Notes on Practical
Languages

Alice:  What do you mean by practical languages?
Riccardo: select from where.
Alice:  That’s it?
Vittorio:  Well, there are of course lots of bells and whistles.
Sergio:  But basically, this forms the core of most practical languages.

In this chapter we discuss the relationship of the abstract query languages discussed
so far to three representative commercial relational query languages: Structured Query
Language (SQL), Query-By-Example (QBE), and Microsoft Access. SQL is by far the
dominant relational query language and provides the basis for languages in extensions of
the relational model as well. Although QBE is less widespread, it illustrates nicely the
basic capabilities and problems of graphic query languages. Access is a popular database
management system for personal computers (PCs) and uses many elements of QBE.

Our discussion of the practical languages is not intended to provide a complete de-
scription of them, but rather to indicate some of the similarities and differences between
theory and practice. We focus here on the central aspects of these languages. Many fea-
tures, such as string-comparison operators, iteration, and embeddings into a host language,
are not mentioned or are touched on only briefly.

We first present highlights of the three languages and then discuss considerations that
arise from their use in the real world.

7.1 SQL: The Structured Query Language

SQL has emerged as the preeminent query language for mainframe and client-server rela-
tional dbms’s. This language combines the flavors of both the algebra and the calculus and
is well suited for the specification of conjunctive queries.

This section begins by describing how conjunctive queries are expressed using SQL.
We then progress to additional features, including nested queries and various forms of
negation.

Conjunctive Queries in SQL

Although there are numerous variants of SQL, it has become the standard for relational
query languages and indeed for most aspects of relational database access, including data
definition, data modification, and view definition. SQL was originally developed under the
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name Sequel at the IBM San Jose Research Laboratory. It is currently supported by most
of the dominant mainframe commercial relational systems, and increasingly by relational
dbms’s for PCs.

The basic building block of SQL queries is the select-from-where clause. Speaking
loosely, these have the form

select  <list of fields to select>
from <list of relation names>
where <condition>

For example, queries (4.1) and (4.4) of Chapter 4 are expressed by

select  Director
from Movies
where Title = ‘Cries and Whispers’;

select  Location.Theater, Address
from Movies, Location, Pariscope
where Director = ‘Bergman’
and Movies.Title = Pariscope.Title
and Pariscope.Theater = Location.Theater;

In these queries, relation names themselves are used to denote variables ranging over
tuples occurring in the corresponding relation. For example, in the preceding queries, the
identifier Movies can be viewed as ranging over tuples in relation Movies. Relation name
and attribute name pairs, such as Location.Theater, are used to refer to tuple components;
and the relation name can be dropped if the attribute occurs in only one of the relations in
the from clause.

The select keyword has the effect of the relational algebra projection operator, the
from keyword has the effect of the cross-product operator, and the where keyword has the
effect of the selection operator (see Exercise 7.3). For example, the second query translates
to (using abbreviated attribute names)

L.Th, A( GDZ‘Bcrgman’AM_Ti:P‘TMP‘Th:L_Th(Movies x Location x Pariscope)).

If all of the attributes mentioned in the from clause are to be output, then * can be used
in place of an attribute list in the select clause. In general, the where condition may include
conjunction, disjunction, negation, and (as will be seen shortly) nesting of select-from-
where blocks. If the where clause is omitted, then it is viewed as having value true for all
tuples of the cross-product. In implementations, as suggested in Chapter 6, optimizations
will be used; for example, the from and where clauses will typically be merged to have the
effect of an equi-join operator.

In SQL, as with most practical languages, duplicates may occur in a query answer.
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Technically, then, the output of an SQL query may be a bag (also called “multiset”)—
a collection whose members may occur more than once. This is a pragmatic compromise
with the pure relational model because duplicate removal is rather expensive. The user may
request that duplicates be removed by inserting the keyword distinct after the keyword
select.

If more than one variable ranging over the same relation is needed, then variables can
be introduced in the from clause. For example, query (4.7), which asks for pairs of persons
such that the first directed the second and the second directed the first, can be expressed as

select M1 .Director, M1.Actor
from Movies M1, Movies M2
where MI.Director = M2.Actor
and M1 .Actor = M2.Director;

In the preceding example, the Director coordinate of M1 is compared with the Actor
coordinate of M2. This is permitted because both coordinates are (presumably) of type
character string. Relations are declared in SQL by specifying a relation name, the attribute
names, and the scalar types associated with them. For example, the schema for Movies
might be declared as

create table Movies
(Title character[60]
Director character[30]
Actor character[30]);

In this case, Title and Director values would be comparable, even though they are character
strings of different lengths. Other scalar types supported in SQL include integer, small
integer, float, and date.

Although the select-from-where block of SQL has a syntactic flavor close to the re-
lational calculus (but using tuple variables rather than domain variables), from a technical
perspective the SQL semantics are firmly rooted in the algebra, as illustrated by the follow-
ing example.

ExampLE 7.1.1 Let {R[A], S[B], T[C]} be a database schema, and consider the follow-
ing query:

select A
from R, S, T
where R A=SBorRA=T.C,

A direct translation of this into the SPJR algebra extended to permit disjunction in selection
formulas (see Exercise 4.22) yields
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TA(0a=Bva=c(R x § x T)),

which yields the empty answer if S is empty or if 7 is empty. Thus the foregoing SQL
query is not equivalent to the calculus query:

{x | R(x) A (S(x) vV T(x)}
A correct translation into the conjunctive calculus (with disjunction) query is

{fw]3Ix, y, 2(ROASWHAT@OAx=wA(x=yVx=2z))}

Adding Set Operators

The select-from-where blocks of SQL can be combined in a variety of ways. We describe
first the incorporation of the set operators (union, intersect, and difference). For example,
the query

(4.14)  List all actors and director of the movie “Apocalypse Now.”
can be expressed as

(select Actor Participant

from  Movies

where Title = ‘Apocalypse Now’)
union

(select  Director Participant

from  Movies

where Title = ‘Apocalypse Now’);

In the first subquery the output relation uses attribute Participant in place of Actor. This
illustrates renaming of attributes, analogous to relation variable renaming. This is needed
here so that the two relations that are unioned have compatible sort.

Although union, intersect, and difference were all included in the original SQL, only
union is in the current SQL2 standard developed by the American National Standards
Institute (ANSI). The two left out can be simulated by other mechanisms, as will be seen
later in this chapter.

SQL also includes a keyword contains, which can be used in a selection condition to
test containment between the output of two nested select-from-where expressions.

Nested SQL Queries

Nesting permits the use of one SQL query within the where clause of another. A simple
illustration of nesting is given by this alternative formulation of query (4.4):
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select  Theater
from  Pariscope
where Title in
(select Title
from Movies
where Director = ‘Bergman’);

The preceding example tests membership of a unary tuple in a unary relation. The
keyword in can also be used to test membership for arbitrary arities. The symbols < and
> are used to construct tuples from attribute expressions. In addition, because negation is
permitted in the where clause, set difference can be expressed. Consider the query

List title and theater for movies being shown in only one theater.

This can be expressed in SQL by

select  Title, Theater
from  Pariscope
where (T7itle, Theater) notin
(select Pl.Title, P1.Theater
from  Pariscope P1, Pariscope P2
where Pl.Title = P2.Title
and not (P1.Theater = P2.Theater));

Expressing First-Order Queries in SQL

We now discuss the important result that SQL is relationally “complete,” in the sense that
it can express all relational queries expressible in the calculus. Recall from Chapter 5 that
the family of nr-datalog™ programs is equivalent to the calculus and algebra. We shall show
how to simulate nr-datalog™ using SQL. Intuitively, the result follows from the facts that

(a) each rule can be simulated using the select-from-where construct;
(b) multiple rules defining the same predicate can be simulated using union; and

(c) negation in rule bodies can be simulated using not in.

We present an example here and leave the formal proof for Exercise 7.4.

ExaMPLE 7.1.2 Consider the following query against the CINEMA database:
Find the theaters showing every movie directed by Hitchcock.

An nr-datalog™ program expressing the query is
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Pariscope,(xtha Xitle) <— Pariscope(Xp, Xiitie, Xscn)
Bad_th(x;y) < Movies(xsiye, Hitchcock, x41),

Location(xsp, Xioc, Xph),
—Pariscope (Xi, Xiitle)

Answer (x:j,) < Location(xtj, Xioc, Xpn), ~Bad_th(xp).

In the program, Bad_th holds the list of “bad” theaters, for which one can find a movie by
Hitchcock that the theater is not showing. The last rule takes the complement of Bad_th
with respect to the list of theaters provided by Location.

An SQL query expressing an nr-datalog™ program such as this one can be constructed
in two steps. The first is to write SQL queries for each rule separately. In this example, we
have

Pariscope’:  select  Theater, Title
from Fariscope;

Bad_th: select  Theater
from Movies, Location
where Director = ‘Hitchcock’
and (Theater, Title) not in
(select *
from Pariscope'),

Answer:  select  Theater
from Location
where Theater  notin
(select *
from Bad_th);

The second step is to combine the queries. In general, this involves replacing nested
queries by their definitions, starting from the answer relation and working backward. In
this example, we have

select  Theater
from Location
where Theater not in

(select Theater
from Movies, Location
where Director = ‘Hitchcock’

and (Theater, Title) not in
(select Theater, Title
from Pariscope));

In this example, each idb (see Section 4.3) relation that occurs in a rule body occurs
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negatively. As a result, all variables that occur in the rule are bound by edb relations, and
so the from part of the (possibly nested) query corresponding to the rule refers only to
edb relations. In general, however, variables in rule bodies might be bound by positively
occurring idb relations, which cannot be used in any from clause in the final SQL query.
To resolve this problem, the nr-datalog™ program should be rewritten so that all positively
occurring relations in rule bodies are edb relations (see Exercise 7.4a).

View Creation and Updates

We conclude our consideration of SQL by noting that it supports both view creation and
updates.

SQL includes an explicit mechanism for view creation. The relation Champo-info from
Example 4.3.4 is created in SQL by

create view Le Champo as
select Pariscope.Title, Schedule, Phone
from Fariscope, Location
where  Pariscope.Theater = ‘Le Champo’
and Location.Theater = ‘Le Champo.’

Views in SQL can be accessed as can normal relations and are useful in building up
complex queries.

As a practical database language, SQL provides commands for updating the database.
We briefly illustrate these here; some theoretical aspects concerning updates are presented
in Chapter 22.

SQL provides three primitive commands for modifying the contents of a database—
insert, delete, and update (in the sense of modifying individual tuples of a relation).

The following can be used to insert a new tuple into the Movies database:

insert into Movies
values (‘Apocalypse Now, ‘Coppola,” ‘Duvall’);

A set of tuples can be deleted simultaneously:

delete Movies
where Director = ‘Hitchcock’;

Tuple update can also operate on sets of tuples (as illustrated by the following) that
might be used to correct a typographical error:

update Movies
set Director = ‘Hitchcock’
where Director = ‘Hickcook’;
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The ability to insert and delete tuples provides an alternative approach to demon-
strating the relational completeness of SQL. In particular, subexpressions of an algebra
expression can be computed in intermediate, temporary relations (see Exercise 7.6). This
approach does not allow the same degree optimization as the one based on views because
the SQL interpreter is required to materialize each of the intermediate relations.

7.2 Query-by-Example and Microsoft Access

We now turn to two query languages that have a more visual presentation. The first, Query-
by-Example (QBE), presents a visual display for expressing conjunctive queries that is
close to the perspective of tableau queries. The second language, Access, is available on
personal computers; it uses elements of QBE, but with a more graphical presentation of
join relationships.

QBE

The language Query-By-Example (QBE) was originally developed at the IBM T. J. Watson
Research Center and is currently supported as part of IBM’s Query Management Facility.
As illustrated at the beginning of Chapter 4, the basic format of QBE queries is fundamen-
tally two-dimensional and visually close to the tableau queries. Importantly, a variety of
features are incorporated into QBE to give more expressive power than the tableau queries
and to provide data manipulation capabilities. We now indicate some features that can be
incorporated into a QBE-like visual framework. The semantics presented here are a slight
variation of the semantics supported for QBE in IBM’s product line.

As seen in Fig. 4.2, which expresses query (4.4), QBE uses strings with prefix _ to
denote variables and other strings to denote constants. If the string is preceded by P., then
the associated coordinate value forms part of the query output. QBE framework can provide
a partial union capability by permitting the inclusion in a query of multiple tuples having a
P. prefix in a single relation. For example, Fig. 7.1 expresses the query

(4.12)  What films with Allen as actor or director are currently featured at the Concorde?

Under one natural semantics for QBE queries, which parallels the semantics of conjunctive
queries and of SQL, this query will yield the empty answer if either opjyecior—<alien”Movies
Of TActor=Allen”Movies is empty (see Example 7.1.1).

QBE also includes a capability of condition boxes, which can be viewed as an exten-
sion of the incorporation of equality atoms into tableau queries.

QBE does not provide a mechanism analogous to SQL for nesting of queries. It is hard
to develop an appropriate visual representation of such nesting within the QBE framework,
in part due to the lack of scoping rules. More recent extensions of QBE address this issue
by incorporating, for example, hierarchical windows. QBE also provides mechanisms for
both view definition and database update.

Negation can be incorporated into QBE queries in a variety of ways. The use of data-
base update is an obvious mechanism, although not especially efficient. Two restricted
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Movies | Title | Director | Actor

X Allen
Y Allen

Pariscope | Theater Title | Schedule

Concorde | P._X
Concorde | P._Y

Figure 7.1: One form of union in QBE

Movies | Title | Director | Actor

= Z Bergman

Pariscope | Theater Title | Schedule

P._champio —Concorde Z

Figure 7.2: A query with negation in QBE

forms of negation are illustrated in Fig. 7.2, which expresses the following query: (assum-
ing that each film has only one director) what theaters, other than the Concorde, feature a
film not directed by Bergman? The — in the Pariscope relation restricts attention to those
tuples with Theater coordinate not equal to Concorde, and the — preceding the tuple in the
Movies relation is analogous to a negative literal in a datalog rule and captures a limited
form of —3 from the calculus; in this case it excludes all films directed by Bergman. When
such negation is used, it is required that all variables that occur in a row preceded by — also
appear in positive rows. Other restricted forms of negation in QBE include using negative
literals in condition boxes and supporting an operator analogous to relational division (as
defined in Exercise 5.8).

The following example shows more generally how view definition can be used to
obtain relational completeness.

ExAMPLE 7.2.1 Recall the query and nr-datalog™ program of Example 7.1.2. As with
SQL, the QBE query corresponding to an nr-datalog™ will involve one or more views for
each rule (see Exercise 7.5). For this example, however, it turns out that we can compute
the effect of the first two rules with a single QBE query. Thus the two stages of the full
query are shown in Fig. 7.3, where the symbol I. indicates that the associated tuples are
to be inserted into the answer. The creation of the view Bad_th is accomplished using the



7.2 Query-by-Example and Microsoft Access 151

Stage I: Movies | Title | Director | Actor

_Xsine | Hitchcock

Location | Theater | Address | Phone

—Xth

Pariscope | Theater | Title | Schedule

- —Xth —Xtitle

LVIEW Bad_th I. | Theater

A X

Stage II: Location | Theater | Address | Phone

—Xth Answer | Theater

I _Xm
Bad_th | Theater

= X

Figure 7.3: Illustration of relational completeness of QBE

expression [.VIEWBad_th I., which both creates the view and establishes the attribute
names for the view relation.

Microsoft Access: A Query Language for PCs

A number of dbms’s for personal computers have become available over the past few years,
such as DBASE IV, Microsoft Access, Foxpro, and Paradox. Several of these support a
version of SQL and a more visual query language. The visual languages have a flavor
somewhat different from QBE. We illustrate this here by presenting an example of a query
from the Microsoft Access dbm’s.

Access provides an elegant graphical mechanism for constructing conjunctive queries.
This includes a tabular display to indicate the form and content of desired output tuples,
the use of single-attribute conditions within this display (in the rows named “Criteria” and
“or”), and a graphical presentation of join relationships that are to hold between relations
used to form the output. Fig. 7.4 shows how query (4.4) can be expressed using Access.
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A SelectQuery: Query4 V| A
il
Movies Pariscope Location
Title L Theater L Theater L)
Director Q\— Title L Address D
Actor %l Schedule % Phone % =
4
«[ il [=
Ll
Field | Theater Address Director
Table | Location Location Movies
Sort
Show X X
Criteria “Bergman” =]
Or n
«[ I [=

Figure 7.4: Example query in Access

(Although not shown in the figure, join conditions can also be expressed using single-
attribute conditions represented as text.)

Limited forms of negation and union can be incorporated into the condition part of an
Access query. For more general forms of negation and union, however, the technique of
building views to serve as intermediate relations can be used.

7.3 Confronting the Real World

Because they are to be used in practical situations, the languages presented in this chapter
incorporate a number of features not included in their formal counterparts. In this section
we touch on some of these extensions and on fundamental issues raised by them. These in-
clude domain independence, the implications of incorporating many-sorted atomic objects,
the use of arithmetic, and the incorporation of aggregate operators.

Queries from all of the practical languages described in this chapter are domain inde-
pendent. This is easily verified from the form of queries in these languages: Whenever a
variable is introduced, the relation it ranges over is also specified. Furthermore, the specific
semantics associated with or’s occurring in where clauses (see Example 7.1.1) prevent the
kind of safety problem illustrated by query unsafe-2 of Section 5.3.

Most practical languages permit the underlying domain of values to be many-sorted—
for example, including distinct scalar domains for the types integer, real, character string,
etc., and some constructed types, such as date, in some languages. (More recent systems,
such as POSTGRES, permit the user to incorporate abstract data types as well.) For most
of the theoretical treatment, we assumed that there was one underlying domain of values,
dom, which was shared equally by all relational attributes. As noted in the discussion of
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SQL, the typing of attributes can be used to ensure that comparisons make sense, in that
they compare values of comparable type. Much of the theory developed here for a single
underlying domain can be generalized to the case of a many-sorted underlying domain (see
Exercise 7.8).

Another fundamental feature of practical query languages is that they offer value
comparators other than equality. Typically most of the base sorts are totally ordered. This
is the case for the integers or the strings (under the lexicographical ordering). It is therefore
natural to introduce <, >, <, > as comparators. For example, to ask the query, “What can
we see at the Le Champo after 21:00,” we can use

ans(x;) < Pariscope(“Le Champo,’x;, x5), x5 > “21:007;
and, in the algebra, as

T Title (OTheater="Le Champo™ ASchedule>*21:00"Pariscope).

Exercise 4.30 explores the impact of incorporating comparators into the conjunctive
queries. Many languages also incorporate string-comparison operators.

Given the presence of integers and reals, it is natural to incorporate arithmetic oper-
ators. This yields a fundamental increase in expressive power: Even simple counting is
beyond the power of the calculus (see Exercise 5.34).

Another extension concerns the incorporation of aggregate operators into the practical
languages (see Section 5.5). Consider, for example, the query, “How many films did
Hitchcock direct?”. In SQL, this can be expressed using the query

select count(distinct Title)
from Movies
where Director = ‘Hitchcock’;

(The keyword distinct is needed here, because otherwise SQL will not remove duplicates
from the projection onto 7itle.) Other aggregate operators typically supported in practical
languages include sum, average, minimum, and maximum.

In the preceding example, the aggregate operator was applied to an entire relation.
By using the group by command, aggregate operators can be applied to clusters of tuples,
each common values on a specified set of attributes. For example, the following SQL query
determines the number of movies directed by each director:

select Director, count(distinct Title)
from Movies
group by  Director;

The semantics of group by in SQL are most easily understood when we study an extension
of the relational model, called the complex object (or nested relation) model, which models
grouping in a natural fashion (see Chapter 20).
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Exercises

Exercise 7.1 Write SQL, QBE, and Access queries expressing queries (4.1 to 4.14) from
Chapter 4. Start by expressing them as nr-datalog™ programs.

Exercise 7.2 Consider again the queries (5.2 and 5.3) of Chapter 5. Express these in SQL,
QBE, and Access.

Exercise 7.3 Describe formally the mapping of SQL select-from-where blocks into the SPJR
algebra.

® Exercise 7.4

(a) Let P be an nr-datalog™ program. Describe how to construct an equivalent program
P’ such that each predicate that occurs positively in a rule body is an edb predicate.

(b) Develop a formal proof that SQL can simulate nr-datalog™.
Exercise 7.5 Following Example 7.2.1, show that QBE is relationally complete.
Exercise 7.6

(a) Assuming that R and S have compatible sorts, show how to compute in SQL the
value of R — S into the relation T using insert and delete.

(b) Generalize this to show that SQL is relationally complete.
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Exercise 7.7 In a manner analogous to Exercise 7.6, show that Access is relationally complete.

* Exercise 7.8 The intuition behind the typed restricted PSJ algebra is that each attribute has a
distinct type whose elements are incomparable with the types of other attributes. As motivated
by the practical query languages, propose and study a restriction of the SPJR algebra analo-
gous to the typed restricted PSJ algebra, but permitting more than one attribute with the same
type. Does the equivalence of the various versions of the conjunctive queries still hold? Can
Exercise 6.21 be generalized to this framework?



