Index

Page numbers in italics indicate the location of definitions of terms.

ac0, 96, 431
Access, 36, 143, 150, 152–153, 155
access plan, 107
active database, 8, 600–606
 action, 601
 composite event, 606
 condition, 601
 coupling mode, 603
 ECA, 601
 event, 601
 execution model, 601, 603–606
 accumulating model, 604–606
 concurrent firing, 603
 deferred firing, 603, 604
 immediate firing, 603–604
 rule, 601
 rule base, 601
 vs. expert system, 600
active domain, 41, 46, 249
 interpretation, 79
 preservation, 249
active domain semantics
 of relational calculus, 74, 79
 vs. domain independence, 79
acyclic
 vs. dependencies, 137
 distributed databases, 136
hypergraph, 36, 132
inclusion dependencies, 208–210, 211
join, 105, 126, 128–135, 136
join dependency, 169, 182–183, 186
 and mvd’s, 182
adom, 41, 46, 77, 249
adorned rule, 318, 321
adornment, 317, 318
A-egd, 218
aggregate function, 91–93
aggregate operator, 97, 153, 154
 in query language, 155
AGM postulates, 599
agreement set, 188
Alexander method, 336
ALG*, 514
ALG^e–, 519
algebra
 complex value, 514, 519
 conjunctive, 52–61
cylindric, 96, 103
 named conjunctive, 56–59, 57
 nested relation, 519
 relational, 28, 35, 36, 64, 70, 71, 81
 named, 71
 unnamed, 71
 translation into calculus, 80
SPC, 52–56, 54
SPCU, 62, 222
SPJR, 56–59, 57
SPJRU, 62
SPIU, 492
typed restricted SPJ, 64, 67
 unnamed conjunctive, 52–56, 52
 unsorted, 103
table, 228–233

661
algebraic dependency (continued) axiomatization, 231
ALGRES, 337
allowed calculus query, 97, 101–102
alternating fixpoint, 390, 413
ancestor program, 63
nonlinear version, 314
anomaly deletion, 162, 254
insertion, 162
modification, 162
update, 162
anonymous variable, 39, 44
ans, 40
ans_\mathcal{R}' \gamma, 321
anti-symmetric, 11
any, 548
AP5, 605, 615
APEX, 335
arithmetic in query language, 153, 154
arity(\cdot), 31
of instance, 32
of relation name, 31
of tuple, 32
Armstrong relation, 168–169, 186, 232
for typed dependencies, 233
Armstrong’s axioms for fd’s, 186
articulation set, 132
artificial intelligence (AI), 97
atom, 22, 33
constraint, 112
equality, 217
ground, 34
relation, 112, 217
att, 30
attribute, 29
in relational model, 30
in semantic data model, 243
attribute renaming, 58
autonomous logic, 12, 420, 426–428, 461
average in SQL, 91, 154
awk, 155
axiom, 24
vs. inference rule, 167
axiomatizable, 167
axiomatization, 167, 226
abstract formulation, 203
for algebraic dependencies, 231, 235
complete, 167
for fd’s, 166, 168, 186
for fd’s and mvd’s, 172–173, 186
finite, 202

for full typed dependencies, 227–228
Gentzen-style for jd’s, 186
IDM transaction for, 581
for inds, 193–195, 211
k-ary, 202, 204
proof using, 167
provable using, 167
sound, 167
for typed embedded dependencies, 226, 235
for uinds, 210, 215
vs. fds and inds, 192, 202–207, 211
vs. fds and sort set dependencies, 213
vs. finite implication, 226
vs. jd’s, 169, 171, 186

B(P, I), 280
B(PI), 387
B-tree, 107
bag, 92, 136
in SQL, 145, 155
BCNF, 250, 251–252
algorithm, 255
belief revision, 588, 599
Berge-acyclic, 131, 137
Bernays-Schönfinkel class, 219
Binary Data Model, 264
binary relation, 10
body of rule, 39, 41, 276
bottom-up datalog evaluation, 324–335
vs. top-down, 311, 327, 336
bound coordinate in datalog evaluation, 318
bound variable occurrence, 23, 45, 75
boundedness, 285, 304
Boyce-Codd normal form (BCNF), 250, 251–252,
BP-completeness, 428, 560
buffering of main memory, 106, 107

C-genericity, 419–420
C+SQL, 466
c-table, 493
and dependencies, 501
update, 593–594
CALC\textsubscript{down}, 79, 80, 100
CALC\textsubscript{def}, 79, 80
CALC\textsubscript{up}, 81, 86, 100
CALC+\mu+, 348–352, 349
normal form, 368
simultaneous induction, 351
CALC+\mu+, 352–354, 353
normal form, 368
INDEX 663

CALC+μ (+) \rightarrow W, 456
CALCμ_{adom}, 79
CALCμ_{p}, 79
CALCμ_{r}, 85
CALC*, 519
CALC$^\star^{\infty}$, 528
calculus
 complex value, 519, 523
 conjunctive, 44–47, 45
domain, 39, 74
 for OODBs, 557
 positive existential, 68, 91
 relational, 28, 35, 36, 39, 64, 70, 73–91
tuple, 39, 74, 101
calculus formula, 74–75
 parse tree, 83
Cartesian product, 52
chain program, 303
chase(T, t, Σ), 176
chase, 43, 159, 163, 173–185, 186, 220, 263, 497
 Church-Rosser, 183–185
 complexity, 176, 190
 fd rule, 175
 generalized to embedded dependencies, 223–225
 generalized to full dependencies, 220
 incomplete database, 498
 ind rule, 208
 and ind’s, 208
 jd rule, 175
 and logical implication, 180–182, 186
 query optimization, 163, 177–180
 and tableau minimization, 177–180
 of tableau queries, 173, 186
 tgd-rule, 223
 uniquely determined, 176
 vs. datalog, 186
 vs. resolution and paramodulation, 186
chase homomorphism, 184
chasing sequence, 175
 infinite, 208, 223, 225
 terminal, 175
 vs. dependency satisfaction, 175
choice operator, 458
Church-Rosser property, 175, 176
 chase, 183–185
CINEMA example, 31
circumscription vs. fixpoint operators, 354
Clark’s completion. See datalog\~", negation as failure.
class, 543, 545, 547
 in semantic data model, 243
class extension, 556
class hierarchy; 549
 well formed, 549
classification, 572, 575
clause, 288
Closed World Assumption (CWA), 27, 283, 489, 497, 599
clustering, 107
CNF, 83
c-o.e., 16
Codd, 64
Codd-table
 query, 488
 update, 593–594
COL, 538
compactness theorem, 25
complement of views, 591–593
complement operator, 103, 104
complete axiomatization, 167
complete lattice, 286
completeness, 18
 object-oriented language, 560–561, 560, 574
 of a query language, 466
 relational, 96, 147, 150, 151
 update language, 583
 of while__new, 470–473
 of while__new, 478
completion in Query-Subquery (QSQ), 318
completion of program, 407
complex constant, 517
complex value, 508–541, 542, 543, 545
 algebra, 514, 519
 calculus, 519, 523
datalog, 532, 533
elementary query, 534
Equivalence Theorem, 526–531
fixpoint, 531–532
instance, 512
 relation, 512
 safe-range, 528
 schema, 512
 semantic data model, 243
 sort, 511
 strongly-safe-range, 530
 term, 519
complex value model, 97, 548
complexity, 13–20
 data vs. expression, 122
 of query languages, 136
composition of tableaux, 226–227
composition of queries, 37, 48–52
conjunctive queries, 64
conjunctive queries with union, 64
conjunctive query program, 49
composition of queries (continued)
 functional paradigm, 50
 imperative paradigm, 50
 relational algebra queries, 71
 and user views, 51–52
 computability, 13–20
 condensation, 136
 condition box in QBE, 150
 conditional table. See c-table.
 conjunction, 44
 flatten, 83
 and negation, 74
 polyadic, 46
 conjunctive calculus, 64
 with disjunction, 91
 with equality, 48
 equivalence of formulas, 46
 normal form, 46–47
 rewrite rule, 46
 semantics, 45
 with union, 81
 conjunctive normal form (CNF), 21, 83
 conjunctive query, 36, 37–64
 algebraic, 52–61
 with arithmetic, 105
 calculus, 44–47, 45, 64
 normal form, 46–47
 composition, 48–52, 50
 containment, 105
 complexity, 121–122
 and decidability, 36, 37, 117, 118
 with disjunction, 61–64
 equality, 47–48, 50
 equivalence, 47, 82, 105
 Equivalence Theorem, 60
 evaluation, 56
 Homomorphism Theorem, 105, 115–118, 117, 127, 136
 logic-based perspectives, 40–48
 and Microsoft Access, 152
 monotonic, 42
 named algebra, 56–59, 57
 optimization, 36, 56, 105
 in practical systems, 105–115
 using chase, 163
 using dependencies, 163
 program, 49
 range restricted, with equality, 41, 48, 65
 rule-based, 39, 40–42, 41
 satisifiable, 42
 and SQL, 143–146
 static analysis, 105, 115–122
 tableau, 43–44, 43
 with union, 36, 37, 38, 61–64
 unnamed algebra, 52–56, 52
 vs. expert systems, 135
 yes-no, 42
 connectivity query, not first-order, 436, 460
 consec, 389
 consistent
 globally, 128, 136
 pairwise, 128, 136
 constant in relational model, 30
 constraint, 186
 inequalities over rationals, 96, 98
 integrity, 28, 185, 236
 vs. dependency, 157
 polynomial inequalities, 96
 temporal, 611–613
 transition, 612
 vs. first-order logic, 186, 234
 constraint atom, 112
 constraint database, 36, 71, 94–96, 97–98
 constraint programming, 97
 constraint query language, 94–96, 97–98
 containment
 conjunctive queries, 105, 118
 decidability, 117
 differences of SPCU queries, 140
 first-order queries
 undecidability, 125
 queries, 115
 tableau queries, complexity of, 121–122
 containment of queries
 relative to dependencies, 175, 177
 relative to family of instances, 174
 context-free grammar, 19
 context-free language, 20
 continuous operator, 286
 conventional perspective on relations, 32, 33
 CORAL, 337
 cost model for query evaluation, 106, 108–110
 count, 91, 92, 154
 counter machine, 15
 counting vs. relational calculus, 154
 counting technique, 327, 331–335, 336, 341
 covariance, 553
 cover, 254
 minimal, 257
 create in SQL, 145
 cross product, 52, 54
 physical implementation, 108
 in SQL, 144
 vs. equi-join, 108
 vs. join, 58
 cumulative assignment, 346
CWA. See Closed World Assumption.

Cylindric algebra
vs. relational algebra, 96, 103

dangling reference, 999, 572
data complexity, 122, 422–423
data definition language (DDL), 4, 28
data function, 306
data independence principle, 4, 9
data integrity, 162

data manipulation language (DML), 4, 28
data model. See database model.
data storage, 106
database access functional paradigm, 571
database instance, 29
conventional perspective, 32
logic-programming perspective, 32
database logic, 97
database management system, 3
database model, 4, 7, 28
complex value, 508–541
directory, 97
Entity-Relationship (ER), 242
functional, 574
Functional Data Model, 264
generic semantic model (GSM), 242
hierarchy, 28, 97
IFO, 242
Logical Data Model (LDM), 97
network, 28, 97
object-oriented, 28; See object-oriented database.
relational, 28–34
semantic, 28, 207, 242–250
database schema, 29, 31
with dependencies, 241, 251
datalog, 39, 273–310
bottom-up, 312–316, 324–335
vs. top-down, 311, 327, 336
boundedness, 285, 304, 309
vs. first-order, 306
chain program, 303, 305, 309
clause, 288
definite, 288
empty, 288
goal, 288
ground, 288
unit, 288
complex value, 532, 533
containment, 301–304
uniform, 304, 305, 309
and domain independence, 97
evaluation, 112, 311–337

adorned rule, 318, 321
adornment, 318
Alexander method, 336
algebraic approaches, 336
annotated QSQ, 330
APEX, 335
bottom-up, 312–316, 324–335
bound coordinate, 318
connected atom, 338
counting, 327, 331–335, 336, 341
direct evaluation, vs. pre-compilation, 317
Earley Deduction, 335
extension tables, 335
factoring, 337
free coordinate, 318
generalizations to logic programming, 336
generalized supplementary magic set rewriting, 325, 336
incremental, 337
Iterative Query-Subquery (QSQI), 339
left-to-right, 318
magic set rewriting, vs. QSQ, 311, 324–335, 336, 340
memo-ing, 335
naive, 312
original magic set rewriting, 340
parallel, 337
pre-compilation, vs. direct evaluation, 317
Query-Subquery (QSQ), 311, 317–324, 335, 341
rectified subgoal, 328, 330–331, 336
Recursive Query-Subquery (QSQR), 323–324, 324
relevant fact, 317
rule-goal graph, 335
seminative, basic algorithm, improved algorithm, 312–316, 335
sideways information passing, 318, 336, 340
sip graph, 340
SLD-AL, 335
stratification, 337
supplementary relation, 319–320
top-down, 316–324
extensional database (ebb), 279
extensional relation, 277
extensional schema, 277
immediate consequence operator, 282, 375
intensional database (idb), 279
intensional relation, 277
intensional schema, 277
least fixpoint semantics, 276, 282–286
Knaster-Tarski’s Theorem, 286
datalog (continued)
linear program, 305, 316
linear rule, 316
magic set rewriting, 311, 324–335, 336
generalized supplementary, 325, 336
original, 340
vs. QSQ, 324
minimum model semantics, 275, 278–282
Herbrand interpretation, 282
Herbrand model, 282
monadic programs, 305
negative literal, 288
nonrecursive
with negation, 70, 72–73
normal form, 68
nonrecursive (nr) program, 62
optimization, 36, 112, 311–337
parallel evaluation, 337
positive literal, 288
precedence graph, 315
program, 276
proof tree, 286
proof-theoretic semantics, 275, 286–300
prototype systems, 337
query, 317
Query-Subquery (QSQ), 311, 317–324, 335
annotated, 330
completion, 318
Iterative (QSQI), 339
Recursive (QSQR), 323–324
template, 319–320
vs. magic set rewriting, 324
rule, 276
body, 276
head, 276
instantiation, 277
satisfiability, 300–301
semipositive, 379
sirup, 305, 309
SLD-resolution, 289–298
completeness, 297
datalog", 400
derivation, 290
most general unifier (mgu), 293
refutation, 290
resolvent, 289, 295
selection rule, 298
SLD-derivation, 295
SLD-refutation, 295
soundness, 296
unifier, 293
SLD-tree, 298, 317
stratified evaluation, 337
syntax, 276
top-down vs. bottom-up, 311, 327, 336
and undecidability, 306, 308–311
vs. logic programming, 35, 278, 298
datalog", 308, 309, 355–360, 357, 374–414
default model semantics, 408
inflationary semantics, 356
locally stratified, 411
negation as failure, 406–408
Clark’s completion, 406
finite failure, 406
SLDNF resolution, 406
noninflationary semantics, 357
nonrecursive, 70, 72–73
range-restricted, 372
rule algebra, 359, 373
semipositive program, 377
on ordered databases, 406
vs. fixpoint, 405
SLB-resolution, 400
stable model semantics, 408, 413
vs. choice, 409
stratified, 374
stratified semantics, 377–385
independence of stratification, 382
on infinite databases, 411
on ordered databases, 406
precedence graph, 379
SLS resolution, 409
stratifiable program, 379
stratification, 378
stratification mapping, 378
vs. Fermat’s Last Theorem, 411
vs. fixpoint queries, 400
supported model, 384, 411
tie-breaking semantics, 409
update language, 582
valid model semantics, 409
well-founded, 374
well-founded semantics, 385–397, 413
3-stable model, 389
3-valued instance, 387
3-valued model, 387
alternating fixpoint, 390, 408, 413
global SLS-resolution, 409
greatest unfounded set, 413
on ordered databases, 406
total instance, 387
total program, 395
unfounded set, 413
vs. default, 412
vs. fixpoint queries, 400, 401
vs. stable, 412
Index

667
datalog, 483
DB2, 155
DBASE IV, 152, 155
dbms, 3
DDL, 28: See data definition language.
decidability, 16
of implication for full dependencies, 220, 234
declarative vs. procedural, 35, 53
decomposition, 162, 251–259, 252, 265–266
dependency preserving, 254
and functional dependency, 164, 171
and join dependency, 169–171
lossless join, 253
mapping, 253
multi-way join, 106, 114–115
reconstruction mapping, 254
vs. synthesis, 258, 265
DedGin, 337
deductive database, 8
deductive object-oriented database, 572, 574, 575
deductive temporal query language, 610
deep equality, 557, 575
default logic, 408
definite clause, 288
definite query, 97
delete in SQL, 149
deletion, 580
implicit, 556
deletion anomaly, 162, 254
dense linear order, 96, 98
dependency, 157
afunctional, 234
algebraic, 228–233
axiomatization, 166, 171, 172, 186, 193, 202–207, 227, 231
capturing semantics, 159–163
classification, 218
conditional table, 497
and data integrity, 162
and domain independence, 97
dynamic, 234
embedded, 192, 217, 233
embedded implicational (eid), 233
embedded join (ejd), 218, 233
embedded multivalued (emvd), 218, 220, 233
equality-generating (egd), 217–228
extended transitive, 234
faithful, 232, 233, 239
finiteness, 306
full, 217
functional (fd), 28, 159, 163–169, 163, 186, 218, 250, 257, 260
general, 234
generalized dependency constraints, 234
generalized mutual, 234
implication
in view, 221
implication of, 160, 164, 193, 197
implicational (id), 233
implied, 234
inclusion (ind), 161, 192–211, 193, 218, 250
acyclic, 207, 208–210, 211, 250
key-based, 250, 260
typed, 213
unary (uin), 210–211
inference rule, 166, 172, 193, 227, 231
ground, 203
join (jd), 161, 169–173, 170, 218
key, 157, 163–169, 163, 267
logical implication of, 160, 164
finite, 197
unrestricted, 197
multivalued (mvd), 161, 169–173, 170, 186, 218
mutual, 233
named vs. unnamed perspectives, 159
order, 234
partition, 234
projected join, 233
and query optimization, 163
satisfaction, 160
satisfaction by tableau, 175
satisfaction family, 174
and semantic data models, 249–253
and schema design, 253–262
single-head vs. multi-head, 217
sort set, 191, 211, 234
subset, 233
tagged, 164, 221, 241
template, 233, 236
transitive, 234
trivial, 220
tuple-generating (tg), 217–228
typed, 159
vs. untyped, 192, 217
unirelational, 217
and update anomalies, 162
and views, 221, 222
vs. first-order logic, 159, 234
vs. integrity constraint, 157
vs. tableaux, 218, 234
dependency basis, 172
dependency preserving decomposition, 254
dependent class, 246
dereferencing, 557, 558
derivation, 290
Index

derived data, 246
determinate-completeness, 474, 561, 574
determinate query, 474, 559
diameter, 12
diff, 88
difference, 33, 36, 68
 in relational algebra, 71
 and SPCU algebra, 136
 in SQL, 146
 vs. negation, 70
direct product, 232, 238
directory model, 97
disjunction, 38
 in conjunctive queries, 37, 38, 61, 64
 flatten, 83
 and negation, 74
 in selection formulas, 62
 disjunctive deductive database, 502
 disjunctive normal form (DNF), 21, 83
disk, 106
distinct in SQL, 107, 145, 154
 distributed database
 query optimization, 128
division in relational algebra, 99
 DML, 4, 28
 DNF, 83
dom, 30, 72
 Dom(·), 30
domain
 active, 46
 in relational model, 29, 30
 scalar, 153
 time, 607
 underlying, 74
 domain calculus, 74
 vs. tuple calculus, 39
 Domain Closure axiom, 26
 domain independence, 70, 74, 75–77, 79, 81–97
 and algebra, 78
 complex value, 526
 and datalog, 97
 and dependencies, 97
 with functions, 97
 and nr-datalog™, 78
 with order, 97
 practical query languages, 153
 relational calculus, 81
 syntactic restrictions, 81–91
 undecidability, 97, 125
 vs. active domain semantics, 79
 domain-inclusion semantics, 551
 domain-key normal form, 265
 dominance of query languages (⊆), 47

DOOD. See deductive object-oriented database.
duplicate elimination, 107
distinct, 107
duplicate tuples, 144
dynamic aspect of object-oriented database, 572
dynamic binding, 543, 546, 552
dynamic choice operator, 464
Dynamic Logic Programming (DLP), 583, 613
ear of hypergraph, 130
Earley Deduction, 335
edb, 42, 49, 277
edge of hypergraph, 130
egd, 217–228
A-egd, 218
Ehrenfeucht-Fraissé games, 433–437, 460
eid, 233
ejd, 218
EKS, 410
elementary functions, 18
elementary query, 534
eMBEDDED dependency, 192, 217
embedded implicational dependency (eidd), 233
embedded join dependency (ejd), 218
embedded multivalued dependency (emvd), 218, 220, 233
embedding of tableau, 43
empty clause, 288
emvd, 218, 220, 233
encα, 418
encapsulation, 543, 546, 553
entity, 543
Entity-Relationship (ER) model, 242, 264
equality atom, 217
equality-generating dependency (egd), 217–228
A-egd, 218
equi-join, 55, 108
physical implementation, 107–108
in SQL, 144
vs. natural join, 57
equivalence
algebraic, 106
calculus formulas, 82
conjunctive calculus formulas, 46
conjunctive queries, 47, 60, 64, 82, 105
decidability, 118
conjunctive queries with union, 63
differences of SPCU queries, 140
finite and unrestricted implicaton for full
 dependencies, 220, 234
first-order languages, 36, 80, 96
first-order queries, 74
undecidability, 125
of full typed and algebraic dependencies, 231
of hypergraph properties, 132
nr-datalog \(\neg \) and relational algebras, 73
queries, 37
relative to dependencies, 176, 177
query languages, 47
relational algebras, 71
SPC and SPPR algebras, 60
equivalence class, 10
equivalence relation, 10
Equivalence Theorem
conjunction query languages, 60
conjunctive query languages with union, 63
first-order languages, 80
ER model, 242
ESQL, 368, 370
evaluable query, 97
evaluation
of conjunctive queries, 56
datalog, 112, 311–337
evaluation plan, 107, 108, 110, 135
generating, 110–111
parameterized, 135
exact cover problem, 121
existential quantification, 44
flatten, 83
vs. universal, 74
Exodus
and optimization, 135
and query evaluation plans, 111
expert system vs. conjunctive queries, 135
expression complexity, 122, 422–423, 463
expressive power of object-oriented database, 569, 577
extended relational theory, 26
extension axioms, 26
extension tables, 335
extensional database edb, 42, 49, 279
extensional relation, 42, 48, 277

F-logic, 574
fact, 32
factoring, 337
faithful dependency, 232, 233, 239
vs. typed, 233
fd rule in chasing, 175
fd-schema, 251
field, real closed, 97
file systems, 3
filter, 518
finitary power set, 10
finite interpretation, 26
finite logical implication, 197–202, 219
vs. unrestricted, 197
finite model theory, 123, 197
finite representation of infinite database, 93–96, 97
finite-state automata, 13
finitely implies, 198
finiteness dependency, 306
first normal form, 265
first-order incremental definability, 588, 613
first-order language, 70–98
Equivalence Theorem, 80
and undecidability, 122–126
vs. SQL, 147–149, 155
first-order logic, 22, 35
vs. conjunctive queries, 40
vs. constraints, 234
vs. dependencies, 159, 234
vs. integrity constraints, 186
vs. relational calculus, 77, 105, 123, 136
first-order predicate calculus, 22, 35
first-order queries, 70–98, 70
and dependencies in views, 222
equivalence, 74
expressiveness, 433–437
Ehrenfeucht-Fraisse games, 433–437, 460
on ordered databases, 462
logspace complexity, 430–431
parallel complexity, 431–433
static analysis, 105, 122–126
and undecidability, 105, 122–126
fixpoint
complex value, 531–532
datalog, 276
incomplete database, 495
semantics of datalog \(\neg \), 390
fixpoint of an operator, 283
fixpoint queries, 342, 367
on ordered databases, 447
ptime complexity, 437
vs. while queries, 453
flatten, 524
FOID, 588
format model, 539
formula, 22
conjunctive calculus, 45
conjunctive normal form (CNF), 83
formula (continued)
disjunctive normal form (DNF), 83
interpretable, 77
matrix of, 82
prenex normal form (PNF), 82
relational calculus, 74–75
4NF, 252, 259
fourth normal form (4NF), 252, 259
Foxpro, 152
FQL, 264
free coordinate
in datalog evaluation, 318
free tuple, 33
free variable occurrence, 23, 45, 75
fsw. See finite-state automata.
full dependency, 217
full reducer, 129, 136
full tuple generating dependency, 218
full typed dependencies
axiomatization, 227–228
function-based perspective on tuples, 32
Functional Data Model, 264
functional dependency (fd), 28, 163–169, 163, 186, 218
agreement set, 188
axiomatization, 166–168
with mvd’s, 172–173
vs. ind’s, 192, 202–207, 211
and chasing, 175
closure, 165
cover, 254
and decomposition, 162, 164, 171, 253–262, 255
dynamic, 615
independent of ind’s, 250
logical implication
with ind’s, 192, 199–202
linear time, 165
satisfies, 163
saturated set, 188
and synthesis, 260–261
and two-element instances, 189
vs. decomposition, 164, 171
vs. join dependency, 171, 178
vs. multivalued dependency, 171
vs. propositional logic, 186, 189
vs. semantic data model, 249–253
vs. unrestricted implication, 199
vs. propositional logic, 189
functional paradigm, 569
functional query language, 569

G_F, 379
Galileo, 264
game-of-life, 343
garbage collection, 556
Gauss-Seidel algorithm, 335
generalized instance, 95
generalized SPC algebra, 55
generalized SPJR algebra, 59
generalized tuple, 94, 95
generic OODB model, 547–556
generic semantic model (GSM), 242–250
genericity, 103, 419–421, 419, 425
globally consistent join, 128, 136, 261
GLUE-NAIL, 337
goal clause, 288
Gödel Completeness Theorem, 123, 136
graph, 11
graphical query language, 150–153
Graphlog, 369, 370
ground, 22
ground atom, 34
ground clause, 288
ground inference rule, 203
group by in SQL, 154
grouping, 533
GSM, 242–250
GYO algorithm, 130, 136
GYO reduction, 141

hash index, 107
head of rule, 39, 41, 276
Heraclitus, 614
Herbrand interpretations, 23
Herbrand model
datalog, 282
hierarchy model, 28, 97
homomorphism, 12
of tableau queries, 117, 127, 136
Homomorphism Theorem, 37, 105, 115–118, 117, 127, 136, 177, 178
Horn clause, 279
hyp, 18
hyperedge, 130
hypergraph, 130
acyclic, 132
articulation set, 132
connected, 132
cyclic, 132
of database schema, 130
ear, 130
dge, 130
GYO algorithm, 130
Index

path, 132
reduced, 130
hyperplane, 438

I
I 1, I 1/2, I 0, 387
I*, I*, I**, 391
idb, 42, 49, 277
IDM transaction, 580–582, 613, 615–617
axiomatization, 581
condition, 580
deletion, 615
insertion, 615
modification, 615
optimization, 581
parallelization, 616
schedule, 616
serializability, 616

IMD transactional schema, 584, 613, 617
vs. constraints, 585–586
completeness, 617
soundness, 617
vs. fd’s, 585
vs. inclusion dependencies, 585, 617
vs. jd’s, 617
IFO, 242, 264
ILOG, 576
image of calculus query, 78
immediate consequence operator, 282
implementation
cross product, 108
equi-join, 107–108
multi-way join, 111–115
physical, 106–108
projection, 107
relational algebra, 107–108
selection, 107
implication
and chase, 180–182, 186
closed under, 204
closed under k-ary, 204
of dependencies, 158, 160, 164, 195
in view, 221
of fd’s and ind’s, 192
finite, 197–199, 226
finite vs. unrestricted, 202, 219, 234
of functional dependencies, 186
of ind’s, 192, 195–197
for two-element instances, 189
unrestricted, 197–199
vs. fd’s and ind’s, 199–202
implicational dependency (id), 233
implies. See implication.
finitely, 198
without restriction, 198
inclusion dependency (ind), 161, 192–211, 193, 218, 253
acyclic, 208, 210, 211, 250
vs. implication, 210
axiomatization, 193–195, 211
vs. fd’s, 192, 202–207, 211
and chasing, 208
independent of fd’s, 250
key-based, 250, 260
logical implication, 192, 195–197
with fd’s, 192, 199–202
repeats-permitted, 212
restricted classes, 192
satisfies, 193
typed, 211
vs. referential integrity, 211
vs. semantic data model, 207
vs. unrestricted implication, 199
incomplete database, 487–507
c-table, 493
update, 593–594
complexity, 499
fixpoint, 495
logical theory, 594–600
and nondeterminism, 507
table, 488
incomplete information
and update anomalies, 162
incremental update. See first-order incremental
definability.
ind, 161; See inclusion dependency.
ind-rule in chasing, 208
independent component, 265
indexing, 106, 107
inequality atom
in selections, 69
inequality in constraint databases, 96
inference rule, 24, 158
ground, 202, 203
schema, 202
substitution, 167
inference rules
for fd’s and mvd’s, 172–173, 186
for functional dependency, 166–168, 186
for inclusion dependency, 193–195
proof using, 167
provable using, 167
for unary inds, 210, 215
vs. algorithm for testing implication, 166
inference rules (continued)
vs. axiom, 167
infinitary logic, 458, 459, 462
infinite database, 97
 finite representation, 36, 93–96, 97
infinite tree, 575
inflationary datalog*, 356
inflationary fixpoint logic (CALC+µ+), 352, 353–354
inflationary fixpoint operator (µ+), 353
information capacity
 relative, 265, 268–269
INGRES, 34, 111, 155
 distributed, 135
query optimizer, 114–115, 127, 135, 137
inheritance, 546, 552, 553, 567, 573–575, 577
 semantic data model, 245
input schema of query, 37
insert in SQL, 149
insertion, 580
insertion anomaly, 162
instance
 complex value, 512
database, 29
 conventional perspective, 32
 logic-programming perspective, 32
 generalized, 95
GSM, 245
object-oriented database, 554, 555
relation
 conventional perspective, 32
 logic-programming perspective, 32
 relativized, 77
 semantic data model, 245
 unrestricted, 197
instantiation, 277
integrity constraint, 6, 28, 157, 186
 vs. first-order logic, 186, 234
intended model, 279
intensional database (id6), 42, 49, 279
intensional relation, 42, 48, 277
interpretable formula, 77
interpretation, 23
 active domain, 79
natural, 78
relativized, 74, 77–78
unrestricted, 78
intersection, 33
 in relational algebra, 71
 and SPC algebra, 55, 69
 in SQL, 146
 vs. join, 58
invented value, 469
IQL, 573
irreflexive, 11
ISA, 543, 545
 semantic data model, 245
isomorphic tableau queries, 120
isomorphism, 12
OID, 555
iterate, 518
Iterative QSQ (QSQI), 339
Jacobi algorithm, 335
jd, 161, 169–173, 218. See join dependency
jd rule, in chasing, 175
join, 55, 57
 acyclic, 105, 126, 128–135, 136
 algorithms for binary join, 135
 complex value, 517
 decomposition, 106, 114
equi-join, 55, 57, 108
 implementation, 111–115
left-to-right evaluation, 112
lossless, 164, 253
multi-way, 106, 108, 135
natural, 56, 57, 169
 vs. equi-join, 57
pairwise consistent, 128, 136
physical implementation, 107–108
semi-join, 128, 135
in SQL, 144
tuple substitution, 115, 135
 vs. cross product, 58
vs. intersection, 58
vs. tableau, 64
join decomposition, 114–115
join dependency (jd), 161, 169–173, 170, 218
 acyclic, 169, 182–183, 186
 and mvd’s, 182
 and chasing, 175
complexity of implication, 169
and decomposition, 169–171
embedded, 233
Gentzen-style axiomatization, 186
n-ary, 170
projected, 233
satisfies, 170
vs. axiomatization, 171, 186
vs. functional dependency, 169, 171, 178
vs. multi-valued dependency, 170, 182
vs. natural join, 169
vs. SPJR algebra, 181
vs. unrestricted implication, 199
Index

join detachment, 114, 135
join tree, 130, 136

k-ary axiomatization, 202, 204
key, 257, 543
 attribute, 257
 in semantic data model, 247
key dependency, 163
 simple, 267
 vs. functional dependency, 161
key-based inclusion dependency, 250, 260
KL, 503
Knaster-Tarski’s Theorem, 286

lambda-calculus, 574
language (formal), 13–20
late binding, 552
LDL, 337, 409, 533, 538, 613
 update language, 583
left-to-right evaluation
datalog, 318
 join, 112
linear bounded Turing machine, 196
linear datalog, 305, 316
linear programming, 97
Lisp, 573
literal, 21
 in nr-datalog, 72
local stratification, 411
logic. See mathematical logic.
 temporal, 612, 619
 three-valued, 389–391
logic programming, 97
 constraints, 97
 object-oriented database, 572
 vs. datalog, 35
logic-programming perspective on relations, 32, 33
Logical Data Model (LDM), 97
logical database, 503
logical implication, 21
 and chase, 180–182, 186
 closed under, 204
 closed under k-ary, 204
 of dependencies, 160, 164, 193
 in view, 221
 of fd’s, 165, 186
 of fd’s and ind’s, 192
 finite, 197–199
 vs. unrestricted, 202, 219, 234
 full dependencies
 complexity, 221
 of ind’s, 192, 195–197
 of mvd’s, 172–173
 unrestricted, 197–199
logical level of three-level architecture, 106
logical theory and updates, 594
logspace complexity
 of first-order queries, 430–431
lossless join, 164, 253
Löwenheim-Skolem theorem, 25

magic set rewriting, 311, 324–335
 generalized supplementary, 325, 336
 original, 340
 vs. QSQ, 324, 327
main-memory buffering, 106, 107
many-sorted query language, 153–154
map, 540
map filter, 518
materialized view, 51
mathematical logic, 20–27
matrix of formula, 82
maximum in SQL, 154
memo-ing, 335
message, 552
method, 543, 551
 languages, 563–571
method resolution, 546, 552
 method schema, 563, 566–571
 monadic, 543, 563, 565, 567, 568, 577
 polyadic, 567, 568, 577
mgu, 295
Microsoft Access, 36, 143, 150, 152–153, 155
minimal cover, 257
minimal tableau query, 118
minimization of tableau queries, 105, 119, 136
minimum in SQL, 154
minimum model, 275
modal operator, 503
 model, 24
 database, 28
 datalog, 279
 relational, 28–34
 semantic data, 243, 245–253, 267
modification, 580
modification anomaly, 162
modified RANF, 88
modus ponens, 24
monadic datalog program, 305
monadic method schema, 543, 563, 565, 567, 568, 577
monoid, 199
monotone operator, 283
monotonic query, 42
monotonicity
and conjunctive queries, 42
and relational algebra, 71, 98
most general unifier (mgu), 293
multi-head dependency, 217
multi-way join
decomposition, 114–115
detachment, 114, 135
implementation, 106, 108, 111–115, 135
left-to-right evaluation, 112
tuple substitution, 115, 135
multiset, 92, 136, 145
multivalued dependency (mvd), 161, 169–173, 170, 186, 218
and acyclic jd’s, 182
axiomatization with fd’s, 172–173
dependency basis, 172
embedded, 218, 220, 233
original definition, 189
satisfies, 170
and two-element instances, 189
vs. functional dependency, 171
vs. join dependency, 170
vs. propositional logic, 189
mutual recursion, 315
mvd, See multivalued dependency.

N-datalog¬¬, 463
N1NF. See nested relation.
NAIL!, 337, 409
naive evaluation
of datalog, 312
of SPC query, 109
naive table, 492
named perspective, 31, 32
and dependencies, 159
projection, 57
relational algebra, 71
selection, 57
SPJR algebra, 56–59, 57
tuple, 32
vs. unnamed perspective, 32
named value, 554, 556
root of persistence, 556
natural interpretation, 78
natural join, 56, 57, 169
polyadic, 58
vs. equi-join, 57
vs. join dependency, 169
natural semantics of relational calculus, 78, 79
nc, 96, 431
negation, 36
in Microsoft Access, 153
pushing, 83
in QBE, 150
in selections, 68
in SQL, 143
stratified, 49
vs. set difference, 70
Negation as Failure, 27, 406
negative literal, 288
nest, 518
nested loop implementation of join, 107, 108
nested relation, 512
algebra, 519
nested SQL query, 143, 146–147
network model, 28, 97
new, 559
NF2. See nested relation.
no-information null, 502
non-existing null, 502
nondeterminism, 15
semantics of negation, 409
nondeterministic query. See query, nondeterministic.
noninflationary datalog”, 357
nonrecursive (nr) datalog
with negation, 70, 72–73
program, 72
nonrecursive datalog program, 62
normal form, 158
Boyce-Codd (BCNF), 250, 251
decomposition algorithm, 255
conjunctive (CNF), 83
domestic calculus, 46–47
disjunctive (DNF), 83
domain-key, 265
first, 265
fourth (4NF), 252, 252, 259
nr-datalog, 68
prenex (PNF), 82
project-join (PJ/NF), 265, 267
relational algebra (RANF), 86, 97
relational schema, 251–259, 265
safe-range (SRNF), 83
SPC algebra, 55
SPCU algebra, 62
SPJR algebra, 59
SPJRU algebra, 62
third (3NF), 257
decomposition algorithm, 257
synthesis algorithm, 257
now, 607
np, 18
np-complete, 105, 121, 122, 127
Index 675

np-hard, 121
npspace, 18
nr-datalog, 62
 normal form, 68
 and domain independence, 78
 equivalence to first-order languages, 80
 literal, 72
 program, 72
 query, 73
 range restricted, 72
 rule, 72
 semantics, 72
 translation into SQL, 147–149
 and undecidability, 122–126
NU-Prolog, 337
null value, 488

O2, 562, 573
O2SQL, 510, 536–537, 562
obj, 547
object, 246, 543, 545, 547, 573
object creation, 573; See object-oriented database,
 object creation.
object equality, 557
object history, 615
object identifier (OID), 473, 543, 545–547
 semantic data model, 243
object migration, 572, 613, 615
object-oriented data model, 28, 245, 477, 546
object-oriented database, 8, 242, 473, 542–578
 calculus, 557–558
 class, 545
 class hierarchy, 549
 well formed, 549
 classification, 572, 575
 completeness, 560–561, 560, 574
 complex value, 545
 consistency, See, object-oriented database, type
 safety
 context-dependent binding, 552
 covariance, 553
 dangling reference, 999, 572
 dba mode, 546
 deductive, 575
 deep equality, 557, 575
 dereferencing, 557, 558, 559
 determinate query, 559
 domain-inclusion semantics, 551
 dynamic aspect, 572
dynamic binding, 543, 546, 552
 encapsulation, 543, 546, 553
 expansion of value, 558
 formal definition, 547–555
 generic OODB model, 547–556
 ILDG, 580
 imperative methods, 564–566, 573
 expressive power, 565–566, 577
 inheritance, 546, 552, 553, 567, 573–575, 577
 instance, 554, 555
 IQL, 573
 ISA, 543, 545
 languages for methods, 563–571
 late binding, 552
 logic programming, 572, 574
 message, 552
 method, 551
 signature, 551
 well formed, 553
 method resolution, 546, 552
 method schema, 563, 566–571
 expressive power, 569–571
 monadic, 543, 563, 565, 567, 568, 577
 polyadic, 567, 568, 577
 named value, 554, 556
 object, 543, 545, 547, 573
 object creation, 558–562, 573, 574
 object equality, 557
 object identifier, 543, 545, 547
 object migration, 572
 OID assignment, 550
 OID isomorphism, 555, 560
 overriding, 546
 parallelism, 573
 query semi-deterministic, 574
 query language, 556–563
 querying schema, 572
 reachability, 565
 receiver, 552
 role, 571
 schema, 554
 schema design, 571
 specialization, 545
 static binding, 552
 subtyping relationship, 549
 type, 548
 disjoint interpretation, 550
 semantics, 550
 type safety, 563, 565, 567, 573
 user mode, 546
 value, 547
 value equality, 557
 value-dependent binding, 552
Index

object-oriented database (continued)
view, 571
object-oriented programming languages, 573
object-oriented database
consistency. See object-oriented database, type
safety.
ODE, 615
OID
-assignment, 550
-equivalence, 246
-isomorphism, 246, 560
semantic data model, 243
OODB, 242; See object-oriented database.
Open World Assumption (OWA), 489, 497, 595
operator
continuous, 286
monotone, 283
OPS5, 369, 370
optimization
conjunctive queries, 36, 105
using chase, 163
using dependencies, 163
datalog, 36, 112, 311–337
and Exodus, 135
in practical systems, 105, 106–115
relational algebra, 106
transaction, 581
using chase, 177–180
or-sets, 505
ORACLE, 34, 155
ordered database, 397, 447
output schema of query, 37
overriding, 546
OWA, 489, 497, 595

\[P(\mathbf{I}), \] 280, 378, 383, 387
\[pg(P, \mathbf{I}), \] 389
\[P^{++}, \] 390
page fetch, 107
page size, 106
paging protocol, 106
pairwise consistent join, 128, 136
Paradox, 152, 155
parallel complexity
classes of circuits, 431
of first-order queries, 431–433
parameterized IDM transaction, 584
call, 584
parametrized query, 522
paramodulation vs. chase, 186
parity query
not first-order, 460
not in while, 437
partial fixpoint logic (CALC+\(\mu\)), 348, 349–352
partial fixpoint operator (\(\mu\)), 349
partial order, 11
partially ordered set, 11
path in hypergraph, 132
PCP, 16
and satisfiability of relational calculus, 123
permutation, 13
physical implementation, 106–108
cross product, 108
equi-join, 107–108
projection, 107
relational algebra, 107–108
selection, 107
physical level
of three-level architecture, 106
physical model of relational database, 106–107
PNF, 82
polyadic
conjunction, 46, 75, 83
disjunction, 75, 83
existential quantification, 83
natural join, 58
polyadic method schema, 567, 568, 577
polynomial inequalities constraint, 96, 97
positive existential calculus, 91, 97
decidability, 99
positive literal, 288
positive selection formula, 67
\[\text{pos}(T), \] 490
Post Correspondence Problem (PCP), 16
and satisfiability of relational calculus, 123
POSTGRES, 153, 600
powerset, 514
precedence graph
in datalog evaluation, 315
in datalog\(\neg\), 379
negative edge, 380
positive edge, 380
predicate, 277
prenex normal form (PNF), 82
procedural vs. declarative, 35, 53
product
Cartesian, 52
cross, 52, 54, 58, 108, 144
direct, 235, 240
production rule system, 369
program schema, 574
project-join expression
extended, 229
project-join normal form (PJ/NF), 267
project-join query, flat, 126
projection, 52
and aggregate functions, 93
named perspective, 57
physical implementation, 107
pushing, 109
in SQL, 144
unnamed perspective, 54
proof, 24
using inference rules, 167
proof tree, 286
propositional calculus, 21
propositional logic, 21
vs. fd’s and mvd’s, 186, 189
\textit{pspace}, 17
\textit{pspace} complexity
of while queries, 437
\textit{pspace}-complete, 196
\textit{P}, 286
\textit{ptime}, 17
\textit{ptime} complexity
of fixpoint queries, 437
pure universal relation assumption (URA), 126, 130, 242, 252
pushing
negation, 83
projection, 109
selection, 109, 335

\textit{qadam}, 79
\textit{q\# (\cdot)}, 78
\textit{qnat (\cdot)}, 78
\textit{QC}, 422
QL, 477
\textit{OPTIME}, 406, 422
\textit{QSQ}, 311, 317–324, 335
annotated, 330
completion, 318
Iterative (QSQI), 339
Recursive (QSQR), 323–324
algorithm, 324
template, 319–320
vs. magic set rewriting, 324, 327
\textit{QSQL}, 339
\textit{QSQR}, 323–324
algorithm, 324
Quel, 74, 112, 155
query, 421
complexity, 422–423
data complexity, 422–423
expression complexity, 422–423, 463
composition, 48–52, 71
computability, 417–421
conjunctive, 36, 37–64
conjunctive calculus, 44–47
containment relative to dependencies, 37, 177
definite, 97
determine, 474
equivalence, 37
relative to dependencies, 176, 177
first-order, 70
genericity, 419–421, 419, 425
C-genericity, 419–420
input schema, 37
with invented values, 469
monotonic, 42
nondeterministic, 453–457
CALC$\mu^{(+)} + W$, 456
choice operator, 458
dynamic choice operator, 464
N-datalog$^{(+)}$, 463
\textit{while}$^{(+)} + W$, 454, 456
witness operator, 454–456
nr-datalog$^{(-)}$, 73
output schema, 37
parametrized, 522
project-join, flat, 126
relational calculus, 75
satisfiable, 42
schema query, 572
semi-deterministic, 574
statistical properties, 106
tableau, 43–44, 43
union-of-tableaux, 139
untyped, 475
vs. implementation, 110
vs. query mapping, 37
vs. update, 28
well-typedness, 417
yes-no, 42
query composition, 37
query decomposition, 114–115
query evaluation
cost model, 106, 108–110
naive, 109
in practical systems, 106–115
query evaluation plan, 107, 108, 110, 135
and Exodus, 111
generating, 110–111
parameterized, 135
query language
aggregate operators, 153, 154, 155
with arithmetic, 153, 154
associative, 35
BP-completeness, 428
query language (continued)
completeness, 466
completeness in a class, 424
conjunctive queries, 36, 37–64
with union, 36, 37, 38
constraint, 94–98
declarative, 29, 558
vs. procedural, 35, 53
determinate-completeness, 474
disjunction, 37, 38
dominated by (⊆), 47
embedded, 466
C+SQL, 466
whileN, 467
equivalence (≡), 47
expressive power, 106, 427
graphical, 150–153
in flationary semantics, 342–344
many-sorted, 153–154
navigational, 558
nonflationary semantics, 342–344
object-oriented, 556–563
practical, 143–155
relational algebra, 28, 35, 36
relational calculus, 28, 35, 36
set-at-a-time, 35
static analysis, 36, 105, 122–126, 306–311
temporal, 606–613
three paradigms, 35–36
Query Management Facility (QMF), 155
query mapping vs. query, 37
query optimization, 36, 105
cost model, 106, 108–110
distributed database, 128
evaluation plan, 107, 108, 110–111, 135
and Exodus, 111
in INGRES, 114–115
join detachment, 114, 135
local vs. global, 115, 117
and negation, 106
in practical systems, 106–115
program transformation, 108
query rewriting, 108–110
query tree, 108–110, 108
Query-By-Example (QBE), 36, 40, 43, 143,
150–152, 155
condition box, 150
and domain independence, 153
and first-order languages, 151
negation, 150
relationally complete, 151
view definition, 151
vs. tableau queries, 150
Query-Subquery (QSQ), 311, 317–324, 335
annotated, 330
completion, 318
Iterative (QSQI), 339
Recursive (QSQR), 323–324
algorithm, 324
template, 319–320
vs. magic set rewriting, 324, 327

R[·], 31
r.e., See recursively enumerable.
Rado graph, 442, 461
RANF, 86, 97
algorithm, 88
modified, 88
range restricted
algorithm, 84
calculus query, 97
calculus variable, 83, 84
conjunctive query, with equality, 41, 48
formula, 102
nr-datalog ¬, 72
with equality, 65, 72
rule, 41
range separable query, 97
rank, 402
RDL, 369, 370
real closed field, 96, 97
recon2, 552
rectification mapping, 254
rectangle, representation, 95
rectified subgoal in datalog evaluation, 328,
330–331, 336
recursive (formal) language, 16
Recursive QSQ (QSQR), 323–324
algorithm, 324
recursively enumerable, 16
reduced hypergraph, 130
redundancy and update anomalies, 162
referential integrity constraint vs. inclusion
dependency, 161, 213
reflexive relation, 10
refutation, 290
regular language, 14
regular tree, 558, 575
relation
complex value, 512
extended, 229
extensional, 42, 48
intensional, 42, 48
relation (instance), 29
cconventional perspective, 32
logic-programming perspective, 32, 33
over empty attribute set, 32
unrestricted, 197
relation atom, 112, 217
relation schema, 31
with dependencies, 241
relational algebra, 28, 35, 36, 70, 71, 81
aggregate operators, 97
with bags, 136
complement operator, 103, 104
composition, 71
cconjunctive, 52–61
cdivision, 99
cand domain independence, 78
equivalence to first-order languages, 80
equivalences, 106
implementation, 106, 107–108
and monotonicity, 71, 98
named, 64, 71
cnamed conjunctive, 56–59
optimization, 106, 126
in practical systems, 105, 106–115
physical implementation, 106–115
cand satisfiability, 98
csemi-join, 128, 135
cSPC, 52–56, 108, 118
SPCU, 62, 97, 136
SPJR, 56–59, 118
vs. join dependency, 181
SPIRI, 62
translation into calculus, 80
typed restricted SPJ, 156
cand undecidability, 122–126
unnamed, 71
cunnamed conjunctive, 52–56
unrestricted, 103
untyped algebra, 475
relational algebra normal form (RANF), 86, 97
calgorithm, 88
modified, 88
relational calculus, 28, 35, 36, 64, 70, 73–91, 85
active domain semantics, 74, 79
caggregate operators, 97
allowed query, 97, 101–102
cbase formula, 74
cconjunctive, 45
cconjunctive normal form (CNF), 83
cand counting, 154
cdisjunctive normal form (DNF), 83
domain calculus, 39, 74
domain independence, 70, 74, 75–77, 79, 81–97
equivalence to first-order languages, 80
evaluable query, 97
cformula, 74–75
cequivawe, 82
cparse tree, 83
cimage of query, 78
inequalities constraint, 96, 97
natural semantics, 78, 79
cnegation, 70–71
cpolynomial inequalities constraint, 96
cpositive existential, 68, 91, 97
cprenex normal form (PNF), 82
cquery, 75
cand query optimization, 126
crange restricted
crange separable query, 97
calgorithm, 84
cformula, 102
cquery, 97, 102
cvariable, 83, 84
relational algebra normal form (RANF), 86, 97
crelativized interpretation, 74, 77–78
crewrite rule, 82
cfor RANF, 86–87
cfor SRNF, 83
csafe DRC query, 97
csafe query, 64, 97
csafe-range, 81, 85, 83–85, 97
cnormal form (SRNF), 83
csafety, 70, 75–77
and satisfiability, 123
csemantics, relativized, 77
csimulation of PCP, 123
cstatic analysis, 105, 122–126
csyntax, 74
ctranslation into algebra, 97
cactive domain case, 80
csafe-range case, 81, 86–91
tuple calculus, 39, 74, 101
cand undecidability, 36, 97, 105, 122–126, 136
unrestricted semantics, 78
unsafe, 75
vs. first-order logic, 77, 105, 123, 136
vs. select-from-where clause, 145
relational completeness, 96
Index

relational completeness (continued)
 QBE, 151
 SQL, 147
 vs. Turing computability, 96
relational model, 28–34
relative information capacity, 265, 268–269, 539
relativized instance, 77
relativized interpretation, 74, 77–78
relevant fact, 317
rename, 31
renaming
 attribute, 58
 complex value, 517, 524
 operator, 57, 58
 SPJR algebra, 57
rep(T), 489
repeat restricted tableau query, 67
representation system
 strong, 489
 weak, 490
representative instance, 263
resolution, 186, 552
 vs. chase, 186
resolution theorem proving, 136
resolvent, 289, 294
RETE, 600
Reverse-Same-Generation (RSG)
 program, 312
 query, 317
revision vs. update, 599–600
rewrite rule
 conjunctive calculus, 46
 normal form vs. query optimization, 110
 for optimization, 108, 110
 relational calculus, 82
 SRNF, 83
sound, 56
SPC algebra, 55–56, 110
SPJR algebra, 110
SRNF to RANF, 86–87
rewriting, query, 108–110
role, 571
root of persistence, 556
rule, 41
 active database, 605
 anonymous variable, 39
 body, 39, 41
 head, 39, 41
nr-datalog™, 72
 range restricted, 72
 semantics, 72
range-restricted, 41
 semantics, 41
update language, 582
rule-based conjunctive query, 39, 40–42, 41
 with equality, 48
 semantics, 41
 with union, 62
rule-goal graph, 335
running intersection property, 141
safe, 64
DRC query, 97
query, 97
safe-range, 85
 and aggregate functions, 93
 complex value, 528
 normal form (SRNF), 83
 query, 97
 relational calculus, 81, 83–85
 and universal quantification, 85
safety, 70, 75–77
 in SQL, 153
Same-Generation (SG)
 program, 331
 query, 331
 Variant (SGV), 339
sampling in query optimization, 111
sat(R, Σ), sat(Σ), 174
satisfaction, 24
 conjunctive calculus formula, 46
 relative to a domain, 77
satisfaction family, 174, 186, 222
satisfiability
 and conjunctive queries, 42
 datalog, 300
 and first-order queries, 123
 and relational algebra, 71, 98
 and relational calculus, 123
satisfiable formula, 21
satisfiable query, 42
satisfiable SPC algebra, 56
satisfiable SPJR algebra, 59
satisfy
dependency, 160
 by tableau, 175
functional dependency, 163
inclusion dependency, 193
join dependency, 170
multivalued dependency, 170
saturated set, 188
scalar domain, 153
schema
 complex value, 512
database, 29, 31
Index

object-oriented database, 554
query, 572
relation, 31
schema design
decomposition, 162, 251–259, 252
object-oriented database, 571
synthesis, 257–258
SDD-1, 135
select-from-where clause, 112, 144
vs. projection, 144
vs. relational calculus, 145
selection, 52, 57
constant based, 66
named perspective, 57
physical implementation, 107
positive conjunctive, 55, 58
pushing, 109, 335
in SQL, 144
unnamed perspective, 53
selection formula
atomic, 53
disjunction, 62
inequality atom, 69
with negation, 68
positive, 67
positive conjunctive, 55, 58, 108
selection rule, 298
Semantic Binary Data Model, 264
semantic data model, 28, 157, 192, 240, 242–250, 264, 542
abstract class, 243
attribute, 243
multi-valued, 243
single-valued, 243
class, 243
complex value, 243
derived data, 246
Entity-Relationship (ER), 242
and functional dependencies, 249–253
generic (GSM), 242
inheritance, 245
instance, 245
ISA, 245
object identifier (OID), 243
printable class, 243
and relational model, 249–253
and schema design, 247–250
subclass, 243
vs. inclusion dependencies, 207, 251–253
semantics
conjunctive calculus, 45
conjunctive query, 41
nr-datalog¬ rule, 72
relational calculus
active domain, 79
natural, 78, 79
unrestricted, 78
rule-based conjunctive query, 41
SPC algebra, 54
SPJR algebra, 58
tableau query, 43
semi-deterministic query, 574
semi-join, 128, 135
program, 129
semia naive datalog evaluation, 312–316, 335
basic algorithm, 315
improved algorithm, 316
semipositive datalog, 377
sentence, 23
Sequel, 144
set comprehension, 538
set constructor, 508, 509
set difference, 68
in relational algebra, 71
and SPCU algebra, 136
vs. negation, 70
set membership, 514
set-at-a-time, 35
set_create, 515
set_destroy, 515
sideways information passing, 111, 112–114
in datalog evaluation, 318, 336, 340
graph, 113, 340
strategy, 113
signature, method, 551
simple key dependency, 267
simple tableau query, 140
simultaneous induction, 351
single rule programs (sirups), 305, 309
single-head dependency, 217
singleton, 518
sip graph, 113, 340
sip strategy, 113
sirup, 305–309
SLD datalog evaluation, 289–298
SLD-AL, 335
SLD-resolution, 295; See datalog, SLD-resolution.
datalog¬, 406
SLD-tree, 298, 317
SLDNF resolution, 406
SLS resolution, 409
sort
complex value, 511
of instance, 32
of relation name, 31
sort (continued)
of tuple, 32
sort(), 31
sort set dependency, 191
 vs. axiomatization with fds, 213
sort-merge implementation of join, 108
sound axiomatization, 167
spatial database, 95
SPC algebra, 52–56, 54, 108
 base query, 54
generalized, 55
intersection, 55, 69
normal form, 55
rewrite rule, 55–56, 110
satisfiable, 56
unary singleton constant, 54
with union, 62
vs. SPJR algebra, 60
vs. tableau queries, 118
SPCU algebra, 62, 97
 and dependencies in views, 222
 and difference, 136, 140
normal form, 62
specialization, 545
SPJ algebra,
typed restricted, 64, 67
SPJR algebra, 56–59, 57
 base query, 58
generalized, 59
natural join, 56
normal form, 59
renaming, 57
rewrite rule, 110
satisfiable, 59
unary singleton constant, 58
with union, 62
vs. join dependency, 181
vs. SPC algebra, 60
vs. tableau queries, 118
SPJRU algebra, 62
normal form, 62
SQL, 2–3, 36, 70, 74, 112, 143–150, 155, 336, 370, 372, 536, 574
 bags, 145, 155
 and conjunctive queries, 143–146
contains, 146
count, 154
create, 145
delete, 149
distinct, 145, 154
 and domain independence, 153
duplicate tuples, 144
from, 144
group by, 154
insert, 149
and negation, 143
nested query, 143–147
in personal computer DBMSs, 152
relationally complete, 147, 150
safety, 153
scalar types, 145
select, 144
set operators, 146
simulation of nr-datalog¬, 147–149
translation to algebra, 112
update, 149
update language, 580
views, 149
vs. cross product, 144
vs. first-order queries, 147–149, 155
vs. relational calculus, 145
vs. Sequel, 144
where, 144
SRNF, 83
stable model, 408, 413
stage(P, I), 285
Starburst, 368, 370
static analysis
 conjunctive queries, 105, 115–122
data queries, 306–311
first-order queries, 105, 122–126
of queries, 36
relational calculus, 105, 122–126
static binding, 552
stored data, statistical properties, 106
stratified datalog¬, 378
stratified negation, 49
stratified semantics, 377–385. See datalog¬,
 stratified semantics
stream of tuples, 106, 135
strongly-safe-range
 complex value, 530
structured object. See complex value.
Structured Query Language (SQL), 143. See SQL
subclass, 545
semantic data model, 243
subquery
 in datalog evaluation, 318
 substitution, 24, 116
 vs. valuation, 116
subsumption, 136
subtyping relationship, 549
succ, 397
sum, 91, 92
 in SQL, 154
summary of tableau query, 43
superkey, 257
supplementary relation, 319–320
supported model, 384, 411
sure(T), 490
surrogate, 247, 573
Sybase, 155
symmetric, 10
synthesis, 257–258 vs. decomposition, 258, 265
table, 488–500; See Codd-table, naive table, c-table.
tableau, 43 complexity, 121–122 composition, 226–227 embedding, 43 typed, 44 vs. dependencies, 218, 234 vs. join, 64 tableau minimization, 105, 118–120, 136 and chasing, 177–180 vs. condensation, 136 vs. local optimization, 117 vs. number of joins, 118 vs. resolution theorem proving, 136
tableau query, 43–44, 43 chasing, 173, 186 complexity, 111–122 composition, 226 containment, 121–122 difference, 64 with equality, 48 of an fd, 181 homomorphism, 117, 127, 136 isomorphic, 120 of a jd, 181 minimal, 118 minimization, 119 repeat restricted, 67 semantics, 43 simple, 140 summary, 43 typed, 64, 121, 136 union-of-tableaux query, 63, 64, 139 vs. dependencies, 64 vs. QBE, 150 vs. SPC algebra, 118 vs. SPJR algebra, 118 tagged dependency, 164, 221, 241 Tarski’s Algebraization Theorem, 96 Taxis, 264 taxonomic reasoning, 572, 575 template dependency, 233, 236 temporal constraint, 611–613 history-less checking, 615 temporal database, 95, 606–613 query language, 607–611 deductive, 610 TSQL, 609 representation, 608–609 temporal CALC, 607 temporal constraint, 611–613 on events, 612, 615 object histories, 615 object migration, 613 vs. transactional schemas, 612 time domain, 607
now, 607 transaction time, 607 transition constraint, 612 dynamic fd’s, 615 pre/post conditions, 615 valid time, 607 temporal logic, 608, 615 temporal query language, 607–611 term, 22, 34 complex value, 519
tgd, 217–228
tgd-rule in chasing, 223 third normal form (3NF), 257 3-TF, 388 3-satisfiability, 19 3NF, 257 3NF Algorithm, 257 3-valued instance, 386, 387, 388, 389 three-level architecture, 3 logical level, 106 physical level, 106 3-SAT, 139 TI Open Object-Oriented Data Base, 135 timestamp, 401 top-down datalog evaluation, 316–324 vs. bottom-up, 311, 327, 336 topological sort, 11 total instance, 387 total order, 11 total program, 395 Tp, 283 transaction time, 607 transactional schema, 584–586, 584, 617 Gen(T), 585 IDM transactional schema, 584, 613, 617
transactional schema (continued)
 parameterized IDM transaction, 584
 vs. constraints, 585–586
 completeness, 585
 soundness, 585
 vs. methods, 584
 vs. temporal constraints, 612
transformation rule. See rewrite rule.
transitive closure query
 generalized, 310
 not first-order, 436
tree, 12
truth assignment, 21
TSQL, 609
tup_create, 514
tup_destroy, 515
tuple, 29
 free, 33
 generalized, 94, 95
 named perspective, 32
 with placeholders, 94
 unnamed perspective, 32
 vs. domain calculus, 39
tuple generating dependency (tgd)
 full, 218
tuple rewriting, 107
tuple substitution, 115, 135
tuple-generating dependency (tgd), 217–228
Turing machine, 15
 linear bounded, 196
two-element instances
 vs. fd’s and mvd’s, 189
two-way automata, 15
type in object-oriented database, 548
type safety, 563, 565, 567, 573
typed dependency, 159
 vs. faithful, 233
 vs. untyped, 217
typed inclusion dependency, 211
typed restricted SPJ algebra, 64, 67, 156
typed tableau, 44
 query, 64, 121, 136
types(C), 548

unary inclusion dependency (uind), 207, 210–211
undeclarability
 of properties of datalog queries, 306, 308
 of properties of first-order queries, 105, 122–126
 of implication for embedded dependencies, 220, 234
 of implication for emvds, 220
 of implication of fds and inds, 199, 211
 underlying domain, 74
 unfounded set, 413
 unification, 293
 uniform containment, 304
 union, 33, 37, 38
 in conjunctive queries, 61–64
 in Microsoft Access, 153
 in relational algebra, 71
 in rule-based conjunctive queries, 62
 in SQL, 146
 union-of-tableaux query, 63, 64, 139
 unique name axioms, 26
 unique role assumption, 261
 unirelational dependency, 217
 unit clause, 288
 universal quantification
 removing, 83
 and safe-range, 85
 vs. existential quantification, 74
 universal relation assumption (URA), 137, 266
 pure, 126, 130, 242, 252
 weak, 261–264, 262
 interface, 266
 scheme assumption (URSA), 260
 unique role assumption, 261
 universe, 23
 universe of discourse, 77
 Unix, 155
 unknown value, 488
 unnamed perspective
 on relations, 32
 projection, 54
 relational algebra, 71
 selection, 53
 SPC algebra, 52–56, 54
 tuple, 32
 vs. named perspective, 32
 unnest, 518
 unrestricted instance, 197
 unrestricted interpretation, 78
 unrestricted logical implication, 197–202, 219
 vs. finite, 197
 vs. functional dependency, 199
 vs. inclusion dependency, 199
 vs. join dependency, 199
 unrestricted relational algebra, 103
 unrestricted semantics of relational calculus, 78
 untyped dependency, 192
vs. typed, 217
untyped relational algebra, 475

update
in SQL, 149–150
statistical properties, 106
vs. revision, 599–600
vs. query, 28

update in SQL, 149
update anomalies, 162, 241
and incomplete information, 162
and redundancy, 162
update language, 580–583
completeness, 583
IDM transaction, 580–582, 615–617
deletion, 615
insertion, 615
modification, 615
rule-based, 582–583
datalog**, 582
Dynamic Logic Programming (DLP), 583, 613
LDL, 583
SQL, 580
URA, 126, 130, 137
pure, 242, 252
weak, 261–264, 262
URSA, 260
user view. See view.

V-relation, 513
\(\text{val}(O)\), 547
valid, 21
valid model semantics, 409
valid time, 607
valuation, 41
as syntactic expression, 45
of tableau, 43
vs. substitution, 116
value equality, 557
\(\text{var}\), 33, 41
variable, 33
anonymous, 39, 44
bound occurrence, 45, 75
free occurrence, 45, 75
variable assignment, 24
variable substitution
rewrite rule, 46, 83
view, 4
complement, 583
and dependencies, 222
maintenance, 586–588, 586
materialized, 51
object-oriented database, 571

in QBE, 151
and query composition, 51–52
in SQL, 149
update, 586, 589–593
complement of views, 591–593
virtual, 51

weak instance, 262
weak universal model, 502
weak universal relation assumption (URA), 261–264, 262
well-formed formula
conjunctive calculus, 45
relational calculus, 74–75
well-founded semantics, 385–397
\textbf{where} in SQL vs. selection, 144
while, 344–346, 345
while queries, 342, 367
normal form, 452–453
on ordered databases, 447
\(\text{pspace}\) complexity, 437
vs. fixpoint queries, 453
while\(+\), 346, 346–347
while\((+\bigoplus W)\), 456
while\((+\bigoplus W)\), 454
while\(_X\), 467
completeness on ordered databases, 468
while\(_\text{new}\), 469
completeness, 470–473
not determinate-complete, 474
well-behaved, 470
while\(_\text{obj}\), 559
while\(_\text{any}\), 475
completeness, 478
well-behaved, 477
witness operator, 454–456
word problem for monoids, 199

yes-no query, 42

0-1 law, 441
for CALC, 441–444
for \textit{while}, 444–446