

Asking the Right Questions in

Crowd Data Sourcing

Tova Milo

Tel Aviv University

MoDaS
Mob Data Sourcing

Outline

• Introduction to crowd (data) sourcing

• Databases and crowds

• Declarative is good

• How to best use resources

• Conclusion

 Disclaimer: - Very high level
 - More questions than answers

 - Some nudity 

Ack: Some slides are borrowed
(with permission) from the
VLDB’11 tutorial [DFKK11].

 101Crowd Sourcing

Billions of devices

 101Crowd Sourcing

Ubiquitous connectivity

Examples

Citizen science

Examples

Citizen journalism and sensing

Examples

Examples

Games are fun!

So what is it all about?

• Bederson & Quinn (Human Computation) CHI’11

– Motivation (Pay, altruism, enjoyment,…)

– Quality control (we’ll talk more about that)

– Aggregation (We’ll also talk more about that)

– Human skills (Visual recognition, language, …)

– …

Outline

• Introduction to crowd data sourcing

• Databases and crowds

• Declarative is good

• How to best use resources

• Conclusion

Databases and Crowds

• How can crowds help databases?

– Fix broken data: entity resolution, inconsistencies

– Add missing data

– Subjective comparisons

• How can databases help crowd apps

– Lazy data acquisition (only get the data that is needed)

– Manage the data sourced from the crowd

– Semi automatically create user interfaces

 Database platforms for
Crowd-based Data Sourcing

• Data models, query languages

 (query processing, optimization,…)
– Qurk (MIT)
– CrowdDB (Berkley, ETH)
– sCOOP (Stanford, UCSC)
– FusionCOMP (TsuKuba)
– MoDaS (Tel Aviv University)
– …

• Data quality

• Asking (the crowd) the right questions

 Qurk (MIT)

• Goal: crowd-source comparisons, missing data
• Basis: SQL3 + UDF

– UDF encapsulates crowd input
– Special template language for crowd UDFs
– Specify UI, quality control, possibly opt. hints

• References:

[Marcus et al, CIDR’11, SIGMOD’11]

 Qurk example

• Task: Find all women in a “people” database
• Schema

CREATE TABLE people(
 name varchar(256),
 photo blob);

• Query

 SELECT name
 FROM people p
WHERE isFemale(p);

TASK isFemale(tuple) TYPE:Filter
 Question: “is %s Female”,
 Tuple[“photo”]
 YesText: “Yes”
 NoText: “No”

 The magic is in the templates

• Templates generate UIs for different kinds of crowd-

sourcing tasks
– Filters: Yes/No questions
– Joins: comparisons between two tuples (equality)
– Order by: comparisons between two tuples (>=)
– Generative: crowdsource attribute value

• Templates also specify quality control; e.g.

COMBINER: MajorityVote

 But, can you trust the Crowd?

Spencer Tunick

 Many questions

 • How to determine correctness ?

• How to clean the data?

• What questions to ask?

• Who to ask? (How many? When to stop?)

• How to best use resources?

Outline

• Introduction to crowd data sourcing

• Databases and crowds

• Declarative is good (but we need more…)

• How to best use resources

• Conclusion

Example: Conflicts resolution

• Average value? Majority vote? Probabilistically?

• But some people know nothing about a given topic

• So maybe a “biased (probabilistic) vote”?

• But how to bias?

• A “chicken or the egg” problem:

 To know what is true we need to know who to believe.
 But to know this we need to know who is usually right
 (and in particular, what is true..)

Example: So what can we do?

• Start with some estimation on the trust in users

• Gain confidence in facts based on the opinion of users that
supported them
– Give bigger weight to user that we trust

• Then update the trust level in users, based on how many of the

facts which they submitted, we believe

• Iterate until convergence
 Trusted users give us confidence in facts,
 and users that supported these facts gain our trust…

• And there is also a probabilistic version…

[Galland et al, WSDM 2010]

• Not yet another data cleaning algorithm

• We want to have easy control on the employed policy
 (for data cleaning, query selection, user game scores,…)

• We really don’t want to (re)write Java code (for each tiny change!)

• We want (seamless) optimization, update propagation,…

Database approach:

 Define a declarative language for specifying policies

But what do we want?

[Deutch, Greenshpan, Kostenko, M. ICDE’11 ,WWW’12]
[Deutch, Koch, M. PODS’10]

• Add to SQL (relational algebra) a REPAIR-KEY construct

 REPAIR-KEY “repairs” key violations in the database, choosing one
possible option, probabilistically, according to the support

• And a WHILE construct

• Semantics: Markov chain of DB instances.

 Probability of a fact to hold in

 a given instance.

• Expresses nicely common policies for cleaning, selection of
questions, scoring answers

Proposed language

support Cuisine Name

0.8 French Anton’s

0.2 Continental Anton’s

1.0 FastFood McDonald

… …

TriviaMaster (ICDE 2011 demo)

Formal problem: Given a Markov Chain of database instances and
an SQL query on the database (“what is Anton’s cuisine ?”),
compute the probabilities of the different answers.

• Theorem: Exact computation is #P-hard

• Theorem: If Markov Chain is ergodic, computable in EXPTIME
• Compute the stochastic matrix of transitions
• Compute its fixpoint
• For ergodic Markov Chain it corresponds to correct probabilities
• Sum up probabilities of states where the query event holds

• Theorem: In general, 2-EXPTIME
• Apply the above to each connected component of the Markov Chain
• Factor by probability of being in each component

Some complexity results

Approximations:

– Absolute approximation: approximates correct probability ±ε

– Relative approximation: approximates correct probability up to
a factor in-between (1- ε), (1+ ε).

 [Relative is harder to achieve]

Some complexity (cont.)

Absolute approx Relative approx Exact
computation

Language

In PTIME NP-hard #P-hard
In PSPACE

(Linear) datalog

In PTIME NP-hard #P-hard
In PSPACE

Inflationary fixpoint

NP-hard; PTIME in input
size and mixing time

NP-hard #P-hard
In (2)EXP-TIME

Non-inflationary fixpoint

• How (and when) can we evaluate things fast enough?

• How to store the vast amount of data?
• Distributed Databases? Map-reduce?

• The data keeps changing. How to handle updates?

• …

Still lots of open questions

Outline

• Introduction to crowd data sourcing

• Databases and crowds

• Declarative is good

• How to best use resources

• Conclusion

Partial knowledge

• Goal: Compute an aggregate function f for each query, e.g.
– Some metric of the distribution (e.g. entropy)
– Most frequent answer
– Aggregated value (e.g. average)

… q6 q5 q4 q3 q2 q1

b 5 a u1

3 a u2

b 3 5 u3

3 2 b u4

a 3 c u5

…

Increasing knowledge

• Limited overall resources

• Limited user availability

• Bounded resources per question

 Which cells to resolve?

[Boim, Greenshpan, M., Novgorodov, Polyzotis, Tan. ICDE’12,…]

Quantifying uncertainty

• Assume t answers suffice for computing f for q

• Comp(q): all possible completions of q’s column

• Dist(r – r’): distance between two results of f

• Uncertainty(q): max{ Dist(f(X) - f(Y)) | X,Y in Comp(q) }

i.e. the largest distance between possibly completions

 Quantifying uncertainty (cont.)

• Uncertainty measures for a Users-Answers matrix M
– Max-uncertainty(M)
– Sum-uncertainty(M)

• Problem statement (X-uncertainty Reduction)
 Given a matrix M, a choice x ϵ {max,sum}, and a set of constraints,
 identify a set C of empty cells that satisfy the constraints and where

 Max M’ ϵ MC X-uncertainty(M’) is minimized.

 Where MC contains all possible matrices that we can derive from M

by resolving solely the cells in C.

 Example

• Target function

– Entropy, average, most frequent,…

• Constraints

– A: bound k on the over number of cells

– B: also a bound k’ on questions per users

– C: here k’ is a bound on users per question

 Some complexity results

• max-Uncertainty Reduction

 in PTIME for all constraints classes

– Greedy algo for constraints class A (and C)
– Using Max-flow for constraints class B

• sum-Uncertainty Reduction

 in PTIME for constraint classes A and C

– Dynamic programming

 NP-COMPLETE for constraints class B

– Reduction for perfect 3 set cover

AskIt (ICDE’12 demo)

• Gather information (scientific as well as fun)
 on ICDE’12 authors, participants, papers, presentations,…

Lots of open questions

• Use prior knowledge about users/answers

• Predict answers
• Predict who can/will answer what

[Collaborative Filtering-style analysis is useful here]

• Worse-case analysis vs. expected error

• Treat other goal functions

• Optimization

• Incremental computation
…

Outline

• Introduction to crowd data sourcing

• Databases and crowds

• Declarative is good

• How to best use resources

• Conclusion

 Conclusion

• All classical issues:

 Data models, query languages, query
processing, optimization, HCI

• BUT

• (Very) interactive computation

• (Very) large scale data

• (Very) little control on quality/reliability

• Closed vs. open world assumption

MoDaS
Mob Data Sourcing

!תודה

Thanks!

Merci!

MoDaS
Mob Data Sourcing

