Inclusion Dependency

Vittorio: Fd’s and jd’s give some structure to relations.
Alice: But there are no connections between them.
Sergio: Making connections is the next step . ..
Riccardo: ... with some unexpected consequences.

he story of inclusion dependencies starts in a manner similar to that for functional

dependencies: Implication is decidable (although here it is PSPACE-complete), and
there is a simple set of inference rules that is sound and complete. But the story becomes
much more intriguing when functional and inclusion dependencies are taken together.
First, the notion of logical implication will have to be refined because the behavior of
these dependencies taken together is different depending on whether infinite instances are
permitted. Second, both notions of logical implication are nonrecursive. And third, it can
be proven in a formal sense that no “finite”” axiomatization exists for either notion of logical
implication of the dependencies taken together. At the end of this chapter, two restricted
classes of inclusion dependencies are discussed. These are significant because they arise in
modeling certain natural relationships such as those encountered in semantic data models.
Positive results have been obtained for inclusion dependencies from these restricted classes
considered with fd’s and other dependencies.

Unlike fd’s or jd’s, a single inclusion dependency may refer to more than one relation.
Also unlike fd’s and jd’s, inclusion dependencies are “untyped” in the sense that they
may call for the comparison of values from columns (of the same or different relations)
that are labeled by different attributes. A final important difference from fd’s and jd’s is
that inclusion dependencies are “embedded.” Speaking intuitively, to satisfy an inclusion
dependency the presence of one tuple in an instance may call for the presence of another
tuple, of which only some coordinate values are determined by the dependency and the first
tuple. These and other differences will be discussed further in Chapter 10.

9.1 Inclusion Dependency in Isolation

To accommodate the fact that inclusion dependencies permit the comparison of values from
different columns of one or more relations, we introduce the following notation. Let R be a
relation schema and X = Ay, ..., A, a sequence of attributes (possibly with repeats) from
R. For an instance I of R, the projection of I onto the sequence X, denoted /[X], is the
n-ary relation {(t (A1), ..., t(Ay)) |t € I}.

The syntax and semantics of inclusion dependencies is now given by the following:

192

9.1 Inclusion Dependency in Isolation 193

DEFINITION 9.1.1 Let R be a relational schema. An inclusion dependency (ind) over R
is an expression of the form o = R[A1, ..., A,] € S[Bi, ..., By], where

(a) R, S are (possibly identical) relation names in R,
(b) Ay, ..., A, is asequence of distinct attributes of sort(R), and
(c) Bi,..., By is asequence of distinct attributes of sort(S).

An instance I of R satisfies o, denoted I = o, if
I(R)[A1, ..., An] CI(S)[B1, ..., Bnl.
Satisfaction of a set of ind’s is defined in the natural manner.

To illustrate this definition, we recall an example from the previous chapter.

EXAMPLE 9.1.2 There are two relations: Movies with attributes Title, Director, Actor and
Showings with Theater, Screen, Title, Snack; and we have an ind

Showings[Title] C Movies[Title].

The generalization of ind’s to permit repeated attributes on the left-or right-hand side
is considered in Exercise 9.4.

The notion of logical implication between sets of ind’s is defined in analogy with that
for fd’s. (This will be refined later when fd’s and ind’s are considered together.)

Rules for Inferring ind Implication

The following set of inference rules will be shown sound and complete for inferring logical
implication between sets of ind’s. The variables X, Y, and Z range over sequences of
distinct attributes; and R, S, and T range over relation names.

INDI1: (reflexivity) R[X] € R[X].

IND2: (projection and permutation) If R[Ay, ..., A,] € S[Bj, ..., Byl then R[A;,,

.., A1 € S[B;,, ..., B;] for each sequence iy, ..., i of distinct integers in
{1,...,m}.

IND3: (transitivity) If R[X] C S[Y] and S[Y] C T[Z], then R[X] C T[Z].

The notions of proof and of provability (denoted) using these rules are defined in
analogy with that for fd’s.

THEOREM 9.1.3 The set {IND1, IND2, IND3} is sound and complete for logical impli-
cation of ind’s.

Proof Soundness of the rules is easily verified. For completeness, let X be a set of ind’s
over database schema R ={Ry, ..., R,}, and let 0 = R,[Ay, ..., Al € Rp[By, ..., Byl

194 Inclusion Dependency

be an ind over R such that ¥ = o. We construct an instance I of R and use it to demonstrate
that ¥ Fo.

To begin, let s” be the tuple over R, such that s'(A;) =i fori € [1,m] and s'(B) =0
otherwise. Set I(R,) = {s'} and I(R ;) = ¥ for j # a. We now apply the following rule to I
until it can no longer be applied.

If R,'[Cl, ey Ck] - Rj[Dl, ey Dk] eXandt e I(R,'), then add
(%) u to I(R;), where u(D;) =1(C)) forl € [1, k] and u(D) =0 for D
&€{D1, ..., Dy}.

Application of this rule will surely terminate, because all tuples are constructed from
a set of at most m + 1 values. Clearly the result of applying this rule until termination is
unique, so let J be this result.

REMARK 9.1.4 This construction is reminiscent of the chase for join dependencies. It
differs because the ind’s may be embedded. Intuitively, an ind may not specify all the
entries of the tuples we are adding. In the preceding rule (x), the same value (0) is always
used for tuple entries that are otherwise unspecified. ™

It is easily seen that J = ¥. Because ¥ = o, we have J = o. To conclude the proof,
we show the following:

If for some R; in R, u € J(R}), integer g, and distinct attributes
(k%) Ci,...,Cqinsort(Rj), u(Cp) > 0 for p € [1, ¢], then
X RalAuccyys - - Auc)l € RjICH, ..., Cyl.

Suppose that (%) holds. Let s” be a tuple of J(Rp) such that s”[By, ..., Byl =
s'[A1, ..., Ay]. (Such a tuple exists because J = o.) Use (%) with R; =Ry, g=m,
Ci,...,Cqy=By,..., By.

To demonstrate (), we show inductively that it holds for all tuples of J by considering
them in the order in which they were inserted. The claim holds for s in J(R,) by INDI1.
Suppose now that

« T’ is the instance obtained after k applications of the rule for some k > 0;

« the claim holds for all tuples in I'; and

* u is added to R; by the next application of rule (x), due to the ind R;[Cy, ..., C;] C
R;[Dy, ..., D¢l € X and tuple r € I'(R;).

Now let {Eq, ..., E;} be a set of distinct attributes in sort(R;) with u(Ep,) > 0 for p €
[1, g]. By the construction of u in (*), {E1, ..., E4} € {D1, ..., Di}. Choose the mapping
p such that D,y = E, for p € [1, q]. Because R;[C1,...,Ci] S R;[D1, ..., Dyl € X,
IND?2 yields

YXFERICpay, - Copl S RGLEL, ..., Eyl.

9.1 Inclusion Dependency in Isolation 195

By the inductive assumption,
ZF RalArc, s -+ ArCpgn] € RilCpqy, - - -, Cpign]-
Thus, by IND3,
ZE RalAic,ap)s -+ ArCpgn] S RILEL, ...y Egl.
Finally, observe that for each p, t (Cp(p)) = u(Dpy(p)) = u(Ep), so

Y Ra[Au(El)» Cee, Au(Eq)] - Rj[E], . Eq].

Deciding Logical Implication for ind’s

The proof of Theorem 9.1.3 yields a decision procedure for determining logical implication
between ind’s. To see this, we use the following result:

PROPOSITION 9.1.5 Let X be a set of ind’s over R and R,[Aq, ..., A,] C Ry[By, ...,

=

Bm].ﬁThen Y = RulAt, ..., An]l € Rp[By, ..., By] iff there is a sequence R;,[C1], ...,
R;,[C] such that

(a) Ri; € R for j € [1, k];

(b) C ;j is a sequence of m distinct attributes in sort(Rij) for j € [1, k];

(© Riy[Cil=RalAl, ..., Ay];

(d) Ri[Cil=Ry[Bi, ..., Bul;

(e) R,-j[é 1< R,-j +1[5 j+1] can be obtained from an ind in X by one application of
rule IND2, for j € [1, (k — 1)].

Crux Use the instance J constructed in the proof of Theorem 9.1.3. Working backward
from the tuple s” in J(Rp), a chain of relation-tuple pairs (Rij, s;) can be constructed so
that each of 1, ..., m occurs exactly once in s, and s is inserted into I as a result of s;
and IND2. m

Based on this, it is straightforward to verify that the following algorithm determines
logical implication between ind’s. Note that only ind’s of arity m are considered in the
algorithm.

ALGORITHM 9.1.6

Input: A set ¥ of ind’s over R and ind R,[A1, ..., Al € Rp[Bi1, ..., Byl
Output: Determine whether ¥ = R,[A1, ..., Anl S Rp[B1, ..., Bnl.

Procedure: Build a set £ of expressions of the form R;[Cy, ..., Cy] as follows:
1. £:={Ry(Ay,..., An)}.

196 Inclusion Dependency

2. Repeat until Ry[Bj, ..., By] € € or no change possible:
If R;[Cy,...,Cp]l €& and

Ri[Cy,....,Cu] S Rj[Dy, ..., Dyl

can be derived from an ind of ¥ by one application of IND2, then insert
R;[D1, ..., Dylinto €.
3. If Ry[By, ..., By € £ then return yes; else return no. M

As presented, the preceding algorithm is nondeterministic and might therefore take
more than polynomial time. The following result shows that this is indeed likely for any
algorithm for deciding implication between ind’s.

THEOREM 9.1.7 Deciding logical implication for ind’s is PSPACE-complete.

Crux Algorithm 9.1.6 can be used to develop a nondeterministic polynomial space pro-
cedure for deciding logical implication between ind’s. By Savitch’s theorem (which states
that PSPACE = NPSPACE), this can be transformed into a deterministic algorithm that runs in
polynomial space. To show that the problem is PSPACE-hard, we describe a reduction from
the problem of linear space acceptance.

A (Turing) machine is linear bounded if on each input of size n, the machine does not
use more that n tape cells. The problem is the following:

Linear Space Acceptance (LSA) problem

Input: The description of a linear bounded machine M and an input word x;
Output: yes iff M accepts x.

The heart of the proof is, given an instance (M, x) of the LSA problem, to construct a
set ¥ of ind’s and an ind o such that ¥ = o iff x is accepted by M.

Let M = (K, T, A, s, h) be a Turing machine with states K, alphabet I", transition
relation A, start state s, and accepting state h; and let x = x; ... x, € ['* have length n.

Configurations of M are viewed as elements of I'* KT with length n + 1, where the
placement of the state indicates the head position (the state is listed immediately left of
the scanned letter). Observe that transitions can be described by expressions of the form
oy, a2, 03 — PBi, B2, B3 with ay, ..., B3 in (K U T"). For instance, the transition

“if reading b in state p, then overwrite with ¢ and move left”

corresponds to a, p, b — p, a, c for each a in I'. Let x be the set of all such expressions
corresponding to transitions of M.

The initial configuration is sx. The final configuration is i 4" for some particular letter
b, iff M accepts x.

The ind’s of X are defined over a single relation R. The attributes of R are {A; ; |i €
(KUT), je{l,2,...,n+1}}. The intuition here is that the attribute A, ; corresponds to
the statement that the j symbol in a given configuration is p. To simplify the presentation,
attribute A, i is simply denoted by the pair (a, k).

9.2 Finite versus Infinite Implication 197

The ind o is

R[(s, 1), (x1,2), ..., (xpon + DI S R[(h, 1), (B,2),...,(p.n+ D]

The ind’s in X correspond to valid moves of M. In particular, for each j € [1,n — 1],
includes all ind’s of the form

Rl(e1,). (@2, j + 1), (@3, j +2), ATS RI(B1.). (Ba. j+ D). (B3, j +2). Al

where a1, as, a3 — B1, B2, B3 is in x, and A is an arbitrary fixed sequence that lists all
of the attributes in I' x {1,...,j —1,j+3,...,n 4+ 1}. Thus each ind in ¥ has arity
34+ —2)|I'|,and |Z| < n|A]|.

Although the choice of A permits the introduction of many ind’s, observe that the
construction is still polynomial in the size of the linear space automaton problem (M, x).
Using Proposition 9.1.5, it is now straightforward to verify that ¥ = o iff M has an
accepting computation of x. M

Although the general problem of deciding implication for ind’s is PSPACE-complete,
naturally arising special cases of the problem have polynomial time solutions. This
includes the family of ind’s that are at most k-ary (ones in which the sequences of at-
tributes have length at most some fixed k) and ind’s that have the form R[A 1€ S [A] (see
Exercise 9.10). The latter case arises in examples such as Grad — Stud[Name, Major] C
Student[Name, Major]. This theme is also examined at the end of this chapter.

9.2 Finite versus Infinite Implication

We now turn to the interaction between ind’s and fd’s, which leads to three interesting
phenomena. The first of these requires a closer look at the notion of logical implication.

Consider the notion of logical implication used until now: X logically implies o if for
all relation (or database) instances I, I = ¥ implies I = 0. Although this notion is close
to the corresponding notion of mathematical logic, it is different in a crucial way: In the
context of databases considered until now, only finite instances are considered. From the
point of view of logic, the study of logical implication conducted so far lies within finite
model theory.

It is also interesting to consider logical implication in the traditional mathematical
logic framework in which infinite database instances are permitted. As will be seen shortly,
when fd’s or ind’s are considered separately, permitting infinite instances has no impact on
logical implication. However, when fd’s and ind’s are taken together, the two flavors of
logical implication do not coincide.

The notion of infinite relation and database instances is defined in the natural manner.
An unrestricted relation (database) instance is a relation (database) instance that is either
finite or infinite. Based on this, we now redefine “unrestricted implication” to permit
infinite instances, and we define “finite logical implication” for the case in which only
finite instances are considered.

198 Inclusion Dependency

R|A B R|A B
1 0 1 1
2 1 2 1
3 2 3 2
4 3 4 3
(a) (b)

Figure 9.1: Instances used for distinguishing =g, and |=ynr

DEFINITION 9.2.1 A set X of dependencies over R implies without restriction a depen-
dency o, denoted X =y 0, if for each unrestricted instance I of R, I = X implies I = 0.
A set ¥ of dependencies over R finitely implies a dependency o, denoted ¥ =g, 0, if for
each (finite) instance [of R, I = ¥ implies I =o.

If finite and unrestricted implication coincide, or if the kind of implication is under-
stood from the context, then we may use |= rather than =g, or ype. This is what we
implicitly did so far by using = in place of |=gj.

Of course, if ¥ =ynr 0, then X =4, 0. The following shows that the converse need
not hold:

THEOREM 9.2.2

(a) Thereis a set X of fd’s and ind’s and an ind ¢ such that ¥ =4, 0 but X [y 0.
(b) There is a set X of fd’s and ind’s and an fd o such that ¥ =g, o but X [y 0.

Proof For part (a), let R be binary with attributes A, B;let ¥ = {A — B, R[A] C R[B]};
and let o be R[B] C R[A]. To see that ¥ =g, o, let I be a finite instance of R that satisfies
Y. Because I = A — B, |ma({)| = |rp(I)| and because I = R[A] C R[B], |xp(I)| >
|ra(1)]. It follows that |w4(1)| = |wp(I)|. Because I is finite and w4 (1) € wp (1), it fol-
lows that (1) Cw4(I) and I = R[B] C R[A].

On the other hand, the instance shown in Fig. 9.1(a) demonstrates that ¥ p&y,; 0.

For part (b), let X be as before, and let o be the fd B — A. As before, if I = X, then
|ma(l)| = |wp(I)|. Because I = A — B, each tuple in I has a distinct A-value. Thus the
number of B-values occurring in / equals the number of tuples in /. Because [is finite,
this implies that / = B — A. Thus ¥ =g, 0. On the other hand, the instance shown in
Fig. 9.1(b) demonstrates that ¥ (~y, 0. M

It is now natural to reconsider implication for fd’s, jd’s, and inds taken separately
and in combinations. Are unrestricted and finite implication different in these cases? The
answer is given by the following:

9.2 Finite versus Infinite Implication 199

THEOREM 9.2.3 Unrestricted and finite implication coincide for fd’s and jd’s considered
separately or together and for ind’s considered alone.

Proof Unrestricted implication implies finite implication by definition. For fd’s and jd’s
taken separately or together, Theorem 8.4.12 on the relationship between chasing and
logical implication can be used to obtain the opposite implication. For ind’s, Theorem 9.1.3
shows that finite implication and provability by the ind inference rules are equivalent. It
is easily verified that these rules are also sound for unrestricted implication. Thus finite
implication implies unrestricted implication for ind’s as well. ™

The notion of finite versus unrestricted implication will be revisited in Chapter 10,
where dependencies are recast into a logic-based formalism.

Implication Is Undecidable for fd’s + ind’s

As will be detailed in Chapter 10, fd’s and ind’s (and most other relational dependencies)
can be represented as sentences in first-order logic. By Godel’s Completeness Theorem
implication is recursively enumerable for first-order logic. It follows that unrestricted im-
plication is r.e. for fd’s and ind’s considered together. On the other hand, finite implication
for fd’s and ind’s taken together is co-r.e. This follows from the fact that there is an effec-
tive enumeration of all finite instances over a fixed schema; if ¥ p&g, o, then a witness of
this fact will eventually be found. When unrestricted and finite implication coincide, this
pair of observations is sufficient to imply decidability of implication; this is not the case
for fd’s and ind’s.

The Word Problem for (Finite) Monoids

The proof that (finite) implication for fd’s and ind’s taken together is undecidable uses a
reduction from the word problem for monoids, which we discuss next.

A monoid is a set with an associative binary operation o defined on it and an identity
element ¢. Let I" be a finite alphabet and I'* the free monoid generated by T" (i.e., the
set of finite words with letters in [with the concatenation operation). Let £ = {o; = §; |
i € [1..n]} be a finite set of equalities, and let e be an additional equality « = 8, where
o, Bi,a, B € I'*. Then E (finitely) implies e, denoted E =y, e (E =gy e), if for each
(finite) monoid M and homomorphism 4 : I'* — M, if h(«;) = h(B;) for each i € [1..n],
then A () = h(B). The word problem for (finite) monoids is to decide, given E and e,
whether E =ynr e (E =gn €). Both the word problem for monoids and the word problem
for finite monoids are undecidable.

Using this, we have the following:

THEOREM 9.2.4 Unrestricted and finite implication for fd’s and ind’s considered together
are undecidable. In particular, let ¥ range over sets of fd’s and ind’s. The following sets
are not recursive:

(@) {(¥,0)|oanindand ¥ =y 0}; {(X,0) |o anind and ¥ =g, 0}

200 Inclusion Dependency

) {(X,0)|ocanfdand £ |=ypr0}; and {(X,0) | o anfd and X =4, 0.

Crux We prove (a) using a reduction from the word problem for (finite) monoids to the
(finite) implication problem for fd’s and ind’s. The proof of part (b) is similar and is left for
Exercise 9.5. We first consider the unrestricted case.

Let I be a fixed alphabet. Let E = {o; = B; | i € [1, n]} be a set of equalities over I'*,
and let e be another equality o = . A prefix is defined to be any prefix of «;, 8;, «, or
B (including the empty string ¢, and full words &y, B1, etc.). A single relation R is used,
which has attributes

(i) A,, for each prefix y;
(i) Ay, Ay, Ayys
(iii) Ayg, foreacha € I'; and
(iv) Ayyq,foreacha €T

where x and y are two fixed symbols.

To understand the correspondence between constrained relations and homomorphisms
over monoids, suppose that there is a homomorphism 4 from I'* to some monoid M.
Intuitively, a tuple of R will hold information about two elements /i (x), h(y) of M (in
columns Ay, Ay, respectively) and their product i (x) o h(y) = h(xy) (in column A,y).
For each a in I', tuples will also hold information about #(ya) and h(xya) in columns
Ayq, Axya. More precisely, the instance I corresponding to the monoid M and the
homomorphism % : ' — M is defined by

IM,h = {tu,v |u,ve F*}v
where for each u, v € I'*, 1, ,, is the tuple such that

tuv(Ax) = h(u), tuw(Ay) =h(y), for each prefix y,
tu(Ay) =h(v), tuw(Aye) = h(va), foreacha T,

tuw(Axy) = h(uv), tu,v(Axyq) = h(uva), foreacha €T

Formally, to force the correspondence between the relations and homomorphisms over
monoids, we use a set ¥ of dependencies. In other words, we wish to find a set ¥ of
dependencies that characterizes precisely the instances over R that correspond to some
homomorphism 4 from I'* to some monoid M. The key to the proof is that this can be
done using just fd’s and ind’s. Strictly speaking, the dependencies of (8) in the following
list are not ind’s because an attribute is repeated in the left-hand side. As discussed in
Exercise 9.4(e), the set of dependencies used here can be modified to a set of proper ind’s
that has the desired properties. In addition, we use fd’s with an empty left-hand side, which
are sometimes not considered as real fd’s. The use of such dependencies is not crucial. A
slightly more complicated proof can be found that uses only fd’s with a nonempty left-hand
side. The set X is defined as follows:

9.2 Finite versus Infinite Implication 201

¥ — A, for each prefix y;

AxAy — Ay

Ay — Ayg, foreacha eT;

R[A;] € R[A)];

R[A,, Ayu] € R[Ay, Ay,], foreach a € T and prefix y;
R[Ayy, Axyal € R[Ay, Ay, foreacha e T';

R[Ax, Ay, Axya]l € R[Ax, Ay, Ayyl, foreacha eT';
R[A,, A¢, A)1 C R[A,, Ay, Ayy]; and

R[A4] € R[Ag,], for eachi € [1, n].

e N R

e

The ind o is R[As] € R[Ag].
Let I be an instance satisfying X. Observe that I has to satisfy a number of implied
properties. In particular, one can verify that I also satisfies the following property:

R[Axyal © R[Ayal € R[Ay] = R[Axy] € R[A]
and that adom(I) C I[A,].

We now show that ¥ =y 0 iff E |=ypr e. We first show that E psynr e implies
3 Funr 0 - Suppose that there is a monoid M and homomorphism % : ' — M that sat-
isfies the equations of E but violates the equation e. Consider /), defined earlier. It is
straightforward to verify that I = X but I [~ o.

For the opposite direction, suppose now that E =y, €, and let I be a (possibly infinite)
instance of R that satisfies 2. To conclude the proof, it must be shown that I[A,] € I[Ag].
(Observe that these two relations both consist of a single tuple because of the fd’s with an
empty left-hand-side.)

We now define a function 4 : I'* — adom(1I). We will prove that & is a homomorphism
from I'* to a free monoid whose elements are 2(I"*) and that satisfies the equations of E
(and hence, €). We will use the fact that the monoid satisfies e to derive that I[A,] C I[Ag].

We now give an inductive definition of s and show that it has the property that 4 (v) €
I[A,] foreach v e I'*.

Basis: Set h(g) to be the element in /[A,]. Note that 2(¢) is also in /[A,] because R[A,;] C
R[A,]e X.

Inductive step: Given h(v) and a € I', let € I be such that 1[Ay] = h(v). Define h(va) =
t(Ayg). This is uniquely determined because Ay, — Ay, € X. In addition, h(va) €
I[Ay] because R[Ay, Ayq, Axyal € R[Ax, Ay, Ary] € Z.

We next show by induction on v that
@) (h(u), h(v), h(uv)) € I[Ay, Ay, Ayy] foreach u, v e T'.
For a fixed u, the basis (i.e., v =¢) is provided by the fact that h(u) € I[A,] and the

ind R[Ay, A;, Ay] C R[A,, Ay, A,,] € X. For the inductive step, let (h(u), h(v), h(uv)) €
I[A,, Ay, Ayy] and a € T'. Let t € I be such that t[A,, Ay, Ayy] = (h(u), h(v), h(uv)).

202 Inclusion Dependency

Then by construction of 4, h(va) =t(Ay,), and from the ind R[A,y, Ayye] € R[Ay, Ayal,
we have h(uva) =t(Ayyq). Finally, the ind R[A,, Ay,, Axya]l € R[Ax, Ay, Ayy] implies
that (h(u), h(va), h(uva)) € I[Ax, Ay, Ayy] as desired.

Define the binary operation o on h(I"*) as follows. For a, b € h(I'™), let

aob=cifforsomete€l,t[Ax, Ay, Axyl =(a,b,c).

There is such a tuple by (f) and c is uniquely defined because Ay, Ay — A,y € Z. Fur-
thermore, by (1), for each u, v, h(u) o h(v) = h(uv). Thus for h(u), h(v), h(w) in A(T*),

(h(u) o h(v)) o h(w) = h(uvw) = (h(u) o h(v)) o h(w),
and
h(u) oh(e) =h(u)

so (h(T"*), o) is a monoid. In addition, 4 is a homomorphism from the free monoid over I'*
to the monoid (2 (I"*), o).

It is easy to see that I[Ay,] = {h(a;)} and I[Ag] = {h(B;)} for i € [1,n]. Let i be
fixed. Because R[Aq,] € R[Ag], h(a;) = h(B;). Because E =yyr e, h(a) = h(B). Thus
ITAL] = {h(a)} = {h(B)} = I[Ag]. It follows that I =unr R[Aq] € R[Ag] as desired.

This completes the proof for the unrestricted case. For the finite case, note that every-
thing has to be finite: The monoid is finite, I is finite, and the monoid A[I"*] is finite. The
rest of the argument is the same. M

The issue of decidability of finite and unrestricted implication for classes of dependen-
cies is revisited in Chapter 10.

9.3 Nonaxiomatizability of fd’s + ind’s

The inference rules given previously for fd’s, mvd’s and ind’s can be viewed as “inference
rule schemas,” in the sense that each of them can be instantiated with specific attribute sets
(sequences) to create infinitely many ground inference rules. In these cases the family of
inference rule schemas is finite, and we informally refer to them as “finite axiomatizations.”
Rather than formalizing the somewhat fuzzy notion of inference rule schema, we focus
in this section on families R of ground inference rules. A (ground) axiomatization of a
family S of dependencies is a set of ground inference rules that is sound and complete for
(finite or unrestricted) implication for S. Two properties of an axiomatization R will be
considered, namely: (1) R is recursive, and (2) R is k-ary, in the sense (formally defined
later in this section) that each rule in R has at most k dependencies in its condition.
Speaking intuitively, if S has a “finite axiomatization,” that is, if there is a finite
family R’ of inference rule schemas that is sound and complete for S, then R’ specifies
a ground axiomatization for S that is both recursive and k-ary for some k. Two results are
demonstrated in this section: (1) There is no recursive axiomatization for finite implication

9.3 Nonaxiomatizability of fd’s + ind’s 203

of fd’s and ind’s, and (2) there is no k-ary axiomatization for finite implication of fd’s and
ind’s. It is also known that there is no k-ary axiomatization for unrestricted implication of
fd’s and ind’s. The intuitive conclusion is that the family of fd’s and ind’s does not have a
“finite axiomatization” for finite implication or for unrestricted implication.

To establish the framework and some notation, we assume temporarily that we
are dealing with a family F of database instances over a fixed database schema R =
{R1, ..., R,}. Typically, F will be the set of all finite instances over R, or the set of all
(finite or infinite) instances over R. All the notions that are defined are with respect to F.
Let S be a family of dependencies over R. (At present, S would be the set of fd’s and ind’s
over R.) Logical implication = among dependencies in S is defined with respect to F in
the natural manner. In particular, =y and =g, are obtained by letting F be the set of
unrestricted or finite instances.

A (ground) inference rule over S is an expression of the form

o = if S then s,

where SCSands € S.

Let R be a set of rules over R. Then R is sound if each rule in R is sound. Let
Y U{o} C S be a set of dependencies over R. A proof of o from X using R is a finite
sequence o1, ..., 0, = o such that for each i € [1, n], either (1) o; € X, or (2) for some
rule ‘if Sthens’inR,o0; =sand S C{oy,...,0i_1}. Wewrite X Fr o (or £ o if R is
understood) if there is a proof of ¢ from ¥ using R. Clearly, if each rule in R is sound,
then ¥ F o implies ¥ = . The set R is complete if for each pair (X, o), ¥ = o implies
Y kR o. A (sound and complete) axiomatization for logical implication is a set R of rules
that is sound and complete.

The aforementioned notions are now generalized to permit all schemas R. In particular,
we consider a set R of rules that is a union U{RRr | R is a schema}. The notions of sound,
proof, etc.can be generalized in the natural fashion.

Note that with the preceding definition, every set S of dependencies has a sound and
complete axiomatization. This is provided by the set R of all rules of the form

if S then s,

where S |= s. Clearly, such trivial axiomatizations hold no interest. In particular, they are
not necessarily effective (i.e., one may not be able to tell if a rule is in R, so one may not be
able to construct proofs that can be checked). It is thus natural to restrict R to be recursive.

We now present the first result of this section, which will imply that there is no
recursive axiomatization for finite implication of fd’s and ind’s. In this result we assume
that the dependencies in S are sentences in first-order logic.

PROPOSITION 9.3.1 Let S be a class of dependencies. If S has a recursive axiomatization
for finite implications, then finite implication is decidable for S.

Crux Suppose that S has a recursive axiomatization. Consider the set

204 Inclusion Dependency

Implic={(S,s) | SCS,s €S, and S =4y 5}

First note that the set Implic is r.e.; indeed, let R be a recursive axiomatization for S. One
can effectively enumerate all proofs of implication that use rules in R. This allows one to
enumerate Implic effectively. Thus Implic is r.e. We argue next that Implic is also co-r.e.
To conclude that a pair (S, s) is not in Implic, it is sufficient to exhibit a finite instance
satisfying S and violating s. To enumerate all pairs (S, s) not in Implic, one proceeds as
follows. The set of all pairs (S, s) is clearly r.e., as is the set of all instances over a fixed
schema. Repeat for all positive integers n the following. Enumerate the first n pairs (S, s)
and the first n instances. For each (S, s) among the n, check whether one of the n instances
is a counterexample to the implication S = s, in which case output (S, s). Clearly, this
procedure enumerates the complement of Implic, so Implic is co-r.e. Because it is both r.e.
and co-r.e., Implic is recursive, so there is an algorithm testing whether (S, s) is in Implic.
]

It follows that there is no recursive axiomatization for finite implication of fd’s and
ind’s. [To see this, note that by Theorem 9.2.4, logical implication for fd’s and ind’s is
undecidable. By Proposition 9.3.1, it follows that there can be no finite axiomatization for
fd’s and ind’s.] Because implication for jd’s is decidable (Theorem 8.4.12), but there is no
axiomatization for them (Theorem 8.3.4), the converse of the preceding proposition does
not hold.

Speaking intuitively, the preceding development implies that there is no finite set
of inference rule schemas that is sound and complete for finite implication of fd’s and
ind’s. However, the proof is rather indirect. Furthermore, the approach cannot be used in
connection with unrestricted implication, nor with classes of dependencies for which finite
implication is decidable (see Exercise 9.9). The notion of k-ary axiomatization developed
now shall overcome these objections.

A rule ‘if S then s’ is k-ary for some k > 0 if |S| = k. An axiomatization R is k-ary if
each rule in R is [-ary for some / < k. For example, the instantiations of rules FD1 and
IND1 are O-ary, those of rules FD2 and IND2 are 1-ary, and those of FD3 and IND3
are 2-ary. Theorem 9.3.3 below shows that there is no k-ary axiomatization for finite
implication of fd’s and ind’s.

We now turn to an analog in terms of logical implication of k-ary axiomatizability.
Again let S be a set of dependencies over R, and let F be a family of instances over R. Let
k>0.AsetI' CSis:

closed under implication with respect to S if o € I' whenever
(@oceSand D) T Eo
closed under k-ary implication with respect to S if o € I whenever
(a)o €8, andforsome X C T, (b)) X o and (by) || <k.

Clearly, if T is closed under implication, then it is closed under k-ary implication for each

9.3 Nonaxiomatizability of fd’s + ind’s 205

k >0, and if T is closed under k-ary implication, then it is closed under k’-ary implication
foreach k' < k.

ProPOSITION 9.3.2 Let R be a database schema, S a set of dependencies over R, and
k > 0. Then there is a k-ary axiomatization for S iff whenever I' C S is closed under k-ary
implication, then I' is closed under implication.

Proof Suppose that there is a k-ary axiomatization for S, and let I' € S be closed under
k-ary implication. Suppose further that I' = o for some o € S. Let 0y, ..., 0, be a proof
of o from I' using R. Using the fact that R is k-ary and that I" is closed under k-ary
implication, a straightforward induction shows that o; € I for i € [1, n].

Suppose now that for each I' € S, if T is closed under k-ary implication, then T" is
closed under implication. Set

R={‘ifSthens’ | SCS,s€S5,|S|<k,and S =s}.

To see that R is complete, suppose that I' = o. Consider the set I'* = {y | [" g y}. From
the construction of R, I'* is closed under k-ary implication. By assumption it is closed
under implication, and so I" % o as desired. ®

In the following, we consider finite implication, so F is the set of finite instances.

THEOREM 9.3.3 For no k does there exist a k-ary sound and complete axiomatization
for finite implication of fd’s and ind’s taken together. More specifically, for each k there
is a schema R for which there is no k-ary sound and complete axiomatization for finite
implication of fd’s and ind’s over R.

Proof Letk >0 be fixed. Let R = {Ry, ..., R} be a database schema where sort(R;) =
{A, B} for each i € [0, k]. In the remainder of this proof, addition is always done modulo
k + 1. The dependencies ¥ = ¥, U X} and o are defined by

(@ T,={R;:A— B|iel0,kl};
(b) Xp={Ri[A] S Ri1[B] i € [0, k]}; and
(¢) o = Ro[B] S Ri[A].

Let I" be the union of ¥ with all fd’s and ind’s that are tautologies (i.e., that are satisfied by
all finite instances over R).

In the remainder of the proof, it is shown that (1) I" is not closed under finite impli-
cation, but (2) I" is closed under k-ary finite implication. Proposition 9.3.2 will then imply
that the family of fd’s and ind’s has no k-ary sound and complete axiomatization for R.

First observe that I does not contain o, so to show that I is not closed under finite
implication, it suffices to demonstrate that ¥ =g, 0. Let I be a finite instance of R that
satisfies X. By the ind’s of X, |I(R;)[A]| < |I(R;+1)[B]]| for each i € [0, k], and by the fd’s
of X, [I(R;)[B]| < |I(R;)[A]]| for each i € [0, k]. From this we obtain

206 Inclusion Dependency
IL(Ro)[A]l < [I(RD[B]] = [I(RD[A]

=

=

IL(R[B]] = [I(R[A]l = [I(Ro)[B]| = [I(Ro)[A]l.

In particular, |I(R;)[A]| = |I(Ro)[B]|. Since I is finite and we have I(R;)[A] € I(Rp)[B]
and |I(Ry)[A]| = |I(Rg)[B]], it follows that I(Ro)[B] S I(Ry)[A] as desired.

We now show that I is closed under k-ary finite implication. Suppose that A C T has
no more than k elements (|A| < k). It must be shown that if y is an fd or ind and A Eqj v,
then y € I'. Because X contains k + 1 ind’s, any subset A of I that has no more than k
members must omit some ind § of . We shall exhibit an instance I such that I =y iff
y € I' — {§}. (Thus I will be an Armstrong instance for I' — {§}.) It will then follow that
' — {8} is closed under finite implication. Because A C I" — {4}, this will imply that for
eachfd orind y, if A =g, v, then I' — {8} =g y,s0 y €T

Because X is symmetric with regard to ind’s, we can assume without loss of generality
that § is the ind Ri[A] C Ryo[B]. Assuming that N x N is contained in the underlying
domain, define I so that

I(Ro) = {((0,0), (0, k 4 1)), ((1,0), (1, k4 1)), ((2,0), (1, k + 1))}

and for each i € [1, k],

I(Rl) = {((O’ l)v (Ovl - 1)>’ <(19 l)v (lvl - 1)>’ R
(Qi+1,0), Qi+ 1,i = 1)), (i +2,i), Qi +1,i — 1))}.

Figure 9.2 shows I for the case k = 3.
We now show for each fd and ind y over RthatI |= y iff y € I' — §. Three cases arise:

1. y is a tautology. Then this clearly holds.
2. y is an fd that is not a tautology. Then y is equivalent to one of the following for
some i € [0, k]:
Ri:A—-> B, R;:B— A,
Ri:0—> A, R;:0— B,
or R; 0 — AB.
If yis R;: A— B, then y € I' and clearly I = y. In the other cases, y ¢ I' and
IFEy.

3. y is an ind that is not a tautology. Considering now which ind’s I satisfies, note
that the only pairs of nondisjoint columns of relations in I are

I(Ro)[AL I(RD[B];
I(RD[AL I(R)[B]; ...
I(R—1)[A], I(Rp)[B].
Furthermore, I j= R;+1[B] € R;[A] foreachi € [0, k]; and I = R;[A] € R;+1[B].
This implies that I =y iff y € I' — {§}, as desired. ™

9.4 Restricted Kinds of Inclusion Dependency 207

I(Ro) IR | A B
©0,1) (0,0)
(L) (1,0)
@1 (2,0
G (3,0
1) (3,0)
IRy | A B I(Ry) | A B
0.2) (0,1 0,3) (0,2)
(1,2) (1,1 (1,3) (1,2)
22) @1 23) (2.2)
(32) 3.1 (33) (3.2)
42) &1 43) 4.2
(52) 5,1 (53) (5.2)
62) 5,1 63) (6,2)
(13) (1.2)
83) (7.2)

Figure 9.2: An Armstrong relation for I" — §

In the proof of the preceding theorem all relations used are binary, and all fd’s and ind’s
are unary, in the sense that at most one attribute appears on either side of each dependency.
In proofs that there is no k-ary axiomatization for unrestricted implication of fd’s and ind’s,
some of the ind’s used involve at least two attributes on each side. This cannot be improved
to unary ind’s, because there is a 2-ary sound and complete axiomatization for unrestricted
implication of unary ind’s and arbitrary fd’s (see Exercise 9.18).

9.4 Restricted Kinds of Inclusion Dependency

This section explores two restrictions on ind’s for which several positive results have been
obtained. The first one focuses on sets of ind’s that are acyclic in a natural sense, and the
second restricts the ind’s to having only one attribute on either side. The restricted depen-
dencies are important because they are sufficient to model many natural relationships, such
as those captured by semantic models (see Chapter 11). These include subtype relationships
of the kind “every student is also a person.”

This section also presents a generalization of the chase that incorporates ind’s. Be-
cause ind’s are embedded, chasing in this context may lead to infinite chasing sequences.
In the context of acyclic sets of ind’s, however, the chasing sequences are guaranteed
to terminate. The study of infinite chasing sequences will be taken up in earnest in
Chapter 10.

208 Inclusion Dependency

Ind’s and the Chase

Because ind’s may involve more than one relation, the formal notation of the chase must be
extended. Suppose now that R is a database schema, and let ¢ = (T, 7) be a tableau query
over R. The fd and jd rules are generalized to this context in the natural fashion.

We first present an example and then describe the rule that is used for ind’s.

ExAmMPLE 9.4.1 Consider the database schemas consisting of two relation schemas P, Q
with sort(P) = ABC, sort(Q) = DEF, the dependencies

Q[DE] C P[AB] and P:A— B,

and the tableau T shown in Fig. 9.3. Consider T and T in the same figure. The tableau
T is obtained by applying to T the ind rule given after this example. The intuition is that
the tuples (x, y;) should also be in the P-relation because of the ind. Then T, is obtained
by applying the fd rule. Tableau minimization can be applied to obtain T3.

The following rule is used for ind’s.

ind rule: Let 0 = R[X] C S[Y] be an ind, let u € T(R), and suppose that there is no free
tuple v € T(S) such that v[Y] = u[X]. In this case, we say that ¢ is applicable to R (u).
Let w be a free tuple over S such that w[Y] = u[X] and w has distinct new variables in
all coordinates of sort(S) — Y that are greater than all variables occurring in g. Then
“the” result of applying o to R(u) is (T’, t), where

* T/(P) = T(P) for each relation name P € R — {S}, and
e T'(S) =T(S) U {w}.

For a tableau query g and a set ¥ of ind’s, it is possible that two terminal chasing
sequences end with nonisomorphic tableau queries, that there are no finite terminal chas-
ing sequences, or that there are both finite terminal chasing sequences and infinite chasing
sequences (see Exercise 9.12). General approaches to resolving this problem will be con-
sidered in Chapter 10. In the present discussion, we focus on acyclic sets of ind’s, for which
the chase always terminates after a finite number of steps.

Acyclic Inclusion Dependencies

DEFINITION 9.4.2 A family X of ind’s over R is acyclic if there is no sequence R;[X;] C
SilYi] (i €[1,n]) of ind’s in ¥ where for i € [1,n], Riy1=S; for i € [I,n — 1], and
Ry = S,. A family ¥ of dependencies has acyclic ind’s if the set of ind’s in X is acyclic.

The following is easily verified (see Exercise 9.14):
PROPOSITION 9.4.3 Let g be a tableau query and X a set of fd’s, jd’s, and acyclic ind’s

over R. Then each chasing sequence of g by X terminates after an exponentially bounded
number of steps.

9.4 Restricted Kinds of Inclusion Dependency 209

TP)|A B C TQ) | D E F
X Y z
X Y2 X

t N1 X
TP |A B C T(Q | D E F
X oY1 w Xy z

X Y2 W X M

tr|lyr x
T,(P)|A B C TQ) | D E F
X Y1 wm X N z
X oY1 W RN B

t bt X
T3(P) | A B C T;(0) | D E F
X Y1 w P

tlyr x

Figure 9.3: Chasing with ind’s

For each tableau query ¢ and set X of fd’s, jd’s, and acyclic ind’s, let chase(q,)
denote the result of some arbitrary chasing sequence of g by X. (One can easily come up
with some syntactic strategy for arbitrarily choosing this sequence.)

Using an analog to Lemma 8.4.3, one obtains the following result on tableau query
containment (an analog to Theorem 8.4.8).

THEOREM 9.4.4 Let g, ¢’ be tableau queries and ¥ a set of fd’s, jd’s, and acyclic ind’s
over R. Then g Cy ¢’ iff chase(q, X) C chase(q’, X).

Next we consider the application of the chase to implication of dependencies. For
database schema R and ind o = R[X] C S[Y] over R, the tableau query of o is g, =
({R(us)}, (us)), where u, is a free tuple all of whose entries are distinct. For example,
given R[ABCD], S[EFG], and o = R[BC] C S[GE], g5 = ({R(x1, x2, x3, x4)}, (x1, X2,

210 Inclusion Dependency

X3, x4)). In analogy with Theorem 8.4.12, we have the following for fd’s, jd’s, and acyclic
ind’s.

THEOREM 9.4.5 Let X be a set of fd’s, jd’s, and acyclic ind’s over database schema R
and let T be the tableau in chase(g,, X). Then X =y o iff

(a) For fd or jd o over R, T satisfies the conditions of Theorem 8.4.12.
(b) Forind o = R[X] € S[Y], us[X] € T(S)[Y].

This yields the following:

COROLLARY 9.4.6 Finite and unrestricted implication for sets of fd’s, jd’s, and acyclic
ind’s coincide and are decidable in exponential time.

An improvement of the complexity here seems unlikely, because implication of an ind
by an acyclic set of ind’s is NP-complete (see Exercise 9.14).

Unary Inclusion Dependencies

A unary inclusion dependency (uind) is an ind in which exactly one attribute appears on
each side. The uind’s arise frequently in relation schemas in which certain columns range
over values that correspond to entity types (e.g., if SS# is a key for the Person relation and
is also used to identify people in the Employee relation).

As with arbitrary ind’s, unrestricted and finite implication do not coincide for fd’s
and uind’s (proof of Theorem 9.2.2). However, both forms of implication are decidable
in polynomial time. In this section, the focus is on finite implication. We present a sound
and complete axiomatization for finite implication of fd’s and uind’s (but in agreement with
Theorem 9.3.3, it is not k-ary for any k).

For uind’s considered in isolation, the inference rules for ind’s are specialized to
yield the following two rules, which are sound and complete for (unrestricted and finite)
implication. Here A, B, and C range over attributes and R, S, and T over relation names:

UIND1: (reflexivity) R[A] € R[A].
UIND?2: (transitivity) If R[A] € S[B] and S[B] C T[C], then R[A] € T[C].

To capture the interaction of fd’s and uind’s in the finite case, the following family of
rules is used:

C: (cycle rules) For each positive integer n,

Ry: Ay — By, Ry : By — Ay,

Ry[A7] € Ri[By], Ri[B1] € Ry[A2],
ifd ..., then

R,:A,— B,, and R,:B,— A,, and

Ri[A1] € Ru[By] Rn[Bn] € Ri[A1].

Exercises 211

The soundness of this family of rules follows from a straightforward cardinality argument.
More generally, we have the following (see Exercise 9.16):

THEOREM 9.4.7 The set {FD1, FD2, FD3, UIND1, UIND2} along with the cycle rules
(C) is sound and complete for finite implication of fd’s and uind’s. Furthermore, finite
implication is decidable in polynomial time.

Bibliographic Notes

Inclusion dependency is based on the notion of referential integrity, which was known to
the broader database community during the 1970s (see, e.g., [Dat81]). A seminal paper
on the theory of ind’s is [CFP84], in which inference rules for ind’s are presented and the
nonaxiomatizability of both finite and unrestricted implication for fd’s and ind’s is demon-
strated. A non-k-ary sound and complete set of inference rules for finite implication of fd’s
and ind’s is presented in [Mit83b]. Another seminal paper is [JK84b], which also observed
the distinction between finite and unrestricted implication for fd’s and ind’s, generalized
the chase to incorporate fd’s and ind’s, and used this to characterize containment between
conjunctive queries. Related work is reported in [LMG83].

Undecidability of (finite) implication for fd’s and ind’s taken together was shown
independently by [CV85] and [Mit83a]. The proof of Theorem 9.2.4 is taken from [CV85].
(The undecidability of the word problem for monoids is from [Pos47], and of the word
problem for finite monoids is from [Gur66].)

Acyclic ind’s were introduced in [Sci86]. Complexity results for acyclic ind’s include
that implication for acyclic ind’s alone is NP-complete [CK86], and implication for fd’s and
acyclic ind’s has an exponential lower bound [CK85].

Given the PSPACE complexity of implication for ind’s and the negative results in con-
nection with fd’s, unary ind’s emerged as a more tractable form of inclusion dependency.
The decision problems for finite and unrestricted implication for uind’s and fd’s taken to-
gether, although not coextensive, both lie in polynomial time [CKV90]. This extensive
paper also develops axiomatizations of both finite and unrestricted logical implication for
unary ind’s and fd’s considered together, and develops results for uind’s with some of the
more general dependencies studied in Chapter 10.

Typed ind’s are studied in [CK86]. In addition to using traditional techniques from
dependency theory, such as chasing, this work develops tools for analyzing ind’s using
equational theories.

Ind’s in connection with other dependencies are also studied in [CV83].

Exercises
Exercise 9.1 Complete the proof of Proposition 9.1.5.
Exercise 9.2 Complete the proof of Theorem 9.1.7.

Exercise 9.3 [CFP84] (In this exercise, by a slight abuse of notation, we allow fd’s with
sequences rather than sets of attributes.) Demonstrate the following:

(a) If |A| = |B|, then {R[AC]1 C S[BD],S: B — D} =u R: A — C.

212 Inclusion Dependency

(b) If |A| = |B|, then (R[AC] C S[BD), RIAE] C S[BF1. S : B — D} F=un RIACE]
C S[BDF1.

(c) Suppose that |A| = |B|; £ = {R[AC]C S[BDI, RIAE] C S[BD], S: B — D};
and I = X. Then u[C] = u[E] for each u € I(R).

Exercise 9.4 As defined in the text, we require in ind R[Ay, ..., A,;] € S[By, ..., By] that
the A;’s and B;’s are distinct. A repeats-permitted inclusion dependency (rind) is defined as was
inclusion dependency, except that repeats are permitted in the attribute sequences on both the
left- and right-hand sides.

(a) Show that if X is a set of ind’s, o a rind, and ¥ =y 0, then o is equivalent to an
ind.
(b) Exhibita set X of ind’s and fd’s such that ¥ =, R[AB] € S[CC]. Do the same for
R[AA] C R[BC].
® (c) [Mit83a] Consider the rules

IND4: If R[A1A;] C S[BB] and R[C] C T[D], then R[C'] € T[D], where C’
is obtained from C by replacing one or more occurrences of A, by Aj.

INDS: If R[A{A;] € S[BB] and T[C] € R[D), then T[C] C R[D'], where D'
is obtained from D by replacing one or more occurrences of A, by Aj.

Prove that the inference rules {IND1, IND2, IND3, IND4, IND5} are sound and
complete for finite implication of sets of rind’s.
(d) Prove that unrestricted and finite implication coincide for rind’s.

(e) A left-repeats-permitted inclusion dependency (1-rind) is a rind for which there are no
repeats on the right-hand side. Given a set £ U {o'} of I-rind’s over R, describe how
to construct a schema R’ and ind’s ¥’ U {c'} over R’ such that ¥ = o iff ' o’
and T =g, 0 iff X7 =g,y 0.

(f) Do the same as in part (e), except for arbitrary rind’s.

Exercise 9.5 [CV85] Prove part (b) of Theorem 9.2.4. Hint: In the proof of part (a), extend
the schema of R to include new attributes A,,, Ag, and A,/; add dependencies A, — A/,
R[Ay, Al S R[Ay, Ay], R[Ag, Ag] C R[Ay, Ay];and use Ayr — Agraso.

Exercise 9.6

(a) Develop an alternative proof of Theorem 9.3.3 in which § is an fd rather than an ind.

(b) In the proof of Theorem 9.3.3 for finite implication, the dependency o used is an ind.
Using the same set X, find an fd that can be used in place of ¢ in the proof.

Exercise 9.7 Prove that there is no k for which there is a k-ary sound and complete axiomati-
zation for finite implication of fd’s, jd’s, and ind’s.

* Exercise 9.8 [SWS82] Prove that there is no k-ary sound and complete set of inference rules
for finite implication of emvd’s.

Exercise 9.9 Recall the notion of sort-set dependency (ssd) from Exercise 8.32.

(a) Prove that finite and unrestricted implication coincide for fd’s and ssd’s considered
together. Conclude that implication for fd’s and ssd’s is decidable.

Exercises 213

* (b) [GH86] Prove that there is no k-ary sound and complete set of inference rules for
finite implication of fd’s (key dependencies) and ssd’s taken together.

Exercise 9.10

(a) [CFP84] A set of ind’s is bounded by k if each ind in the set has at most k attributes
on the left-hand side and on the right-hand side. Show that logical implication for
bounded sets of ind’s is decidable in polynomial time.

(b) [CV83] An ind is typed if it has the form R[;&] cS [;\]. Exhibit a polynomial time
algorithm for deciding logical implication between typed ind’s.
Exercise 9.11 Suppose that some attribute domains may be finite.

(a) Show that {IND1, IND2, IND3} remains sound in the framework.

(b) Show that if one-element domains are permitted, then {IND1, IND2, IND3} is not
complete.

(c) Show for each n > 0 that if all domains are required to have at least n elements, then
{IND1, IND2, IND3} is not complete.

Exercise 9.12 Suppose that no restrictions are put on the order of application of ind rules in
chasing sequences.

(a) Exhibit a tableau query ¢ and a set ¥ of ind’s and two terminal chasing sequences of
g by X that end with nonisomorphic tableau queries.

(b) Exhibit a tableau query ¢ and a set ¥ of ind’s, a terminal chasing sequence of ¢ by
¥, and an infinite chasing sequence of g by X.

(c) Exhibit a tableau query g and a set X of ind’s such that g has no finite terminal
chasing sequence by X.

& Exercise 9.13 [JK84b] Recall that for tableau queries ¢ and ¢’ and a set ¥ of fd’s and jd’s
over R, g Cy ¢’ if for each instance [that satisfies X, g(I) C ¢’(I). In the context of ind’s, this
containment relationship may depend on whether infinite instances are permitted or not. For
tableau queries ¢, ¢’ and a set ¥ of dependencies over R, we write ¢ Cx fin ¢’ (¢ Cx.unr ¢) if
g (D) C ¢'(I) for each finite (unrestricted) instance I that satisfies .

(a) Show thatif X is a set of fd’s and jd’s, then Cx iy and Cx ynr coincide.
(b) Exhibit a set ¥ of fd’s and ind’s and tableau queries ¢, ¢’ such that g Cyx n ¢’ but
q ,@Z,unr 6]/-

Exercise 9.14

(a) Prove Proposition 9.4.3.
(b) Prove Theorem 9.4.4.

(c) Let g be a tableau query and X a set of fd’s, jd’s, and ind’s over R, where the set of
ind’s in ¥ is acyclic; and suppose that g’, ¢” are the final tableaux of two terminal
chasing sequences of g by ¥ (where the order of rule application is not restricted).
Prove that g = ¢'.

(d) Prove Theorem 9.4.5.
(e) Prove Corollary 9.4.6.

Exercise 9.15

214 Inclusion Dependency

(a) Exhibit an acyclic set ¥ of ind’s and a tableau query g such that chase(q, X) is
exponential in the size of ¥ and q.

(b) [CK86] Prove that implication of an ind by an acyclic set of ind’s is Np-complete.
Hint: Use a reduction from the problem of Permutation Generation [GJ79].

(c) [CK86] Recall from Exercise 9.10(b) that an ind is fyped if it has the form R [;\] -
S[A]. Prove that implication of an ind by a set of fd’s and an acyclic set of typed
ind’s is Np-hard. Hint: Use a reduction from 3-SAT.

® Exercise 9.16 [CKV90] In this exercise you will prove Theorem 9.4.7. The exercise begins by
focusing on the unirelational case; for notational convenience we omit the relation name from
uind’s in this context.

Given a set X of fd’s and uind’s over R, define G(X) to be a multigraph with node set R
and two colors of edges: a red edge from A to B if A — B € X, and a black edge from A to
Bis BC A€ X.If A and B have red (black) edges in both directions, replace them with an
undirected red (black) edge.

(a) Suppose that X is closed under the inference rules. Prove that G (%) has the following
properties:

1. Nodes have red (black) self-loops, and the red (black) subgraph of G(X) is
transitively closed.

2. The subgraphs induced by the strongly connected components of G(X)
contain only undirected edges.

3. In each strongly connected component, the red (black) subset of edges
forms a collection of node disjoint cliques (the red and black partitions of
nodes could be different).

4. If Ay...A,, > Bisanfdin ¥ and Ay, ..., A,, have common ancestor A
in the red subgraph of G(X), then G(X) contains a red edge from A to B.

(b) Given a set X of fd’s and uind’s closed under the inference rules, use G (%) to build

counterexample instances that demonstrate that ¥ t# o implies X (~q, o for fd or
uind o.

(c) Use the rules to develop a polynomial time algorithm for inferring finite implication
for a set of fd’s and uind’s.

(d) Generalize the preceding development to arbitrary database schemas.
Exercise 9.17

(a) Let k > 1 be an integer. Prove that there is a database schema R with at least one
unary relation R € R, and a set ¥ of fd’s and ind’s such that
(i) foreachI =%, |[I(R)| =0or [I(R)| =1 or |I(R)| > k.
(i) for each ! > k there is an instance I; = X with [I(R)| = .
(b) Prove that this result cannot be strengthened so that condition (i) reads
(1) (@) foreachI =X, [I(R)|=0o0r [I(R)|=1or |[I(R)| =k.

® Exercise 9.18 [CKV90]

(a) Show that the set of inference rules containing {FD1, FD2, FD3, UIND1, UIND2}
and
FD-UINDI1: If # — A and R[B] C R[A], then ¥ — B.
FD-UINDI1: If # — A and R[B] € R[A], then R[A] C R[B].

Exercises 215

is sound and complete for unrestricted logical implication of fd’s and uind’s over a
single relation schema R.

(b) Generalize this result to arbitrary database schemas, under the assumption that in all
instances, each relation is nonempty.

