
8 Functional and Join
Dependency

Alice: Your model reduces the most interesting information to something flat and
boring.

Vittorio: You’re right, and this causes a lot of problems.
Sergio: Designing the schema for a complex application is tough, and it is easy to

make mistakes when updating a database.
Riccardo: Also, the system knows so little about the data that it is hard to obtain

good performance.
Alice: Are you telling me that the model is bad?

Vittorio: No, wait, we are going to fix it!

This chapter begins with an informal discussion that introduces some simple dependen-
cies and illustrates the primary motivations for their development and study. The two

following sections of the chapter are devoted to two of the simple kinds of dependencies;
and the final section introduces the chase, an important tool for analyzing these dependen-
cies and their effect on queries.

Many of the early dependencies introduced in the literature use the named (as op-
posed to unnamed) perspective on tuples and relations. Dependency theory was one of the
main reasons for adopting this perspective in theoretical investigations. This is because de-
pendencies concern the semantics of data, and attribute names carry more semantics than
column numbers. The general view of dependencies based on logic, which is considered
in Chapter 10, uses the column-number perspective, but a special subcase (called typed)
retains the spirit of the attribute-name perspective.

8.1 Motivation

Consider the database shown in Fig. 8.1. Although the schema itself makes no restrictions
on properties of data that might be stored, the intended application for the schema may
involve several such restrictions. For example, we may know that there is only one director
associated with each movie title, and that in Showings, only one movie title is associated
with a given theater-screen pair.1 Such properties are called functional dependencies (fd’s)
because the values of some attributes of a tuple uniquely or functionally determine the
values of other attributes of that tuple. In the syntax to be developed in this chapter, the

1 Gone are the days of seeing two movies for the price of one!

159

160 Functional and Join Dependency

Movies Title Director Actor

The Birds Hitchcock Hedren

The Birds Hitchcock Taylor

Bladerunner Scott Hannah

Apocalypse Now Coppola Brando

Showings Theater Screen Title Snack

Rex 1 The Birds coffee

Rex 1 The Birds popcorn

Rex 2 Bladerunner coffee

Rex 2 Bladerunner popcorn

Le Champo 1 The Birds tea

Le Champo 1 The Birds popcorn

Cinoche 1 The Birds Coke

Cinoche 1 The Birds wine

Cinoche 2 Bladerunner Coke

Cinoche 2 Bladerunner wine

Action Christine 1 The Birds tea

Action Christine 1 The Birds popcorn

Figure 8.1: Sample database illustrating simple dependencies

dependency in the Movies relation is written as

Movies : Title→ Director

and that of the Showings relation is written as

Showings : Theater Screen→ Title.

Technically, there are sets of attributes on the left- and right-hand sides of the arrow, but
we continue with the convention of omitting set braces when understood from the context.

When there is no confusion from the context, a dependency R : X→ Y is simply
denoted X→ Y . A relation I satisfies a functional dependency X→ Y if for each pair
s, t of tuples in I ,

πX(s)= πX(t) implies πY(s)= πY(t).

An important notion in dependency theory is implication. One can observe that any
relation satisfying the dependency

8.1 Motivation 161

(a) Title→ Director

also has to satisfy the dependency

(b) Title,Actor → Director.

We will say that dependency (a) implies dependency (b).
A key dependency is an fd X→ U , where U is the full set of attributes of the relation.

It turns out that dependency (b) is equivalent to the key dependency Title, Actor → Title,
Director, Actor.

A second fundamental kind of dependency is illustrated by the relation Showings. A
tuple (th, sc, ti, sn) is in Showings if theater th is showing movie ti on screen sc and if
theater th offers snack sn. Intuitively, one would expect a certain independence between the
Screen-Title attributes, on the one hand, and the Snack attribute, on the other, for a given
value of Theater. For example, because (Cinoche, 1, The Birds, Coke) and (Cinoche, 2,
Bladerunner, wine) are in Showings, we also expect (Cinoche, 1, The Birds, wine) and
(Cinoche, 2, Bladerunner, Coke) to be present. More precisely, if a relation I has this
property, then

I = πTheater,Screen,Title(I) �� πTheater,Snack(I).

This is a simple example of a join dependency (jd) which is formally expressed by

Showings : ��[{Theater, Screen,Title}, {Theater, Snacks}].

In general, a jd may involve more than two attribute sets. Multivalued dependency
(mvd) is the special case of jd’s that have at most two attribute sets. Due to their naturalness,
mvd’s were introduced before jd’s and have several interesting properties, which makes
them worth studying on their own.

As will be seen later in this chapter, the fact that the fd Title→ Director is satisfied by
the Movies relation implies that the jd

��[{Title,Director}, {Title,Actor}]

is also satisfied. We will also study such interaction between fd’s and jd’s.
So far we have considered dependencies that apply to individual relations. Typically

these dependencies are used in the context of a database schema, in which case one has
to specify the relation concerned by each dependency. We will also consider a third fun-
damental kind of dependency, called inclusion dependency (ind) and also referred to as
“referential constraint.” In the example, we might expect that each title currently being
shown (i.e., occurring in the Showings relation) is the title of a movie (i.e., also occurs in
the Movies relation). This is denoted by

Showings[Title]⊆Movies[Title].

162 Functional and Join Dependency

In general, ind’s may involve sequences of attributes on both sides. Inclusion dependencies
will be studied in depth in Chapter 9.

Data dependencies such as the ones just presented provide a formal mechanism for
expressing properties expected from the stored data. If the database is known to satisfy a
set of dependencies, this information can be used to (1) improve schema design, (2) protect
data by preventing certain erroneous updates, and (3) improve performance. These aspects
are considered in turn next.

Schema Design and Update Anomalies

The task of designing the schema in a large database application is far from being trivial,
so the designer has to receive support from the system. Dependencies are used to provide
information about the semantics of the application so that the system may help the user
choose, among all possible schemas, the most appropriate one.

There are various ways in which a schema may not be appropriate. The relations
Movies and Showings illustrate the most prominent kinds of problems associated with fd’s
and jd’s:

Incomplete information: Suppose that one is to insert the title of a new movie and its direc-
tor without knowing yet any actor of the movie. This turns out to be impossible with
the foregoing schema, and it is an insertion anomaly. An analogue for deletion, a dele-
tion anomaly, occurs if actor Marlon Brando is no longer associated with the movie
“Apocalypse Now.” Then the tuple 〈Apocalypse Now, Coppola, Brando〉 should be
deleted from the database. But this has the additional effect of deleting the association
between the movie “Apocalypse Now” and the director Coppola from the database,
information that may still be valid.

Redundancy: The fact that Coke can be found at the Cinoche is recorded many times.
Furthermore, suppose that the management of the Cinoche decided to sell Pepsi in-
stead of Coke. It is not sufficient to modify the tuple 〈Cinoche, 1, The Birds, Coke〉
to 〈Cinoche, 1, The Birds, Pepsi〉 because this would lead to a violation of the jd. We
have to modify several tuples. This is a modification anomaly. Insertion and deletion
anomalies are also caused by redundancy.

Thus because of a bad choice for the schema, updates can lead to loss of information,
inconsistency in the data, and more difficulties in writing correct updates. These problems
can be prevented by choosing a more appropriate schema. In the example, the relation
Movies should be “decomposed” into two relations M-Director[Title, Director] and M-
Actor[Title, Actor], where M-Director satisfies the fd Title → Director. Similarly, the
relation Showings should be replaced by two relations ST-Showings[Theater, Screen, Title]
and S-Showings[Theater, Snack], where ST-Showings satisfies the fd Theater, Screen →
Title. This approach to schema design is explored in Chapter 11.

Data Integrity

Data dependencies also serve as a filter on proposed updates in a natural fashion: If a
database is expected to satisfy a dependency σ and a proposed update would lead to the

8.2 Functional and Key Dependencies 163

violation of σ , then the update is rejected. In fact, the system supports transactions. During
a transaction, the database can be in an inconsistent state; but at the end of a transaction,
the system checks the integrity of the database. If dependencies are violated, the whole
transaction is rejected (aborted); otherwise it is accepted (validated).

Efficient Implementation and Query Optimization

It is natural to expect that knowledge of structural properties of the stored data be useful in
improving the performances of a system for a particular application.

At the physical level, the satisfaction of dependencies leads to a variety of alternatives
for storage and access structures. For example, satisfaction of an fd or jd implies that a
relation can be physically stored in decomposed form. In addition, satisfaction of a key
dependency can be used to reduce indexing space.

A particularly striking theoretical development in dependency theory provides a
method for optimizing conjunctive queries in the presence of a large class of dependencies.
As a simple example, consider the query

ans(d, a)←Movies(t, d, a′),Movies(t, d ′, a),

which returns tuples 〈d, a〉, where actor a acted in a movie directed by d. A naive imple-
mentation of this query will require a join. Because Movies satisfies Title→ Director, this
query can be simplified to

ans(d, a)←Movies(t, d, a),

which can be evaluated without a join. Whenever the pattern of tuples {〈t, d, a′〉, 〈t, d ′, a〉}
is found in relation Movies, it must be the case that d = d ′, so one may as well use just the
pattern {〈t, d, a〉}, yielding the simplified query. This technique for query optimization is
based on the chase and is considered in the last section of this chapter.

8.2 Functional and Key Dependencies

Functional dependencies are the most prominent form of dependency, and several elegant
results have been developed for them. Key dependencies are a special case of functional
dependencies. These are the dependencies perhaps most universally supported by relational
systems and used in database applications. Many issues in dependency theory have nice
solutions in the context of functional dependencies, and these dependencies lie at the origin
of the decomposition approach to schema design.

To specify a class of dependencies, one must define the syntax and the semantics of
the dependencies of concern. This is done next for fd’s.

Definition 8.2.1 If U is a set of attributes, then a functional dependency (fd) over U is
an expression of the form X→ Y , where X, Y ⊆ U . A key dependency over U is an fd of
the form X→ U . A relation I over U satisfies X→ Y , denoted I |=X→ Y , if for each

164 Functional and Join Dependency

pair s, t of tuples in I , πX(s)= πX(t) implies πY(s)= πY(t). For a set F of fd’s, I satisfies
F, denoted I |=F, if I |= σ for each σ ∈F.

A functional dependency over a database schema R is an expression R : X→ Y ,
where R ∈ R and X→ Y is a dependency over sort(R). These are sometimes referred
to as tagged dependencies, because they are “tagged” by the relation that they apply to.
The notion of satisfaction of fd’s by instances over R is defined in the obvious way. In the
remainder of this chapter, we consider only relational schemas. All can be extended easily
to database schemas.

The following simple property provides the basis for the decomposition approach to
schema design. Intuitively, it says that if a certain fd holds in a relation, one can store
instead of the relation two projections of it, without loss of information. More precisely,
the original relation can be reconstructed by joining the projections. Such joins have been
termed “lossless joins” and will be discussed in some depth in Section 11.2.

Proposition 8.2.2 Let I be an instance over U that satisfies X→ Y and Z = U −XY .
Then I = πXY(I) �� πXZ(I).

Proof The inclusion I ⊆ πXY(I) �� πXZ(I) holds for all instances I . For the opposite
inclusion, let r be a tuple in the join. Then there are tuples s, t ∈ I such that πXY(r) =
πXY(s) and πXZ(r)= πXZ(t). Because πX(r)= πX(t), and I |=X→ Y , πY(r)= πY(t).
It follows that r = t , so r is in I .

Logical Implication

In general, we may know that a set F of fd’s is satisfied by an instance. A natural question
is, What other fd’s are necessarily satisfied by this instance? This is captured by the
following definition.

Definition 8.2.3 Let F and H be sets of fd’s over an attribute set U . Then F (logically)
implies H, denoted F |=U H or simply F |= H, if U is understood from the context, if for
all relations I over U , I |= F implies I |= H. Two sets H,F are (logically) equivalent,
denoted H ≡F, if H |=F and F |= H.

Example 8.2.4 Consider the set F1 = {A→ C,B → C,CD→ E} of fd’s over {A,B,

C,D,E}. Then2 a simple argument allows to show that F1 |= AD→ E. In addition, F1 |=
CDE → C. In fact, ∅ |= CDE → C (where ∅ is the empty set of fd’s).

Although the definition just presented focuses on fd’s, this definition will be used in
connection with other classes of dependencies studied here as well.

2 We generally omit set braces from singleton sets of fd’s.

8.2 Functional and Key Dependencies 165

The fd closure of a set F of fd’s over an attribute set U , denoted F∗,U or simply F∗ if
U is understood from the context, is the set

{X→ Y |XY ⊆ U and F |=X→ Y }.

It is easily verified that for any set F of fd’s over U and any sets Y ⊆ X ⊆ U , X→
Y ∈ F∗,U . This implies that the closure of a set of fd’s depends on the underlying set of
attributes. It also implies that F∗,U has size greater than 2|U |. (It is bounded by 22|U | by
definition.) Other properties of fd closures are considered in Exercise 8.3.

Determining Implication for fd’s Is Linear Time

One of the key issues in dependency theory is the development of algorithms for testing
logical implication. Although a set F of fd’s implies an exponential (in terms of the number
of attributes present in the underlying schema) number of fd’s, it is possible to test whether
F implies an fd X→ Y in time that is linear in the size of F and X→ Y (i.e., the space
needed to write them).

A central concept used in this algorithm is the fd closure of a set of attributes. Given
a set F of fd’s over U and attribute set X ⊆ U , the fd closure of X under F, denoted
(X,F)∗,U or simply X∗ if F and U are understood, is the set {A ∈ U | F |= X→ A}. It
turns out that this set is independent of the underlying attribute set U (see Exercise 8.6).

Example 8.2.5 Recall the set F1 of fd’s from Example 8.2.4. Then A∗ = AC, (AB)∗ =
ABC, and (AD)∗ = ACDE. The family of subsets X of U such that X∗ =X is {∅, C,D,E,

AC,BC,CE,DE,ABC,ACE,ADE,BCE, BDE,CDE,ABCE,ACDE, BCDE,ABCDE}.

The following is easily verified (see Exercise 8.4):

Lemma 8.2.6 Let F be a set of fd’s and X→ Y an fd. Then F |=X→ Y iff Y ⊆X∗.

Thus testing whether F |= X→ Y can be accomplished by computing X∗. The fol-
lowing algorithm can be used to compute this set.

Algorithm 8.2.7

Input: a set F of fd’s and a set X of attributes.

Output: the closure X∗ of X under F.

1. unused :=F;
2. closure :=X;
3. repeat until no further change:

if W → Z ∈ unused and W ⊆ closure then
i. unused := unused − {W → Z};
ii. closure := closure ∪ Z

4. output closure.

166 Functional and Join Dependency

Proposition 8.2.8 On input F and X, Algorithm 8.2.7 computes (X,F)∗.

Proof Let U be a set of attributes containing the attributes occurring in F or X, and let
result be the output of the algorithm. Using properties established in Exercise 8.5, an easy
induction shows that result ⊆X∗.

For the opposite inclusion, note first that for attribute sets Y,Z, if Y ⊆ Z then Y ∗ ⊆ Z∗.
Because X ⊆ result, it now suffices to show that result∗ ⊆ result. It is enough to show that
if A ∈ U − result, then F �|= result → A. To show this, we construct an instance I over U
such that I |=F but I �|= result → A for A ∈ U − result. Let I = {s, t}, where πresult(s)=
πresult(t) and s(A) �= t (A) for each A ∈ U − result. (Observe that this uses the fact that the
domain has at least two elements.) Note that, by construction, for each fd W → Z ∈F, if
W ⊆ result then Z ⊆ result. It easily follows that I |=F. Furthermore, for A ∈ U − result,
s(A) �= t (A), so I �|= result → A. Thus F �|= result → A, and result∗ ⊆ result.

The algorithm provides the means for checking whether a set of dependencies implies
a single dependency. To test implication of a set of dependencies, it suffices to test inde-
pendently the implication of each dependency in the set. In addition, one can check that
the preceding algorithm runs in time O(n2), where n is the length of F and X. As shown
in Exercise 8.7, this algorithm can be improved to linear time. The following summarizes
this development.

Theorem 8.2.9 Given a set F of fd’s and a single fd σ , determine whether F |= σ can
be decided in linear time.

Several interesting properties of fd-closure sets are considered in Exercises 8.11 and
8.12.

Axiomatization for fd’s

In addition to developing algorithms for determining logical implication, the second funda-
mental theme in dependency theory has been the development of inference rules, which can
be used to generate symbolic proofs of logical implication. Although the inference rules do
not typically yield the most efficient mechanisms for deciding logical implication, in many
cases they capture concisely the essential properties of the dependencies under study. The
study of inference rules is especially intriguing because (as will be seen in the next section)
there are several classes of dependencies for which there is no finite set of inference rules
that characterizes logical implication.

Inference rules and algorithms for testing implication provide alternative approaches
to showing logical implication between dependencies. In general, the existence of a finite
set of inference rules for a class of dependencies is a stronger property than the existence
of an algorithm for testing implication. It will be shown in Chapter 9 that

• the existence of a finite set of inference rules for a class of dependencies implies the
existence of an algorithm for testing logical implication; and

8.2 Functional and Key Dependencies 167

• there are dependencies for which there is no finite set of inference rules but for which
there is an algorithm to test logical implication.

We now present the inference rules for fd’s.

FD1: (reflexivity) If Y ⊆X, then X→ Y .

FD2: (augmentation) If X→ Y , then XZ→ YZ.

FD3: (transitivity) If X→ Y and Y → Z, then X→ Z.

The variables X, Y,Z range over sets of attributes. The first rule is sometimes called an
axiom because it is degenerate in the sense that no fd’s occur in the antecedent.

The inference rules are used to form proofs about logical implication between fd’s,
in a manner analogous to the proofs found in mathematical logic. It will be shown that
the resulting proof system is “sound” and “complete” for fd’s (two classical notions to be
recalled soon). Before formally presenting the notion of proof, we give an example.

Example 8.2.10 The following is a proof of AD→ E from the set F1 of fd’s of Exam-
ple 8.2.4.

σ1 : A→ C ∈F1,

σ2 : AD→ CD from σ1 using FD2,
σ3 : CD→ E ∈F1,

σ4 : AD→ E from σ2 and σ3 using FD3.

Let U be a set of attributes. A substitution for an inference rule ρ (relative to U) is
a function that maps each variable appearing in ρ to a subset of U , such that each set
inclusion indicated in the antecedent of ρ is satisfied by the associated sets. Now let F be a
set of fd’s over U and σ an fd over U . A proof of σ from F using the set I = {FD1, FD2,
FD3} is a sequence of fd’s σ1, . . . , σn = σ (n≥ 1) such that for each i ∈ [1, n], either

(a) σi ∈F, or

(b) there is a substitution for some rule ρ ∈ I such that σi corresponds to the conse-
quent of ρ, and such that for each fd in the antecedent of ρ the corresponding fd
is in the set {σj | 1≤ j < i}.

The fd σ is provable from F using I (relative to U), denoted F I* σ or F * σ if I is
understood from the context, if there is a proof of σ from F using I.

Let I be a set of inference rules. Then

I is sound for logical implication of fd’s if F I* σ implies F |= σ ,

I is complete for logical implication of fd’s if F |= σ implies F I* σ .

We will generalize these definitions to other dependencies and other sets of inference
rules.

In general, a finite sound and complete set of inference rules for a class C of depen-
dencies is called a (finite) axiomatization of C. In such a case, C is said to be (finitely)
axiomatizable.

We now state the following:

168 Functional and Join Dependency

Theorem 8.2.11 The set {FD1, FD2, FD3} is sound and complete for logical implica-
tion of fd’s.

Proof Suppose that F is a set of fd’s over an attribute set U . The proof of soundness
involves a straightforward induction on proofs σ1, . . . , σn from F, showing that F |= σi

for each i ∈ [1, n] (see Exercise 8.5).
For the proof of completeness, we show that F |= X→ Y implies F * X→ Y . As

a first step, we show that F * X→ X∗ using an induction based on Algorithm 8.2.7. In
particular, let closurei be the value of closure after i iterations of step 3 for some fixed
execution of that algorithm on input F and X. We set closure0 = X. Suppose inductively
that a proof σ1, . . . , σki of X→ closurei has been constructed. [The case for i = 0 follows
from FD1.] Suppose further that W → Z is chosen for the (i + 1)st iteration. It follows
that W ⊆ closurei and closurei+1 = closurei ∪Z. Extend the proof by adding the following
steps:

σki+1 = W → Z in F

σki+2 = closurei →W by FD1
σki+3 = closurei → Z by FD3
σki+4 = closurei → closurei+1 by FD2
σki+5 = X→ closurei+1 by FD3

At the completion of this construction we have a proof σ1, . . . , σn of X→ X∗. By
Lemma 8.2.6, Y ⊆X∗. Using FD1 and FD3, the proof can be extended to yield a proof of
X→ Y .

Other inference rules for fd’s are considered in Exercise 8.9.

Armstrong Relations

In the proof of Proposition 8.2.8, an instance I is created such that I |=F but I �|=X→ A.
Intuitively, this instance witnesses the fact that F �|= X→ A. This raises the following
natural question: Given a set F of fd’s over U , is there a single instance I that satisfies
F and that violates every fd not in F∗? It turns out that for each set of fd’s, there is such an
instance; these are called Armstrong relations.

Proposition 8.2.12 If F is a set of fd’s over U , then there is an instance I such that,
for each fd σ over U , I |= σ iff σ ∈F∗.

Crux Suppose first that F �|= ∅→ A for any A (i.e., ∅∗ = ∅). For each set X ⊆ U sat-
isfying X = X∗, choose an instance IX = {sX, tX} such that sX(A)= tX(A) iff A ∈ X. In
addition, choose these instances so that adom(IX) ∩ adom(IY)= ∅ for X �= Y . Then

∪{IX |X ⊂ U and X =X∗}

is an Armstrong relation for F.

8.3 Join and Multivalued Dependencies 169

If ∅∗ �= ∅, then the instances IX should be modified so that πA(IX)= πA(IY) for each
X, Y and A ∈ ∅∗.

In some applications, the domains of certain attributes may be finite (e.g., Sex con-
ventionally has two values, and Grade typically consists of a finite set of values). In such
cases, the construction of an Armstrong relation may not be possible. This is explored in
Exercise 8.13.

Armstrong relations can be used in practice to assist the user in specifying the fd’s for
a particular application. An interactive, iterative specification process starts with the user
specifying a first set of fd’s. The system then generates an Armstrong relation for the fd’s,
which violates all the fd’s not included in the specification. This serves as a worst-case
counterexample and may result in detecting additional fd’s whose satisfaction should be
required.

8.3 Join and Multivalued Dependencies

The second kind of simple dependency studied in this chapter is join dependency (jd),
which is intimately related to the join operator of the relational algebra. As mentioned in
Section 8.1, a basic motivation for join dependency stems from its usefulness in connection
with relation decomposition. This section also discusses multivalued dependency (mvd), an
important special case of join dependency that was historically the first to be introduced.

The central results and tools for studying jd’s are different from those for fd’s. It has
been shown that there is no sound and complete set of inference rules for jd’s analogous
to those for fd’s. (An axiomatization for a much larger family of dependencies will be
presented in Chapter 10.) In addition, as shown in the following section, logical implication
for jd’s is decidable. The complexity of implication is polynomial for a fixed database
schema but becomes np-hard if the schema is considered part of the input. (An exact
characterization of the complexity remains open.)

The following section also presents an interesting correspondence between mvd’s and
acyclic join dependencies (i.e., those based on joins that are acyclic in the sense introduced
in Chapter 6).

A major focus of the current section is on mvd’s; this is because of several positive
results that hold for them, including axiomatizability of fd’s and mvd’s considered together.

Join Dependency and Decomposition

Before defining join dependency, we recall the definition of natural join. For attribute set
U , sets X1, . . . , Xn ⊆ U , and instances Ij over Xj for j ∈ [1, n], the (natural) join of the
Ij ’s is

��nj=1 {Ij} = {s over ∪Xj | πXj
(s) ∈ Ij for each j ∈ [1, n]}.

A join dependency is satisfied by an instance I if it is equal to the join of some of its
projections.

170 Functional and Join Dependency

Definition 8.3.1 A join dependency (jd) over attribute set U is an expression of the form
��[X1, . . . , Xn], where X1, . . . , Xn ⊆ U and ∪n

i=1Xi = U . A relation I over U satisfies
��[X1, . . . , Xn] if I = ��nj=1 {πXj

(I)}.

A jd σ is n-ary if the number of attribute sets involved in σ is n. As discussed earlier,
the relation Showings of Fig. 8.1 satisfies the 2-ary jd

��[{Theater, Screen,Title}, {Theater, Snacks}].

The 2-ary jd’s are also called multivalued dependencies (mvd’s). These are often denoted
in a style reminiscent of fd’s.

Definition 8.3.2 If U is a set of attributes, then a multivalued dependency (mvd) over
U is an expression of the form X→→ Y , where X, Y ⊆ U . A relation I over U satisfies
X→→ Y if I |= ��[XY,X(U − Y)].

In the preceding definition, it would be equivalent to write ��[XY, (U − Y)]; we
choose the foregoing form to emphasize the importance of X. For instance, the jd

��[{Theater, Screen,Title}, {Theater, Snack}]

can be written as an mvd using

Theater →→ Screen,Title, or equivalently, Theater →→ Snack.

Exercise 8.16 explores the original definition of satisfaction of an mvd.
Figure 8.2 shows a relation schema SDT and an instance that satisfies a 3-ary jd. This

relation focuses on snacks, distributors, and theaters. We assume for this example that a
tuple (s, d, p, t) is in SDT if the conjunction of the following predicates is true:

P1(s, d, p): Snack s is supplied by distributor d at price p.

P2(d, t): Theater t is a customer of distributor d.

P3(s, t): Snack s is bought by theater t .

Under these assumptions, each instance of SDT must satisfy the jd:

��[{Snack,Distributor,Price}, {Distributor,Theater}, {Snack,Theater}].

For example, this holds for the instance in Fig. 8.2. Note that if tuple 〈coffee, Smart, 2.35,
Cinoche〉 were removed, then the instance would no longer satisfy the jd because 〈coffee,
Smart, 2.35〉, 〈coffee, Cinoche〉, and 〈Smart, Cinoche〉 would remain in the appropriate
projections. We also expect the instances of SDT to satisfy Snack, Distributor → Price.

It can be argued that schema SDT with the aforementioned constraint is unnatural
in the following sense. Intuitively, if we choose such a schema, the presence of a tuple

8.3 Join and Multivalued Dependencies 171

SDT Snack Distributor Price Theater

coffee Smart 2.35 Rex

coffee Smart 2.35 Le Champo

coffee Smart 2.35 Cinoche

coffee Leclerc 2.60 Cinoche

wine Smart 0.80 Rex

wine Smart 0.80 Cinoche

popcorn Leclerc 5.60 Cinoche

Figure 8.2: Illustration of join dependency

〈s, d, p, t〉 seems to indicate that t buys s from d. If we wish to record just the information
about who buys what, who sells what, and who sells to whom, a more appropriate schema
would consist of three relations SD[Snack, Distributor, Price], ST [Snack, Theater], and
DT [Distributor, Theater] corresponding to the three sets of attributes involved in the
preceding jd. The jd then guarantees that no information is lost in the decomposition
because the original relation can be reconstructed by joining the projections.

Join Dependencies and Functional Dependencies

The interaction of fd’s and jd’s is important in the area of schema design and user interfaces
to the relational model. Although this is explored in more depth in Chapter 11, we present
here one of the first results on the interaction of the two kinds of dependencies.

Proposition 8.3.3 Let U be a set of attributes, {X, Y,Z} be a partition of U , and F be
a set of fd’s over U . Then F |= ��[XY,XZ] iff either F |=X→ Y or F |=X→ Z.

Crux Sufficiency follows immediately from Proposition 8.2.2. For necessity, suppose that
F does not imply either of the fd’s. Then Y − X∗ �= ∅ and Z − X∗ �= ∅, say C ∈ Y − X∗
and C′ ∈ Z −X∗. Consider the two-element instance I = {u, v} where, u(A)= v(A)= 0
if A is in X∗ and u(A)= 0, v(A)= 1 otherwise. Clearly, I satisfies F and one can verify
that πXY(I) �� πXZ(I) contains a tuple w with w(C)= 0 and w(C′)= 1. Thus w is not in
I , so I violates ��[XY,XZ].

Axiomatizations

As will be seen later (Theorem 8.4.12), there is a decision procedure for jd’s in isolation,
and for jd’s and fd’s considered together. Here we consider axiomatizations, first for jd’s in
isolation and then for fd’s and mvd’s taken together.

We state first the following result without proof.

Theorem 8.3.4 There is no axiomatization for the family of jd’s.

172 Functional and Join Dependency

In contrast, there is an axiomatization for the class of fd’s and multivalued dependen-
cies. Note first that implication for fd’s is independent of the underlying set of attributes
(i.e., if F ∪ {σ } is a set of fd’s over U and V ⊇ U , then F |= σ relative to U iff F |= σ rel-
ative to V ; see Exercise 8.6). An important difference between fd’s and mvd’s is that this is
not the case for mvd’s. Thus the inference rules for mvd’s must be used in connection with
a fixed underlying set of attributes, and a variable (denoted U) referring to this set is used
in one of the rules.

The following lists the four rules for mvd’s alone and an additional pair of rules needed
when fd’s are incorporated.

MVD0: (complementation) If X→→ Y , then X→→ (U − Y).

MVD1: (reflexivity) If Y ⊆X, then X→→ Y .

MVD2: (augmentation) If X→→ Y , then XZ→→ YZ.

MVD3: (transitivity) If X→→ Y and Y →→ Z, then X→→ (Z − Y).

FMVD1: (conversion) If X→ Y , then X→→ Y .

FMVD2: (interaction) If X→→ Y and XY → Z, then X→ (Z − Y).

Theorem 8.3.5 The set {FD1, FD2, FD3, MVD0, MVD1, MVD2, MVD3, FMVD1,
FMVD2} is sound and complete for logical implication of fd’s and mvd’s considered
together.

Crux Soundness is easily verified. For completeness, let an underlying set U of attributes
be fixed, and assume that F �* σ , where σ =X→ Y or σ =X→→ Y .

The dependency set of X is dep(X)= {Y ⊆ U |F *X→→ Y }. One first shows that

1. dep(X) is a Boolean algebra of sets for U .

That is, it contains U and is closed under intersection, union, and difference (see Exer-
cise 8.17). In addition,

2. for each A ∈X+, {A} ∈ dep(X),

where X+ denotes {A ∈ U |F *X→ A}.
A dependency basis of X is a family {W1, . . . ,Wm} ⊆ dep(X) such that (1) ∪n

i=1Wi =
U ; (2) Wi �= ∅ for i ∈ [1, n]; (3) Wi ∩Wj = ∅ for i, j ∈ [1, n] with i �= j ; and (4) if
W ∈ dep(X), W �= ∅, and W ⊆Wi for some i ∈ [1, n], then W =Wi. One then proves
that

3. there exists a unique dependency basis of X.

Now construct an instance I over U that contains all tuples t satisfying the following
conditions:

(a) t (A)= 0 for each A ∈X+.

(b) If Wi is in the dependency basis and Wi �= {A} for each A ∈X+, then t (B)= 0
for all B ∈Wi or t (B)= 1 for all B ∈Wi.

It can be shown that I |=F but I �|= σ (see Exercise 8.17).

8.4 The Chase 173

This easily implies the following (see Exercise 8.18):

Corollary 8.3.6 The set {MVD0, MVD1, MVD2, MVD3} is sound and complete for
logical implication of mvd’s considered alone.

8.4 The Chase

This section presents the chase, a remarkable tool for reasoning about dependencies that
highlights a strong connection between dependencies and tableau queries. The discussion
here is cast in terms of fd’s and jd’s, but as will be seen in Chapter 10, the chase generalizes
naturally to a broader class of dependencies. At the end of this section, we explore impor-
tant applications of the chase technique. We show how it can also be used to determine
logical implication between sets of dependencies and to optimize conjunctive queries.

The following example illustrates an intriguing connection between dependencies and
tableau queries.

Example 8.4.1 Consider the tableau query (T , t) shown in Fig. 8.3(a). Suppose the
query is applied only to instances I satisfying some set F of fd’s and jd’s. The chase is
based on the following simple idea. If ν is a valuation embedding T into an instance I

satisfying F, ν(T) must satisfy F. Valuations that do not satisfy F are therefore of no use.
The chase is a procedure that eliminates the useless valuations by changing (T , t) itself so
that T , viewed as an instance, satisfies F. We will show that the tableau query resulting
from the chase is then equivalent to the original on instances satisfying F. As we shall see,
this can be used to optimize queries and test implication of dependencies.

Let us return to the example. Suppose first that F = {B → D}. Suppose (T , t) is
applied to an instance I satisfying F. In each valuation embedding T into I , it must be
the case that z and z′ are mapped to the same constant. Thus in this context one might as
well replace T by the tableau where z= z′. This transformation is called “applying the fd
B→D” to (T , t). It is easy to see that the resulting tableau query is in fact equivalent to
the identity, because T contains an entire row of distinguished variables.

Consider next an example involving both fd’s and jd’s. Let F consist of the following
two dependencies over ABCD: the jd ��[AB,BCD] and the fd A→ C. In this example we
argue that for each I satisfying these dependencies, (T , t)(I)= I or, in other words, in the
context of input instances that satisfy the dependencies, the query (T , t) is equivalent to
the identity query ({t}, t).

Let I be an instance over ABCD satisfying the two dependencies. We first explain
why (T , t)(I) = (T ′, t)(I) for the tableau query (T ′, t) of Fig. 8.3(b). It is clear that
(T ′, t)(I)⊆ (T , t)(I), because T ′ is a superset of T . For the opposite inclusion, suppose
that ν is a valuation for T with ν(T) ⊆ I . Then, in particular, both ν(〈w, x, y, z′〉) and
ν(〈w′, x, y′, z〉) are in I . Because I |= ��[AB,BCD], it follows that ν(〈w, x, y′, z〉) ∈ I .
Thus ν(T ′)⊆ I and ν(t) ∈ (T ′, t)(I). The transformation from (T , t) to (T ′, t) is termed
“applying the jd ��[AB,BCD],” because T ′ is the result of adding a member of πAB(T) ��

174 Functional and Join Dependency

T

A B

w x

w x

(a) The tableau query (T, t)

C

y

y

D

z′

z

w′ x y′ z

t

T′

A B

w x

w x

(b)

C

y

y

D

z′

z

w′ x y′ z

t

(One) result of applying
the jd [AB, BCD]

w x y′ z

T′′

A B

w x

w x

(c)

C

y

y

D

z′

z

w′ x y z

t

Result of applying
the fd A → C

w x y z

Figure 8.3: Illustration of the chase

πBCD(T) to T . We shall see that, by repeated applications of a jd, one can eventually
“force” the tableau to satisfy the jd.

The tableau T ′′ of Fig. 8.3(c) is the result of chasing (T ′, t) with the fd A→ C (i.e.,
replacing all occurrences of y′ by y). We now argue that (T ′, t)(I) = (T ′′, t)(I). First,
by Theorem 6.2.3, (T ′, t)(I)⊇ (T ′′, t)(I) because there is a homomorphism from (T ′, t)
to (T ′′, t). For the opposite inclusion, suppose now that ν(T ′) ⊆ I . This implies that ν

embeds the first tuple of T ′′ into I . In addition, because ν(〈w, x, y, z′〉) and ν(〈w, x, y′, z〉)
are in I and I |= A→ C, it follows that ν(y) = ν(y′). Thus ν(〈w′, x, y, z〉) = ν(〈w′, x,
y′, z〉) ∈ I , and ν(〈w, x, y, z〉)= ν(〈w, x, y′, z〉) ∈ I , [i.e., ν embeds the second and third
tuples of T ′′ into I , such that ν(T ′′) ⊆ I]. Note that (T ′′, t) is the result of identifying a
pair of variables that caused a violation of A→ C in T ′. We will see that by repeated
applications of an fd, one can eventually “force” a tableau to satisfy the fd. Note that
in this case, chasing with respect to A→ C has no effect before chasing with respect to
��[AB,BCD].

Finally, note that by the Homomorphism Theorem 6.2.3 of Chapter 6, (T ′′, t) ≡
({t}, t). It follows, then, that for all instances I that satisfy {A→ C, ��[AB,BCD]}, (T , t)

and ({t}, t) yield the same answer.

Defining the Chase

As seen in Example 8.4.1, the chase relates to equivalence of queries over a family of
instances satisfying certain dependencies. For a family F of instances over R, we say
that q1 is contained in q2 relative to F , denoted q1 ⊆F q2, if q1(I) ⊆ q2(I) for each
instance I in F . We are particularly interested in families F that are defined by a set F of
dependencies (in the current context, fd’s and jd’s). Let F be a set of (functional and join)
dependencies over R. The satisfaction family of F, denoted sat(R, F) or simply sat(F) if
R is understood from the context, is the family

sat(F)= {I over R | I |=F}.

8.4 The Chase 175

Query q1 is contained in q2 relative to F, denoted q1 ⊆F q2, if q1 ⊆sat(F) q2. Equivalence
relative to a family of instances (≡F) and to a set of dependencies (≡F) are defined
similarly.

The chase is a general technique that can be used, given a set of dependencies F,
to transform a tableau query q into a query q ′ such that q ≡F q ′. The chase is defined as a
nondeterministic procedure based on the successive application of individual dependencies
from F, but as will be seen this process is “Church-Rosser” in the sense that the procedure
necessarily terminates with a unique end result. As a final step in this development, the
chase will be used to characterize equivalence of conjunctive queries with respect to a set
F of dependencies (≡F).

In the following, we let R be a fixed relation schema, and we focus on sets F of fd’s
and jd’s over R and tableau queries with no constants over R. The entire development can
be generalized to database schemas and conjunctive queries with constants (Exercise 8.27)
and to a considerably larger class of dependencies (Chapter 10).

For technical convenience, we assume that there is a total order ≤ on the set var. Let
R be a fixed relation schema and suppose that (T , t) is a tableau query over R. The chase
is based on the successive application of the following two rules:

fd rule: Let σ =X→ A be an fd over R, and let u, v ∈ T be such that πX(u)= πX(v) and
u(A) �= v(A). Let x be the lesser variable in {u(A), v(A)} under the ordering ≤, and
let y be the other one (i.e., {x, y} = {u(A), v(A)} and x < y). The result of applying
the fd σ to u, v in (T , t) is the tableau query (θ(T), θ(t)), where θ is the substitution
that maps y to x and is the identity elsewhere.

jd rule: Let σ =��[X1, . . . , Xn] be a jd over R, let u be a free tuple over R not in T , and
suppose that u1, . . . , un ∈ T satisfy πXi

(ui)= πXi
(u) for i ∈ [1, n]. Then the result of

applying the jd σ to (u1, . . . , un) in (T , t) is the tableau query (T ∪ {u}, t).
Following the lead of Example 8.4.1, the following is easily verified (see Exer-

cise 8.24a).

Proposition 8.4.2 Suppose that F is a set of fd’s and jd’s over R, σ ∈ F, and q is a
tableau query over R. If q ′ is the result of applying σ to some tuples in q, then q ′ ≡F q.

A chasing sequence of (T , t) by F is a (possibly infinite) sequence

(T , t)= (T0, t0), . . . , (Ti, ti), . . .

such that for each i ≥ 0, (Ti+1, ti+1) (if defined) is the result of applying some dependency
in F to (Ti, ti). The sequence is terminal if it is finite and no dependency in F can be
applied to it. The last element of the terminal sequence is called its result. The notion
of satisfaction of a dependency is extended naturally to tableaux. The following is an
important property of terminal chasing sequences (Exercise 8.24b).

Lemma 8.4.3 Let (T ′, t ′) be the result of a terminal chasing sequence of (T , t) by F.
Then T ′, considered as an instance, satisfies F.

176 Functional and Join Dependency

Because the chasing rules do not introduce new variables, it turns out that the chase
procedure always terminates. The following is easily verified (Exercise 8.24c):

Lemma 8.4.4 Let (T , t) be a tableau query over R and F a set of fd’s and jd’s over R.
Then each chasing sequence of (T , t) by F is finite and is the initial subsequence of a
terminal chasing sequence.

An important question now is whether the results of different terminal chasing se-
quences are the same. This turns out to be the case. This property of chasing sequences is
called the Church-Rosser property. We provide the proof of the Church-Rosser property
for the chase at the end of this section (Theorem 8.4.18).

Because the Church-Rosser property holds, we can define without ambiguity the result
of chasing a tableau query by a set of fd’s and jd’s.

Definition 8.4.5 If (T , t) is a tableau query over R and F a set of fd’s and jd’s over R,
then the chase of (T , t) by F, denoted chase(T , t, F), is the result of some (any) terminal
chasing sequence of (T , t) by F.

From the previous discussion, chase(T , t, F) can be computed as follows. The depen-
dencies are picked in some arbitrary order and arbitrarily applied to the tableau. Applying
an fd to a tableau query q can be performed within time polynomial in the size of q. How-
ever, determining whether a jd can be applied to q is np-complete in the size of q. Thus the
best-known algorithm for computing the chase is exponential (see Exercise 8.25). However,
the complexity is polynomial if the schema is considered fixed.

Until now, besides the informal discussion in Section 8.1, the chase remains a purely
syntactic technique. We next state a result that shows that the chase is in fact determined
by the semantics of the dependencies in F and not just their syntax.

In the following proposition, recall that by definition, F ≡ F′ if F |= F′ and F′ |=
F. The proof, which we omit, uses the Church-Rosser property of the chase (see also
Exercise 8.26).

Proposition 8.4.6 Let F and F′ be sets of fd’s and jd’s over R, and let (T , t) be a
tableau query over R. If F ≡F′, then chase(T , t, F) and chase(T , t, F′) coincide.

We next consider several important uses of the chase that illustrate the power of this
technique.

Query Equivalence

We consider first the problem of checking the equivalence of tableau queries in the presence
of a set of fd’s and jd’s. This allows, for example, checking whether a tableau query can
be replaced by a simpler tableau query when the dependencies are satisfied. Suppose now
that (T ′, t ′) and (T ′′, t ′′) are two tableau queries and F a set of fd’s and jd’s such that
(T ′, t ′)≡F (T ′′, t ′′). From the preceding development (Proposition 8.4.2), it follows that

8.4 The Chase 177

chase(T ′, t ′, F)≡F (T ′, t ′)≡F (T ′′, t ′′)≡F chase(T ′′, t ′′, F).

We now show that, in fact, chase(T ′, t ′, F)≡ chase(T ′′, t ′′, F). Furthermore, this condi-
tion is sufficient as well as necessary.

To demonstrate this result, we first establish the following more general fact.

Theorem 8.4.7 Let F be a family of instances over relation schema R that is closed
under isomorphism, and let (T1, t1), (T2, t2), (T ′1, t

′
1), and (T ′2, t

′
2) be tableau queries over

R. Suppose further that for i = 1, 2,

(a) (T ′i , t
′
i)≡F (Ti, ti) and

(b) T ′i , considered as an instance, is in F .3

Then (T1, t1)⊆F (T2, t2) iff (T ′1, t
′
1)⊆ (T ′2, t

′
2).

Proof The if direction is immediate. For the only-if direction, suppose that (T1, t1)⊆F
(T2, t2). It suffices by the Homomorphism Theorem 6.2.3 to exhibit a homomorphism that
embeds (T ′2, t

′
2) into (T ′1, t

′
1). Because T ′1, considered as an instance, is in F ,

t ′1 ∈ (T ′1, t
′
1)(T

′
1)⇒ t ′1 ∈ (T1, t1)(T

′
1)⇒ t ′1 ∈ (T2, t2)(T

′
1)⇒ t ′1 ∈ (T ′2, t

′
2)(T

′
1).

It follows that there is a homomorphism h such that h(T ′2) ⊆ T ′1 and h(t ′2) = t ′1. Thus
(T ′1, t

′
1)⊆ (T ′2, t

′
2). This completes the proof.

Together with Lemma 8.4.3, this implies the following:

Theorem 8.4.8 Let (T1, t1) and (T2, t2) be tableau queries over R and F a set of fd’s
and jd’s over R. Then

1. (T1, t1)⊆F (T2, t2) iff chase(T1, t1, F)⊆ chase(T2, t2, F).

2. (T1, t1)≡F (T2, t2) iff chase(T1, t1, F)≡ chase(T2, t2, F).

Query Optimization

As suggested in Example 8.4.1, the chase can be used to optimize tableau queries in the
presence of dependencies such as fd’s and jd’s. Given a tableau query (T , t) and a set F of
fd’s and jd’s, chase(T , t, F) is equivalent to (T , t) on all instances satisfying F. A priori, it
is not clear that the new tableau is an improvement over the first. It turns out that the chase
using fd’s can never yield a more complicated tableau and, as shown in Example 8.4.1,
can yield a much simpler one. On the other hand, the chase using jd’s may yield a more
complicated tableau, although it may also produce a simpler one.

We start by looking at the effect on tableau minimization of the chase using fd’s.
In the following, we denote by min(T , t) the tableau resulting from the minimization of

3 More precisely, T ′ considered as an instance is in F means that some instance isomorphic to T ′ is
in F .

178 Functional and Join Dependency

the tableau (T , t) using the Homomorphism Theorem 6.2.3 for tableau queries, and by
|min(T , t)| we mean the cardinality of the tableau of min(T , t).

Lemma 8.4.9 Let (T , t) be a tableau query and F a set of fd’s. Then |min(chase(T , t,

F))| ≤ |min(T , t)|.

Crux By the Church-Rosser property of the chase, the order of the dependencies used in
a chase sequence is irrelevant. Clearly it is sufficient to show that for each tableau query
(T ′, t ′) and σ ∈F, |min(chase(T ′, t ′, σ))| ≤ |min(T ′, t ′)|. We can assume without loss of
generality that σ is of the form X→ A, where A is a single attribute.

Let (T ′′, t ′′) = chase(T ′, t ′, {X→ A}), and let θ be the chase homomorphism of a
chasing sequence for chase(T ′, t ′, {X→ A}), i.e., the homomorphism obtained by com-
posing the substitutions used in that chasing sequence (see the proof of Theorem 8.4.18).
We will use here the Church-Rosser property of the chase (Theorem 8.4.18) as well as a
related property stating that the homomorphism θ , like the result, is also the same for all
chase sequences (this follows from the proof of Theorem 8.4.18).

By Theorem 6.2.6, there is some S ⊆ T ′ such that (S, t ′) is a minimal tableau query
equivalent to (T ′, t ′); we shall use this as the representative of min(T ′, t ′). Let h be a
homomorphism such that h(T ′, t ′)= (S, t ′). Consider the mapping f on (T ′′, t ′′) defined
by f (θ(x))= θ(h(x)), where x is a variable in (T ′, t ′). If we show that f is well defined,
we are done. [If f is well defined, then f is a homomorphism from (T ′′, t ′′) to θ(S, t ′)=
(θ(S), t ′′), and so (T ′′, t ′′) ⊇ θ(S, t ′). On the other hand, the θ(S) ⊆ θ(T ′) = T ′′, and
so (T ′′, t ′′) ⊆ θ(S, t ′). Thus, (T ′′, t ′′) ≡ θ(S, t ′) = θ(min(T ′, t ′)), and so |min(T ′′, t ′′)| =
|min(θ(min(T ′, t ′)))| ≤ |θ(min(T ′, t ′))| ≤ |min(T ′, t ′)|.]

To see that f is well defined, suppose θ(x)= θ(y). We have to show that θ(h(x))=
θ(h(y)). Consider a terminal chasing sequence of (T ′, t ′) using X→ A, and (u1, v1), . . . ,

(un, vn) as the sequence of pairs of tuples used in the sequence, yielding the chase homo-
morphism θ . Consider the sequence (h(u1), h(v1)), . . . , (h(un), h(vn)). Clearly if X→ A

can be applied to (u, v), then it can be applied to (h(u), h(v)), unless h(u(A))= h(v(A)).
Let (h(ui1), h(vi1)), . . . , (h(uik), h(vik)) be the subsequence of these pairs for which X→
A can be applied. It can be easily verified that there is a chasing sequence of (h(T ′), t ′)
using X→ A that uses the pairs (h(ui1), h(vi1)), . . . , (h(uik), h(vik)), with chase homo-
morphism θ ′. Note that for all x′, y′, if θ(x′)= θ(y′) then θ ′(h(x′))= θ ′(h(y′)). In particu-
lar, θ ′(h(x))= θ ′(h(y)). Because h(T ′)⊆ T ′, θ ′ is the chase homomorphism of a chasing
sequence σ1, . . . , σk of (T ′, t ′). Let θ ′′ be the chase homomorphism formed from a termi-
nal chasing sequence that extends σ1, . . . , σk. Then θ ′′(h(x))= θ ′′(h(y)). Finally, by the
uniqueness of the chase homomorphism, θ ′′ = θ , and so θ(h(x))= θ(h(y)) as desired. This
concludes the proof.

It turns out that jd’s behave differently than fd’s with respect to minimization of
tableaux. The following shows that the chase using jd’s may yield simpler but also more
complicated tableaux.

8.4 The Chase 179

T

A B

w x

w x

(a) The tableau query (T, t)

C

y′

y

D

z′

z

w′ x y z

t

T ′

A B

w x

w x

C

y

y

D

z′

z

w′ x′ y′ z

t′

T′′

A B

w′ x

w x

C

y

y

D

z′

z

w x′ y′ z

t′′

(c) The tableau query
chase(T ′, t′, { [AB, CD]})

w′ x y′ z

(b) The tableau query (T ′, t′)

w x′ y z′

Figure 8.4: Minimization and the chase using jd’s

Example 8.4.10 Consider the tableau query (T , t) shown in Fig. 8.4(a) and the jd σ =��
[AB,BCD]. Clearly (T , t) is minimal, so |min(T , t)| = 2. Next consider chase(T , t, σ). It
is easy to check that 〈w, x, y, z〉 ∈ chase(T , t, σ), so chase(T , t, σ) is equivalent to the
identity and

|min(chase(T , t, σ))| = 1.

Next let (T ′, t ′) be the tableau query in Fig. 8.4(b) and σ =��[AB,CD]. Again (T ′, t ′) is
minimal. Now chase(T ′, t ′, σ) is represented in Fig. 8.4(c) and is minimal. Thus

|min(chase(T ′, t ′, σ))| = 4 > |min(T ′, t ′)|.

Despite the limitations illustrated by the preceding example, the chase in conjunction
with tableau minimization provides a powerful optimization technique that yields good
results in many cases. This is illustrated by the following example and by Exercise 8.28.

Example 8.4.11 Consider the SPJ expression

q = πAB(πBCD(R) �� πACD(R)) �� πAD(R),

where R is a relation with attributes ABCD. Suppose we wish to optimize the query on
databases satisfying the dependencies

F = {B→D,D→ C, ��[AB,ACD]}.

The tableau (T , t) corresponding to q is represented in Fig. 8.5(a). Note that (T , t)

is minimal. Next we chase (T , t) using the dependencies in F. The chase using the
fd’s in F does not change (T , t), which already satisfies them. The chase using the jd

180 Functional and Join Dependency

T

A B

w′ x

w x

(a) The tableau query
(T, t) corresponding to q

C

y′

y

D

z′

z

w x′ y′ z′

t

T′

A B

w′ x

w x

C

y′

y

D

z′

z

w x′ y′ z′

t′

(b) The tableau query
(T′, t′) = chase(T, t, { [AB, ACD]})

w x′′ y′′ z
w x′ y′′ z

w x′′ y′′ z

w x′′ y′ z′

T′′

A B

w′ x

w x

C

y′

y

D

z′

z

w x′ y′ z

t′′

(c) The tableau query
(T ′′, t′′) = chase(T′, t′, {B → D, D → C})

w x′′ y′ z

T′′′

A B

w′ x

w x

C

y′

y

D

z

z

w x′ y′ z

t′′′

(d) The tableau query
(T′′′, t′′′) = min(T′′, t′′)

Figure 8.5: Optimization of SPJ expressions by tableau minimization and the chase

��[AB,ACD] yields the tableau (T ′, t ′) in Fig. 8.5(b). Now the fd’s can be applied to
(T ′, t ′) yielding the tableau (T ′′, t ′′) in Fig. 8.5(c). Finally (T ′′, t ′′) is minimized to
(T ′′′, t ′′′) in Fig. 8.5(d). Note that (T ′′′, t ′′′) satisfies F, so the chase can no longer be ap-
plied. The SPJ expression corresponding to (T ′′′, t ′′′) is πABD(πBCD(R) �� πACD(R)). Thus,
the optimization of q resulted in saving one join operation. Note that the new query is not
simply a subexpression of the original. In general, the shape of queries can be changed
radically by the foregoing procedure.

The Chase and Logical Implication

We consider a natural correspondence between dependency satisfaction and conjunctive
query containment. This correspondence uses tableaux to represent dependencies. We will
see that the chase provides an alternative point of view to dependency implication.

First consider a jd σ =��[X1, . . . , Xn]. It is immediate to see that an instance I

satisfies σ iff qσ(I)⊆ qid(I), where

qσ = [X1] �� · · · �� [Xn]

8.4 The Chase 181

and qid is the identity query. Both qσ and qid are PSJR expressions. We can look at
alternative formalisms for expressing qσ and qid . For instance, the tableau query of σ is
(Tσ , t), where for some t1, . . . , tn,

• t is a free tuple over R with a distinct variable for each coordinate,

• Tσ = {t1, . . . , tn},
• πXi

(ti)= πXi
(t) for i ∈ [1, n], and

• the other coordinates of the ti’s hold distinct variables.

It is again easy to see that qσ = (Tσ , t), so I |= σ iff (Tσ , t)(I)⊆ ({t}, t)(I).
For fd’s, the situation is only slightly more complicated. Consider an fd σ ′ =X→ A

over U . It is easy to see that I |= σ ′ iff (Tσ ′, tσ ′)(I)⊆ (Tσ ′, t
′
σ ′)(I), where

X A (U − AX) X A (U − AX)

Tσ ′ u x v1 u x v1

u x′ v2 u x′ v2

tσ ′ x x′ t ′
σ ′ x x

where u, v1, v2 are vectors of distinct variables and x, x′ are distinct variables occurring in
none of these vectors. The tableau query of σ ′ is (Tσ ′, tσ ′).

Again observe that (Tσ ′, tσ ′), (Tσ , tσ) can be expressed as PSJR expressions, so fd
satisfaction also reduces to containment of PSJR expressions. It will thus be natural to
look more generally at all dependencies expressed as containment of PSJR expressions.
In Chapter 10, we will consider the general class of algebraic dependencies based on
containment of these expressions.

Returning to the chase, we next use the tableau representation of dependencies to
obtain a characterization of logical implication (Exercise 8.29). This result is generalized
by Corollary 10.2.3.

Theorem 8.4.12 Let F and {σ } be sets of fd’s and jd’s over relation schema R, let
(Tσ , tσ) be the tableau query of σ , and let T be the tableau in chase(Tσ , tσ , F). Then
F |= σ iff

(a) σ =X→ A and |πA(T)| = 1, that is, the projection over A of T is a singleton;
or

(b) σ = ��[X1, . . . , Xn] and tσ ∈ T .

This implies that determining logical implication for jd’s alone, and for fd’s and jd’s
taken together, is decidable. On the other hand, tableau techniques are also used to obtain
the following complexity results for logical implication of jd’s (see Exercise 8.30).

182 Functional and Join Dependency

Theorem 8.4.13

(a) Testing whether a jd and an fd imply a jd is np-complete.

(b) Testing whether a set of mvd’s implies a jd is np-hard.

Acyclic Join Dependencies

In Section 6.4, a special family of joins called acyclic was introduced and was shown to
enjoy a number of desirable properties. We show now a connection between those results,
join dependencies, and multivalued dependencies.

A jd ��[X1, . . . , Xn] is acyclic if the hypergraph corresponding to [X1, . . . , Xn] is
acyclic (as defined in Section 6.4).

Using the chase, we show here that a jd is acyclic iff it is equivalent to a set of mvd’s.
The discussion relies on the notation and techniques developed in the discussion of acyclic
joins in Section 6.4.

We shall use the following lemma.

Lemma 8.4.14 Let σ = ��X be a jd over U , and let X, Y ⊆ U be disjoint sets. Then the
following are equivalent:

(i) σ |=X→→ Y ;

(ii) there is no Xi ∈ X such that Xi ∩ Y �= ∅ and Xi ∩ (U −XY) �= ∅;

(iii) Y is a union of connected components of the hypergraph X|U−X.

Proof Let Z = U − XY . Let τ denote the mvd X→→ Y , and let (Tτ , tτ) be the tableau
query corresponding to τ . Let Tτ = {tY , tZ}where tY [XY]= tτ [XY] and tZ[XZ]= tτ [XZ]
and distinct variables are used elsewhere in tY and tZ.

We show now that (i) implies (ii). By Theorem 8.4.12, tτ ∈ T = chase(Tτ , tτ , σ). Let
Xi ∈ X. Suppose that t is a new tuple created by an application of σ during the computation
of T . Then t[Xi] agrees with t ′[Xi] for some already existing tuple. An induction implies
that tτ [Xi]= tY [Xi] or tτ [Xi]= tZ[Xi]. Because tY and tZ agree only on X, this implies
that Xi cannot intersect with both Y and Z.

That (ii) implies (iii) is immediate. To see that (iii) implies (i), consider an applica-
tion of the jd ��X on Tτ , where Xi ∈ X is associated with tY if Xi − X ⊆ Y , and Xi

is associated with tZ otherwise. This builds the tuple tτ , and so by Theorem 8.4.12, σ |=
X→→ Y .

We now have the following:

Theorem 8.4.15 A jd σ is acyclic iff there is a set F of mvd’s that is equivalent to σ .

Proof (only if) Suppose that σ =��X over U is acyclic. By Theorem 6.4.5, this implies
that the output of the GYO algorithm on X is empty. Let X1, . . . , Xn be an enumeration
of X in the order of an execution of the GYO algorithm. In particular, Xi is an ear of the
hypergraph formed by {Xi+1, . . . , Xn}.

8.4 The Chase 183

For each i ∈ [1, n − 1], let Pi = ∪j∈[1,i]Xj and Qi = ∪j∈[i+1,n]Xj . Let F = {[Pi ∩
Qi]→→Qi | i ∈ [1, n − 1]}. By Lemma 8.4.14 and the choice of sequence X1, . . . , Xn,
σ |= F. To show that F |= σ , we construct a chasing sequence of (Tσ , tσ) using F that
yields tσ . This chase shall inductively produce a sequence t1, . . . , tn of tuples, such that
ti[Pi]= tσ [Pi] for i ∈ [1, n].

We begin by setting t1 to be the tuple of Tσ that corresponds to X1. Then t1[P1] =
tσ [P1] because P1 =X1. More generally, given ti with i ≥ 1, the mvd [Pi ∩Qi]→→Qi on
ti and the tuple corresponding to Xi+1 can be used to construct tuple ti+1 with the desired
property. The final tuple tn constructed by this process is tσ , and so F |= σ as desired.

(if) Suppose that σ =��X over U is equivalent to the set F of mvd’s but that σ is
not acyclic. From the definition of acyclic, this implies that there is some W ⊆ U such that
Y= X|W has no articulation pair. Without loss of generality we assume that Y is connected.

Let Y= {Y1, . . . , Ym}. Suppose that s1, . . . are the tuples produced by some chasing
sequence of (Tσ , tσ). We argue by induction that for each k ≥ 1, sk[W] ∈ πW(Tσ). Suppose
otherwise, and let sk be the first where this does not hold. Suppose that sk is the result of
applying an mvd X→→ Y in F. Without loss of generality we assume that X ∩ Y = ∅.
Let Z = U − XY . Because sk results from X→→ Y , there are two tuples s′ and s′′ either
in Tσ or already produced, such that sk[XY] = s′[XY] and sk[XZ] = s′′[XZ]. Because
sk is chosen to be least, there are tuples ti and tj in Tσ , which correspond to Xi and Xj ,
respectively, such that s′[W]= ti[W] and s′′[W]= tj [W].

Because ti and tj correspond to Xi and Xj , for each attribute A ∈ U we have ti[A]=
tj [A] iff A ∈Xi ∩Xj . Thus X ∩W ⊆Xi ∩Xj .

Because sk[W] �= ti[W], W − XZ �= ∅, and because sk[W] �= tj [W], W − XY �= ∅.
Now, by Lemma 8.4.14, because X→→ Y is implied by σ , there is no Xk ∈ X such
that Xk ∩ Y �= ∅ and Xk ∩ Z �= ∅. It follows that Y|W−X is disconnected. Finally, let
Y = Xi ∩W and Y ′ = Xj ∩W . Because X ∩W ⊆ Xi ∩ Xj , it follows that Y ∩ Y ′ is an
articulation set for Y, a contradiction.

We conclude with a complexity result about acyclic jd’s. The first part follows from
the proof of the preceding theorem and the fact that the GYO algorithm runs in polynomial
time. The second part, stated without proof, is an interesting converse of the first part.

Proposition 8.4.16

(a) There is a ptime algorithm that, given an acyclic jd σ , produces a set of mvd’s
equivalent to σ .

(b) There is a ptime algorithm that, given a set F of mvd’s, finds a jd equivalent to
F or determines that there is none.

The Chase Is Church-Rosser

To conclude this section, we provide the proof that the results of all terminal chasing
sequences of a tableau query q by a set F of fd’s and jd’s are identical. To this end, we
first introduce tools to describe correspondences between the free tuples occurring in the
different elements of chasing sequences.

184 Functional and Join Dependency

Let (T , t)= (T0, t0), . . . , (Tn, tn) be a chasing sequence of (T , t) by F. Then for each
i ∈ [1, n], the chase homomorphism for step i, denoted θi, is an assignment with domain
var(Ti) defined as follows:

(a) If (Ti+1, ti+1) is the result of applying the fd rule to (Ti, ti), which replaces all
occurrences of variable y by variable x, then θi+1 is defined so that θi+1(y)= x

and θi+1 is the identity on var(Ti)− {y}.
(b) If (Ti+1, ti+1) is the result of applying the jd rule to (Ti, ti), then θi+1 is the

identity on var(Ti).

The chase homomorphism of this chasing sequence is θ = θ1 ◦ · · · ◦ θn. If w ∈ (T ∪ {t}),
then the tuple corresponding to w in (Ti, ti) is wi = θ1 ◦ · · · ◦ θi(w). It may arise that
ui = vi for distinct tuples u, v in T . Observe that θ1 ◦ · · · ◦ θi(T) ⊆ Ti and that, because
of the jd rule, the inclusion may be strict.

We now have the following:

Lemma 8.4.17 Suppose that I |= F, ν is a substitution over var(T), ν(T) ⊆ I , and
(T0, t0), . . . , (Tn, tn) is a chasing sequence of (T , t) by F. Then

ν(wi)= ν(w) for each i ∈ [1, n] and each w ∈ (T ∪ {t}),

and ν(Ti)⊆ I for each i ∈ [1, n].

Crux Use an induction on the chasing sequence (Exercise 8.24d).

Observe that this also holds if I is a tableau over R that satisfies F. This is used in the
following result.

Theorem 8.4.18 Let (T , t) be a tableau query over R and F a set of fd’s and jd’s over
R. Then the results of all terminal chasing sequences of (T , t) by F are identical.

Proof Let (T ′, t ′) and (T ′′, t ′′) be the results of two terminal chasing sequences on (T , t)

using F, and let θ ′, θ ′′ be the chase homomorphisms of these chasing sequences. For each
tuple w ∈ T , let w′ denote the tuple of T ′ that corresponds to w, and similarly for w′′, T ′′.

By construction, θ ′′(T) ⊆ T ′′ and θ ′′(t) = t ′′. Because T ′′ |= F and θ ′′(T) ⊆ T ′′,
θ ′′(T ′) ⊆ T ′′ by Lemma 8.4.17 considering the chasing sequence leading to T ′. The
same argument shows that θ ′′(w′) = w′′ for each w in T and θ ′′(t ′) = t ′′. By symmetry,
θ ′(T ′′)⊆ T ′, θ ′(w′′)= w′ for each w in T and θ ′(t ′′)= t ′.

We next prove that

(*) θ ′′ is an isomorphism from (T ′, t ′) to (T ′′, t ′′).

Let w′′ be in T ′′ for some w in T . Then

θ ′ ◦ θ ′′(w′′)= θ ′′(θ ′(w′′))= θ ′′(w′)= w′′.

Bibliographic Notes 185

Observe that each variable x in var(T ′′) occurs in w′′, for some w in T . Thus θ ′ ◦ θ ′′ is the
identity over var(T ′′). We therefore have

θ ′ ◦ θ ′′(T ′′)= T ′′.

By symmetry, θ ′′ ◦ θ ′ is the identity over var(T ′) and

θ ′′ ◦ θ ′(T ′)= T ′.

Thus |T ′′| = |T ′|. Because θ ′′(T ′) ⊆ T ′′, θ ′′(T ′) = T ′′ and θ ′′ is an isomorphism from
(T ′, t ′) to (T ′′, t ′′), so (*) holds.

To conclude, we prove that

(**) θ ′′ is the identity over var(T ′).

We first show that for each pair x, y of variables occurring in T ,

(†) θ ′′(x)= θ ′′(y) iff θ ′(x)= θ ′(y).

Suppose that θ ′′(x) = θ ′′(y). Then for some tuples u, v ∈ T and attributes A,B, we
have u(A) = x, v(B) = y and u′′(A) = θ ′′(x) = θ ′′(y) = v′′(B). Next θ ′(x) = u′(A) and
θ ′(y) = v′(B). Because θ ′ is an isomorphism from (T ′′, t ′′) to (T ′, t ′) and θ ′(u′′) =
u′, θ ′(v′′) = v′, it follows that u′(A) = v′(B). Hence θ ′(x) = u′(A) = v′(B) = θ ′(y) as
desired. The if direction follows by symmetry.

Now let x ∈ var(T ′). To prove (**) and the theorem, it now suffices to show that
θ ′′(x)= x. Let

A′ = {y ∈ var(T) | θ ′(y)= θ ′(x)},
A′′ = {y ∈ var(T) | θ ′′(y)= θ ′′(x)}.

First (†) implies that A′ = A′′. Furthermore, an induction on the chasing sequence
for (T ′, t ′) shows that for each z ∈A′, θ ′(z) is the least (under the ordering on var) ele-
ment of A′, and similarly for (T ′′, t ′′). Thus θ ′ and θ ′′ map all elements of A′ and A′′ to
the same variable z. Because x ∈ var(T ′), it follows that z = x so, in particular, θ ′(x)=
θ ′′(x)= x.

Bibliographic Notes

On a general note, we first mention that comprehensive presentations of dependency the-
ory can be found in [Var87, FV86]. A more dense presentation is provided in [Kan91].
Dependency theory is also the topic of the book [Tha91].

Research on general integrity constraints considered from the perspective of first-order
logic is presented in [GM78]. Other early work in this framework includes [Nic78], which
observes that fd’s and mvd’s have a natural representation in logic, and [Nic82], which

186 Functional and Join Dependency

considers incremental maintanence of integrity constraints under updates to the underlying
state.

Functional dependencies were introduced by Codd [Cod72b]. The axiomatization is
due to [Arm74]. The problem of implication is studied in [BB79, Mai80]. Several alterna-
tive formulations of fd implication, including formulation in terms of the propositional cal-
culus perspective (see Exercise 8.22), are mentioned in [Kan91]; they are due to [SDPF81,
CK85, CKS86].

Armstrong relations were introduced and studied in [Fag82b, Fag82a, BDFS84]. In-
teresting practical applications of Armstrong relations are proposed in [SM81, MR85]. The
idea is that, given a set F of fd’s, the system presents an Armstrong relation for F with nat-
ural column entries to a user, who can then determine whether F includes all of the desired
restrictions.

The structure of families of instances specified by a set of fd’s is studied in [GZ82,
Hul84].

Multivalued dependencies were discovered independently in [Zan76, Fag77b, Del78].
They were generalized in [Ris77, Nic78, ABU79]. The axiomatization of fd’s and mvd’s
is from [BFH77]. A probabilistic view of mvd’s in terms of conditional independence is
presented in [PV88, Pea88]. This provides an alternative motivation for the study of such
dependencies.

The issue of whether there is an axiomatization for jd’s has a lengthy history. As
will be detailed in Chapter 10, the family of full typed dependencies subsumes the family
of jd’s, and an axiomatization for these was presented in [BV84a, YP82]; see also [SU82].
More focused axiomatizations, which start with jd’s and end with jd’s but use slightly more
general dependencies at intermediate stages, are presented in [Sci82] and [BV85]; see also
[BV81b]. Reference [BV85] also develops an axiomatization for join dependencies based
on Gentzen-style proofs (see, e.g., [Kle67]); proofs in this framework maintain a form of
scratch paper in addition to a sequence of inferred sentences. Finally, [Pet89] settled the
issue by establishing that there is no axiomatization (in the sense defined in Section 8.2)
for the family of jd’s.

As noted in Chapter 6, acyclic joins received wide interest in the late 1970s and
early 1980s so Theorem 8.4.15 was demonstrated in [FMU82]. Proposition 8.4.16 is from
[GT83].

An ancestor to the chase can be found in [ABU79]. The notion of chase was articulated
in [MMS79]. Related results can be found in [MSY81, Var83]. The relationship between
the chase and both tableau queries and logical implication was originally presented in
[MMS79] and builds on ideas originally introduced in [ASU79b, ASU79a]. The chase
technique is extended to more general dependencies in [BV84c]; see also Chapter 10.
The connection between the chase and the more general theorem-proving technique of
resolution with paramodulation (see [CL73]) is observed and analyzed in [BV80b]. The
chase technique is applied to datalog programs in [RSUV89, RSUV93].

Exercises

Exercise 8.1 Describe the set of fd’s, mvd’s, and jd’s that are tautologies (i.e., dependencies
that are satisfied by all instances) for a relation schema R.

Exercises 187

Exercise 8.2 Let F1 be as in Example 8.2.4. Prove that F1 |= AD→ E and F1 |= CDE → C.

Exercise 8.3 Let U be a set of attributes, and let F,H be sets of dependencies over U . Show
that

(a) F ⊆F∗.
(b) (F∗)∗ =F∗.
(c) If H ⊆F, then H∗ ⊆F∗.

State and prove analogous results for fd closures of attribute sets.

Exercise 8.4 Prove Lemma 8.2.6.

Exercise 8.5 Let U be a set of attributes and F a set of fd’s over U . Prove the soundness of
FD1, FD2, FD3 and show that

If F *X→ Y and F *X→ Z, then F *X→ YZ.

Exercise 8.6 Let F be a set of fd’s over U .

(a) Suppose that X ⊆ U and U ⊆ V . Show that (X,F)∗,U = (X,F)∗,V . Hint: Use the
proof of Proposition 8.2.8.

(b) Suppose that XY ⊆ U , and U ⊆ V . Show that F |=U X→ Y iff F |=V X→ Y .

♠Exercise 8.7 [BB79] Describe how to improve the efficiency of Algorithm 8.2.7 to linear time.
Hint: For each unused fd W → Z in F, record the number attributes of W not yet in closure.
To do this efficiently, maintain a list for each attribute A of those unused fd’s of F for which A

occurs in the left-hand side.

Exercise 8.8 Give a proof of AB → F from F = {AB → C,A→ D,CD→ EF } using
{FD1, FD2, FD3}.

Exercise 8.9 Prove or disprove the soundness of the following rules:

FD4: (pseudo-transitivity) If X→ Y and YW → Z, then XW → Z.

FD5: (union) If X→ Y and X→ Z, then X→ YZ.

FD6: (decomposition) If X→ YZ, then X→ Y .

MVD4: (pseudo-transitivity) If X→→ Y and YW →→ Z, then XW →→ Z − Y .

MVD5: (union) If X→→ Y and X→→ Z, then X→→ YZ.

MVD6: (decomposition) If X→→ Y and X→→ Z, then X→→ Y ∩ Z, X→→ Y − Z, and
X→→ Z − Y .

bad-FD1: If XW → Y and XY → Z, then X→ (Z −W).

bad-MVD1: If X→→ Y and Y →→ Z, then X→→ Z.

bad-FMVD1: If X→→ Y and XY → Z, then X→ Z.

(The use of the hint is optional.)

Exercise 8.10 Continuing with Exercise 8.9,

(a) [BFH77] Find a two-element subset of {FD1, FD2, FD3, FD4, FD5, FD6} that is
sound and complete for inferring logical implication of fd’s.

188 Functional and Join Dependency

(b) Prove that there is exactly one two-element subset of {FD1, FD2, FD3, FD4, FD5,
FD6} that is sound and complete for inferring logical implication of fd’s.

Exercise 8.11 [Arm74] Let U be a fixed set of attributes. An attribute set X ⊆ U is saturated
with respect to a set F of fd’s over U if X =X∗. The family of saturated sets of F with respect
to U is satset(F)= {X ⊆ U |X is saturated with respect to F}.

(a) Show that satset = satset(F) satisfies the following properties:

S1: U ∈ satset.
S2: If Y ∈ satset and Z ∈ satset, then Y ∩ Z ∈ satset.

� (b) Suppose that satset is a family of subsets of U satisfying properties (S1) and (S2).
Prove that satset = satset(H) for some set H of fd’s over U . Hint: Use H = {Y → Z|
for each X ∈ satset, if Y ⊆X then Z ⊆X}.

Exercise 8.12 Let F and H be sets of fd’s over U . Using the notation of Exercise 8.11,

(a) Show that satset(F ∪ H)= satset(F) ∩ satset(H).

(b) Show that satset(F∗ ∩ H∗) = satset(F) ∧ satset(H), where for families F,G, the
wedge of F and G is F ∧ G = {X ∩ Y |X ∈ F and Y ∈ G}.

(c) For V ⊆ U , define πVF = {X→ Y ∈F |XY ⊆ V }. For V ⊆ U characterize satset
(πV (F

∗)) (where this family is defined with respect to V).

Exercise 8.13

(a) Exhibit a set F1 of fd’s over {A,B} such that each Armstrong relation for F has at
least three distinct values occurring in the A column. Exhibit a set F2 of fd’s over
{A,B,C} such that each Armstrong relation for F has at least four distinct values
occurring in the A column.

(b) [GH83, BDFS84] Let F be a set of fd’s over U . Recall the notion of saturated set
from Exercise 8.11. For an instance I over U , the agreement set of I is agset(I)=
{X ⊆ U | ∃ s, t ∈ I such that s(A)= t (A) iff A ∈ X}. For a family F of subsets of
U , the intersection closure of F is intclo(F) = {∩n

i=1Xi | n ≥ 0 and each Xi ∈ F}
(where the empty intersection is defined to be U). Prove that I is an Armstrong
relation for F iff intclo(agset(I))= satset(F).

Exercise 8.14 [Mai80] Let F be a set of fd’s over U , X→ Y ∈F, and let A be an attribute.
A is extraneous in X→ Y with respect to F if either

(a) (F − {X→ Y }) ∪ {X→ (Y − A)} |=X→ Y ; or

(b) (F − {X→ Y }) ∪ {(X − A)→ Y } |=X→ Y .

Develop an O(n2) algorithm that takes as input a set F of fd’s and produces as output a set
F′ ≡F, where F′ has no extraneous attributes.

Exercise 8.15 Show that there is no set F of jd’s and fd X→ A such that F |=X→ A. Hint:
Show that for any instance I there exists an instance I ′ such that I ⊆ I ′ and I ′ |= F. Then
choose I violating X→ A.

Exercise 8.16 [Fag77b, Zan76] This exercise refers to the original definition of mvd’s. Let U
be a set of attributes and X, Y ⊆ U . Given an instance I over U and a tuple x ∈ πX(I), the image

Exercises 189

of x on Y in I is the set imageY (x, I)= πY(σX=x(I)) of tuples over Y . Prove that I |=X→→ Y

iff

for each x ∈ πX(I) and each z ∈ imageZ(x, I), imageY (x, I)= imageY (xz, I),

where Z = U −XY and xz denotes the tuple w over XZ such that πX(w)= x and πZ(w)= z.

�Exercise 8.17 [BFH77] Complete the proof of Theorem 8.3.5. Hint: Of course, the inference
rules can be used when reasoning about I . The following claims are also useful:

Claim 1: If A ∈X+, then I |= ∅→ A.

Claim 2: If A,B ∈Wi for some i ∈ [1, n], then I |= A→ B.

Claim 3: For each i ∈ [1, n], I |= ∅→→Wi.

Exercise 8.18 Prove Corollary 8.3.6.

Exercise 8.19 [Kan91] Consider the following set of inference rules:

MVD7: X→→ U −X.

MVD8: If Y ∩ Z = ∅, X→→ Y , and Z→→W , then X→→W − Y .

FMVD3: If Y ∩ Z = ∅, X→→ Y , and Z→W , then X→ Y ∩W .

Prove that {MVD7, MVD2, MVD8} are sound and complete for inferring implication for
mvd’s, and that {FD1, FD2, FD3, MVD7, MVD2, MVD8, FMVD1, FMVD3} are sound and
complete for inferring implication for fd’s and mvd’s considered together.

Exercise 8.20 [Bee80] Let F be a set of fd’s and mvd’s, and let m(F)= {X→→ Y | X→→
Y ∈F} ∪ {X→→ A | A ∈ Y for some X→ Y ∈F}. Prove that

(a) F |=X→ Y implies m(F) |=X→→ Y ; and

(b) F |=X→→ Y iff m(F) |=X→→ Y .

Hint: For (b) do an induction on proofs using the inference rules.

Exercise 8.21 For sets F and H of dependencies over U , F implies H for two-element in-
stances, denoted F |=2 H, if for each instance I over U with |I | ≤ 2, I |=F implies I |= H.

(a) [SDPF81] Prove that if F ∪ {σ } is a set of fd’s and mvd’s, then F |=2 σ iff F |= σ .

(b) Prove that the equivalence of part (a) does not hold if jd’s are included.

(c) Exhibit a jd σ such that there is no set F of mvd’s with σ ≡F.

♠Exercise 8.22 [SDPF81] This exercise develops a close connection between fd’s and mvd’s,
on the one hand, and a fragment of propositional logic, on the other. Let U be a fixed set of
attributes. We view each attribute A ∈ U as a propositional variable. For the purposes of this
exercise, a truth assignment is a mapping ξ : U → {T , F } (where T denotes true and F denotes
false). Truth assignments are extended to mappings on subsets X of U by ξ(X)= ∧A∈Xξ(A). A
truth assignment ξ satisfies an fd X→ Y , denoted ξ |=X→ Y , if ξ(X)= T implies ξ(Y)= T .
It satisfies an mvd X→→ Y , denoted ξ |= X→→ Y , if ξ(X)= T implies that either ξ(Y)= T

or ξ(U − Y) = T . Given a set F ∪ {σ } of fd’s and mvd’s, F implies σ in the propositional
calculus, denoted F |=prop σ , if for each truth assignment ξ , ξ |=F implies ξ |= σ . Prove that
for all sets F ∪ {σ } of fd’s and mvd’s, F |= σ iff F |=prop σ .

190 Functional and Join Dependency

�Exercise 8.23 [Bis80] Exhibit a set of inference rules for mvd’s that are sound and complete
in the context in which an underlying set of attributes is not fixed.

♠Exercise 8.24

(a) Prove Proposition 8.4.2.

(b) Prove Lemma 8.4.3.

(c) Prove Lemma 8.4.4. What is the maximum size attainable by the tableau in the result
of a terminal chasing sequence?

(d) Prove Lemma 8.4.17.

♠Exercise 8.25

(a) Describe a polynomial time algorithm for computing the chase of a tableau query by
F, assuming that F contains only fd’s.

(b) Show that the problem of deciding whether a jd can be applied to a tableau query is
np-complete if the schema is considered variable, and polynomial if the schema is
considered fixed. Hint: Use Exercise 6.16.

(c) Prove that it is np-hard, given a tableau query (T , t) and a set F of fd’s and jd’s, to
compute chase(T , t, F) (this assumes that the schema is part of the input and thus
not fixed).

(d) Describe an exponential time algorithm for computing the chase by a set of fd’s and
jd’s. (Again the schema is not considered fixed.)

Exercise 8.26 Prove Proposition 8.4.6. Hint: Rather than modifying the proof of Theo-
rem 8.4.18, prove as a lemma that if F |= σ , then chase(T , t, F)= chase(T , t, F ∪ {σ }).
Exercise 8.27

(a) Verify that the results concerning the chase generalize immediately to the context in
which database schemas as opposed to relation schemas are used.

(b) Describe how to generalize the chase to tableau in which constants occur, and state
and prove the results about the chase and tableau queries. Hint: If the chase procedure
attempts to equate two distinct constants (a situation not occurring before), we obtain
a particular new tableau, called Tfalse, which corresponds to the query producing an
empty result on all input instances.

Exercise 8.28 For each of the following relation schemas R, SPJ expressions q over R, and
dependencies F over R, simplify q knowing that it is applied only to instances over R satisfying
F. Use tableau minimization and the chase.

(a) sort(R) = ABC, q = πAC(πAB(σA=2(R) �� πBC(R)) �� πAB(σB=8(R) �� πBC(R)),
F = {A→ C,B→ C}

(b) sort(R)= ABCD, q = πBC(R) �� πABD(R), F = {B→→ CD, B→→D}
(c) sort(R)= ABCD, q = πABD(R) �� πAC(R), F = {A→ B,B→→ C}.

♠Exercise 8.29 Prove Theorem 8.4.12.

♠Exercise 8.30 Prove Theorem 8.4.13(a) [BV80a] and Theorem 8.4.13(b) [FT83].

Exercise 8.31 [MMS79] Describe an algorithm based on the chase for

(a) computing the closure of an attribute set X under a set F of fd’s and jd’s (where the
notion of closure is extended to include all fd’s implied by F); and

Exercises 191

(b) computing the dependency basis (see Section 8.3) of a set X of attributes under a set
F of fd’s and jd’s (where the notion of dependency basis is extended to include fd’s
in the natural manner).

Exercise 8.32 [GH86] Suppose that the underlying domain dom has a total order ≤. Let
U = {A1, . . . , An} be a set of attributes. For each X ⊆ U , define the partial order ≤X over the
set of tuples of X by t ≤X t ′ iff t (A) ≤ t ′(A) for each A ∈ X. A sort set dependency (SSD)
over U is an expression of the form s(X), where X ⊆ U . An instance I over U satisfies s(X),
denoted I |= s(X), if ≤X is a total order on πX(I).

(a) Show that the following set of inference rules is sound and complete for finite logical
implication between SSDs:

SSD1: If A is an attribute, then s(A).
SSD2: If s(X) and Y ⊆X, then s(Y).
SSD3: If s(X), s(Y) and s(X , Y), then s(XY) [where X , Y denotes (X −
Y) ∪ (Y −X), i.e., the symmetric difference of X and Y].

(b) Exhibit a polynomial time algorithm for inferring logical implication between sets
of SSDs.

(c) Describe how SSDs might be used in connection with indexes.

