDB'11 tutorial [DFKK11].

Disclaimer: - Very high level

More questions than answers

- Some nudity [©]

Crowd Sourcing 101

Billions of devices

Crowd Sourcing 101

Ubiquitous connectivity

Pixels indicate Clickworker's identified craters

Citizen science

Citizen journalism and sensing

Welcome to Q&A for professional and enthusiast programmers — check out the FAQ! log in | careers | dev days | chat | meta | about | faq search stackoverflow Unanswered Ask Question Questions Users Badges Tags **Top Questions** interesting 237 featured Hello World! hot week month This is a collaboratively edited n Random rows for a given attribute - Postgres question and answer site for 44s ago Sup3rkiddo 49 professional and enthusiast sql postgresql votes answers view programmers. It's 100% free, no registration required. Branch descriptions in git, continued about » faq » git branch task-tracking 48s ago manojlds 16.2k vote views ...I CAREERS 2.0 Where is hostname defined for the anchor element? O 56s ago Chris Aaker 868 votes answers view javascript Senior PHP Engineer Spreetales User-defined Table Variables in MySQL 5.5? Los Altos, CA; San Francisco, CA mysql stored-procedures routines 1m ago colonel_px 11 votes answer views Front End Software Engineer @Rdio Rdio Closing cfpdf tag with </cfpdf> causes error 37 0 San Francisco, CA 1m ago Jens Wegar 81 coldfusion | coldfusion-8 | cfeclipse | cfpdf votes answers views Senior Mobile Developer American Public Media Oakland, CA cocoa memory leak by CGAffineTranform or by view 0 Web Engineer 1m ago EmptyStack 9,100 iphone objective-c cocoa memory-leaks votes answers views Monkey Inferno San Francisco, CA

Games are fun!

So what is it all about?

- Bederson & Quinn (Human Computation) CHI'11
 - Motivation (Pay, altruism, enjoyment,...)
 - Quality control (we'll talk more about that)
 - Aggregation (We'll also talk more about that)
 - Human skills (Visual recognition, language, ...)

— ...

Outline

- Introduction to crowd data sourcing
- Databases and crowds
- Declarative is good
- How to best use resources
- Conclusion

Databases and Crowds

- How can crowds help databases?
 - Fix broken data: entity resolution, inconsistencies
 - Add missing data
 - Subjective comparisons

- How can databases help crowd apps
 - Lazy data acquisition (only get the data that is needed)
 - Manage the data sourced from the crowd
 - Semi automatically create user interfaces

Database platforms for Crowd-based Data Sourcing

- Data models, query languages (query processing, optimization,...)
 - Qurk (MIT)
 - CrowdDB (Berkley, ETH)
 - sCOOP (Stanford, UCSC)
 - FusionCOMP (TsuKuba)
 - MoDaS (Tel Aviv University)
 - **—** ...
- Data quality
- Asking (the crowd) the right questions

Qurk (MIT)

- Goal: crowd-source comparisons, missing data
- Basis: SQL3 + UDF
 - UDF encapsulates crowd input
 - Special template language for crowd UDFs
 - Specify UI, quality control, possibly opt. hints

• References:

[Marcus et al, CIDR'11, SIGMOD'11]

Qurk example

Is Female?

Yes No

men in a "people" database

ple((256),

TASK isFemale(tuple) TYPE:Filter

Question: "is %s Female",

Tuple["photo"]

YesText: "Yes"

NoText: "No"

e(p);

The magic is in the templates

- Templates generate UIs for different kinds of crowdsourcing tasks
 - Filters: Yes/No questions
 - Joins: comparisons between two tuples (equality)
 - Order by: comparisons between two tuples (>=)
 - Generative: crowdsource attribute value

Templates also specify quality control; e.g.
COMBINER: MajorityVote

But, can you trust the Crowd?

Spencer Tunick

Many questions

How to determine correctness?

How to clean the data?

What questions to ask?

Who to ask? (How many? When to stop?)

How to best use resources?

Outline

- Introduction to crowd data sourcing
- Databases and crowds
- Declarative is good (but we need more...)
- How to best use resources
- Conclusion

Example: Conflicts resolution

- Average value? Majority vote? Probabilistically?
- But some people know nothing about a given topic
- So maybe a "biased (probabilistic) vote"?
- But how to bias?
- A "chicken or the egg" problem:

To know what is true we need to know who to believe. But to know this we need to know who is usually right (and in particular, what is true..)

Example: So what can we do?

- Start with some estimation on the trust in users
- Gain confidence in facts based on the opinion of users that supported them
 - Give bigger weight to user that we trust
- Then update the trust level in users, based on how many of the facts which they submitted, we believe
- Iterate until convergence
 - Trusted users give us confidence in facts, and users that supported these facts gain our trust...

[Galland et al, WSDM 2010]

And there is also a probabilistic version...

But what do we want?

- Not yet another data cleaning algorithm
- We want to have easy control on the employed policy (for data cleaning, query selection, user game scores,...)
- We really don't want to (re)write Java code (for each tiny change!)
- We want (seamless) optimization, update propagation,...

Database approach:

Define a declarative language for specifying policies

[Deutch, Greenshpan, Kostenko, M. ICDE'11, WWW'12] [Deutch, Koch, M. PODS'10]

Proposed language

Add to SQL (relational algebra) a REPAIR-KEY construct

REPAIR-KEY "repairs" key violations in the database, choosing one possible option, probabilistically, according to the support

And a WHILE construct

Semantics: Markov chain of DB instances.
Probability of a fact to hold in a given instance.

Name	Cuisine	support
Anton's	French	0.8
Anton's	Continental	0.2
McDonald	FastFood	1.0

 Expresses nicely common policies for cleaning, selection of questions, scoring answers

TriviaMaster (ICDE 2011 demo)

Some complexity results

Formal problem: Given a Markov Chain of database instances and an SQL query on the database ("what is Anton's cuisine?"), compute the probabilities of the different answers.

- Theorem: Exact computation is #P-hard
- Theorem: If Markov Chain is ergodic, computable in EXPTIME
 - Compute the stochastic matrix of transitions
 - Compute its fixpoint
 - For ergodic Markov Chain it corresponds to correct probabilities
 - Sum up probabilities of states where the query event holds
- Theorem: In general, 2-EXPTIME
 - Apply the above to each connected component of the Markov Chain
 - Factor by probability of being in each component

Some complexity (cont.)

Approximations:

- Absolute approximation: approximates correct probability ±ε
- Relative approximation: approximates correct probability up to a factor in-between $(1-\epsilon)$, $(1+\epsilon)$.

[Relative is harder to achieve]

Language	Exact computation	Relative approx	Absolute approx
(Linear) datalog	#P-hard In PSPACE	NP-hard	In PTIME
Inflationary fixpoint	#P-hard In PSPACE	NP-hard	In PTIME
Non-inflationary fixpoint	#P-hard In (2)EXP-TIME	NP-hard	NP-hard; PTIME in input size and mixing time

Still lots of open questions

- How (and when) can we evaluate things fast enough?
- How to store the vast amount of data?
 - Distributed Databases? Map-reduce?
- The data keeps changing. How to handle updates?

• ...

Outline

- Introduction to crowd data sourcing
- Databases and crowds
- Declarative is good
- How to best use resources
- Conclusion

Partial knowledge

	q1	q2	q3	q4	q5	q6		
u1	a	5		b				
u2	a		3					
u3		5	3	b				
u4	b	2	3					
u5	С		3	а				

- Goal: Compute an aggregate function f for each query, e.g.
 - Some metric of the distribution (e.g. entropy)
 - Most frequent answer
 - Aggregated value (e.g. average)

Increasing knowledge

- Limited overall resources
- Limited user availability
- Bounded resources per question

Which cells to resolve?

[Boim, Greenshpan, M., Novgorodov, Polyzotis, Tan. ICDE'12,...]

Quantifying uncertainty

Assume t answers suffice for computing f for q

Comp(q): all possible completions of q's column

Dist(r - r'): distance between two results of f

Uncertainty(q): max{ Dist(f(X) - f(Y)) | X,Y in Comp(q) }
i.e. the largest distance between possibly completions

Quantifying uncertainty (cont.)

- Uncertainty measures for a Users-Answers matrix M
 - Max-uncertainty(M)
 - Sum-uncertainty(M)
- Problem statement (X-uncertainty Reduction)

Given a matrix M, a choice $x \in \{max, sum\}$, and a set of constraints, identify a set C of empty cells that satisfy the constraints and where

 $Max_{M' \in M_C}$ X-uncertainty(M') is minimized.

Where M_c contains all possible matrices that we can derive from M by resolving solely the cells in C.

Target function

Entropy, average, most frequent,...

Constraints

- A: bound k on the over number of cells
- B: also a bound k' on questions per users
- C: here k' is a bound on users per question

Some complexity results

max-Uncertainty Reduction

in PTIME for all constraints classes

- Greedy algo for constraints class A (and C)
- Using Max-flow for constraints class B
- sum-Uncertainty Reduction

in PTIME for constraint classes A and C

Dynamic programming

NP-COMPLETE for constraints class B

Reduction for perfect 3 set cover

Asklt (ICDE'12 demo)

Gather information (scientific as well as fun)
 on ICDE'12 authors, participants, papers, presentations,...

Lots of open questions

- Use prior knowledge about users/answers
 - Predict answers
 - Predict who can/will answer what

[Collaborative Filtering-style analysis is useful here]

- Worse-case analysis vs. expected error
- Treat other goal functions
- Optimization
- Incremental computation

• • •

Outline

- Introduction to crowd data sourcing
- Databases and crowds
- Declarative is good
- How to best use resources
- Conclusion

Conclusion

- All classical issues:
 - Data models, query languages, query processing, optimization, HCl
- BUT
 - (Very) interactive computation
 - (Very) large scale data
 - (Very) little control on quality/reliability
 - Closed vs. open world assumption

תודה!

Thanks!

Merci!