
6 Static Analysis and
Optimization

Alice: Do you guys mean real optimization?
Riccardo: Well, most of the time it’s local maneuvering.

Vittorio: But sometimes we go beyond incremental reform . . .
Sergio: . . . with provably global results.

This chapter examines the conjunctive and first-order queries from the perspective of
static analysis (in the sense of programming languages). It is shown that many prop-

erties of conjunctive queries (e.g., equivalence, containment) are decidable although they
are not decidable for first-order queries. Static analysis techniques are also applied here in
connection with query optimization (i.e., transforming queries expressed in a high-level,
largely declarative language into equivalent queries or machine instruction programs that
are arguably more efficient than a naive execution of the initial query).

To provide background, this chapter begins with a survey of practical optimization
techniques for the conjunctive queries. The majority of practically oriented research and
development on query optimization has been focused on variants of the conjunctive queries,
possibly extended with arithmetic operators and comparators. Because of the myriad fac-
tors that play a role in query evaluation, most practically successful techniques rely heavily
on heuristics.

Next the chapter presents the elegant and important Homomorphism Theorem, which
characterizes containment and equivalence between conjunctive queries. This leads to
the notion of tableau “minimization”: For each tableau query there is a unique (up to
isomorphism) equivalent tableau query with the smallest number of rows. This provides a
theoretical notion of true optimality for conjunctive queries. It is also shown that deciding
these properties and minimizing conjunctive queries is np-complete in the size of the input
queries.

Undecidability results are then presented for the first-order queries. Although related
to undecidability results for conventional first-order logic, the proof techniques used here
are necessarily different because all instances considered are finite by definition. The
undecidability results imply that there is no hope of developing an algorithm that performs
optimization of first-order queries that is complete. Only limited optimization of first-order
queries involving difference is provided in most systems.

The chapter closes by returning to a specialized subset of the conjunctive queries based
on acyclic joins. These have been shown to enjoy several interesting properties, some
yielding insight into more efficient query processing.

Chapter 13 in Part D examines techniques for optimizing datalog queries.
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6.1 Issues in Practical Query Optimization

Query optimization is one of the central topics of database systems. A myriad of factors
play a role in this area, including storage and indexing techniques, page sizes and paging
protocols, the underlying operating system, statistical properties of the stored data, statis-
tical properties of anticipated queries and updates, implementations of specific operators,
and the expressive power of the query languages used, to name a few. Query optimization
can be performed at all levels of the three-level database architecture. At the physical level,
this work focuses on, for example, access techniques, statistical properties of stored data,
and buffer management. At a more logical level, algebraic equivalences are used to rewrite
queries into forms that can be implemented more efficiently.

We begin now with a discussion of rudimentary considerations that affect query pro-
cessing (including the usual cost measurements) and basic methods for accessing relations
and implementing algebraic operators. Next an optimization approach based on algebraic
equivalences is described; this is used to replace a given algebraic expression by an equiva-
lent one that can typically be computed more quickly. This leads to the important notion of
query evaluation plans and how they are used in modern systems to represent and choose
among many alternative implementations of a query. We then examine intricate techniques
for implementing multiway joins based on different orderings of binary joins and on join
decomposition.

The discussion presented in this section only scratches the surface of the rich body of
systems-oriented research and development on query optimizers, indicating only a handful
of the most important factors that are involved. Nothing will be said about several factors,
such as the impact of negation in queries, main-memory buffering strategies, and the
implications of different environments (such as distributed, object oriented, real time, large
main memory, and secondary memories other than conventional disks). In part due to the
intricacy and number of interrelated factors involved, little of the fundamental theoretical
research on query optimization has found its way into practice. As the field is maturing,
salient aspects of query optimization are becoming isolated; this may provide some of the
foothold needed for significant theoretical work to emerge and be applied.

The Physical Model

The usual assumption of relational databases is that the current database state is so large
that it must be stored in secondary memory (e.g., on disk). Manipulation of the stored
data, including the application of algebraic operators, requires making copies in primary
memory of portions of the stored data and storing intermediate and final results again
in secondary memory. By far the major time expense in query processing, for a single-
processor system, is the number of disk pages that must be swapped in and out of primary
memory. In the case of distributed systems, the communication costs typically dominate
all others and become an important focus of optimization.

Viewed a little more abstractly, the physical level of relational query implementation
involves three basic activities: (1) generating streams of tuples, (2) manipulating streams
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of tuples (e.g., to perform projections), and (3) combining streams of tuples (e.g., to per-
form joins, unions, and intersections). Indexing methods, including primarily B-trees and
hash indexes, can be used to reduce significantly the size of some streams. Although not
discussed here, it is important to consider the cost of maintaining indexes and clusterings
as updates to the database occur.

Main-memory buffering techniques (including the partitioning of main memory into
segments and paging policies such as deleting pages based on policies of least recent use
and most recent use) can significantly impact the number of page I/Os used.

Speaking broadly, an evaluation plan (or access plan) for a query, a stored database
state, and a collection of existing indexes and other data structures is a specification of a
sequence of operations that will compute the answer to the query. The term evaluation
plan is used most often to refer to specifications that are at a low physical level but
may sometimes be used for higher-level specifications. As we shall see, query optimizers
typically develop several evaluation plans and then choose one for execution.

Implementation of Algebraic Operators

To illustrate the basic building blocks from which evaluation plans are constructed, we now
describe basic implementation techniques for some of the relational operators.

Selection can be realized in a straightforward manner by a scan of the argument
relation and can thus be achieved in linear time. Access structures such as B-tree indexes
or hash tables can be used to reduce the search time needed to find the selected tuples. In
the case of selections with single tuple output, this permits evaluation within essentially
constant time (e.g., two or three page fetches). For larger outputs, the selection may take
two or three page fetches per output tuple; this can be improved significantly if the input
relation is clustered (i.e., stored so that all tuples with a given attribute value are on the
same or contiguous disk pages).

Projection is a bit more complex because it actually calls for two essentially differ-
ent operations: tuple rewriting and duplicate elimination. The tuple rewriting is typically
accomplished by bringing tuples into primary memory and then rewriting them with coor-
dinate values permuted and removed as called for. This may yield a listing of tuples that
contains duplicates. If a pure relational algebra projection is to be implemented, then these
duplicates must be removed. One strategy for this involves sorting the list of tuples and
then removing duplicates; this takes time on the order of n log n. Another approach that is
faster in some cases uses a hash function that incorporates all coordinate values of a tuple.

Because of the potential expense incurred by duplicate elimination, most practical re-
lational languages permit duplicates in intermediate and final results. An explicit command
(e.g., distinct) that calls for duplicate elimination is typically provided. Even in languages
that support a pure algebra, it may be more efficient to leave duplicates in intermediate
results and perform duplicate elimination once as a final step.

The equi-join is typically much more expensive than selection or projection because
two relations are involved. The following naive nested loop implementation of ��F will
take time on the order of the product n1 × n2 of the sizes of the input relations I1, I2:



108 Static Analysis and Optimization

J := ∅;
for each u in I1

for each v in I2

if u and v are joinable then J := J ∪ {u ��F v}.
Typically this can be improved by using the sort-merge algorithm, which independently
sorts both inputs according to the join attributes and then performs a simultaneous scan of
both relations, outputting join tuples as discovered. This reduces the running time to the
order of max(n1 log n1 + n2 log n2, size of output).

In many cases a more efficient implementation of join can be accomplished by a vari-
ant of the foregoing nested loop algorithm that uses indexes. In particular, replace the inner
loop by indexed retrievals to tuples of I2 that match the tuple of I1 under consideration.
Assuming that a small number of tuples of I2 match a given tuple of I1, this computes the
join in time proportional to the size of I1. We shall consider implementations of multiway
joins later in this section and again in Section 6.4. Additional techniques have been devel-
oped for implementing richer joins that include testing, e.g., relationships based on order
(≤).

Cross-product in isolation is perhaps the most expensive algebra operation: The output
necessarily has size the product of the sizes of the two inputs. In practice this arises only
rarely; it is much more common that selection conditions on the cross-product can be used
to transform it into some form of join.

Query Trees and Query Rewriting

Alternative query evaluation plans are usually generated by rewriting (i.e., by local trans-
formation rules). This can be viewed as a specialized case of program transformation. Two
kinds of transformations are typically used in query optimization: one that maps from the
higher-level language (e.g., the algebra) into the physical language, and others that stay
within the same language but lead to alternative, equivalent implementations of a given
construct.

We present shortly a family of rewriting rules that illustrates the general flavor of this
component of query optimizers (see Fig. 6.2). Unlike true optimizers, however, the rules
presented here focus exclusively on the algebra. Later we examine the larger issue of how
rules such as these are used to find optimal and near-optimal evaluation plans.

We shall use the SPC algebra, generalized by permitting positive conjunctive selection
and equi-join. A central concept used is that of query tree, which is essentially the parse
tree of an algebraic expression. Consider again Query (4.4), expressed here as a rule:

ans(xth, xad)←Movies(xti, “Bergman”, xac), Pariscope(xth, xti, xs),

Location(xth, xad, xp).

A naive translation into the generalized SPC algebra yields

q1 = π4,8σ2=“Bergman”((Movies ��1=2 Pariscope) ��4=1 Location).
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Figure 6.1: Two query trees for Query (4.4) from Chapter 4

The query tree of this expression is shown in Fig. 6.1(a).
To provide a rough idea of how evaluation costs might be estimated, suppose now that

Movies has 10,000 tuples, with about 5 tuples per movie; Pariscope has about 200 tuples,
and Location has about 100 tuples. Suppose further that in each relation there are about 50
tuples per page and that no indexes are available.

Under a naive evaluation of q1, an intermediate result would be produced for each
internal node of q1’s query tree. In this example, then, the join of Movies and Pariscope
would produce about 200× 5 = 1000 tuples, which (being about twice as wide as the input
tuples) will occupy about 40 pages. The second equi-join will yield about 1000 tuples that
fit 18 to a page, thus occupying about 55 pages. Assuming that there are four Bergman
films playing in one or two theaters each, the final answer will contain about six tuples.
The total number of page fetches performed here is about 206 for reading the input relations
(assuming that no indexes are available) and 95 for working with the intermediate relations.
Additional page fetches might be required by the join operations performed.

Consider now the query q2 whose query tree is illustrated in Fig. 6.1(b). It is easily
verified that this is equivalent to q1. Intuitively, q2 was formed from q1 by “pushing”
selections and projections as far “down” the tree as possible; this generally reduces the
size of intermediate results and thus of computing with them.
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In this example, assuming that all (i.e., about 20) of Bergman’s films are in Movies, the
selection on Movies will yield about 100 tuples; when projected these will fit onto a single
page. Joining with Pariscope will yield about six tuples, and the final join with Location
will again yield six tuples. Thus only one page is needed to hold the intermediate results
constructed during this evaluation, a considerable savings over the 95 pages needed by the
previous one.

It is often beneficial to combine several algebraic operators into a single implemented
operation. As a general rule of thumb, it is typical to materialize the inputs of each equi-
join. The equi-join itself and all unary operations directly above it in the query tree are
performed before output. The dashed ovals of Fig. 6.1(b) illustrate a natural grouping that
can be used for this tree. In practical systems, the implementation and grouping of operators
is typically considered in much finer detail.

The use of different query trees and, more generally, different evaluation plans can
yield dramatically different costs in the evaluation of equivalent queries. Does this mean
that the user will have to be extremely careful in expressing queries? The beauty of query
optimization is that the answer is a resounding no. The user may choose any representation
of a query, and the system will be responsible for generating several equivalent evaluation
plans and choosing the least expensive one. For this reason, even though the relational
algebra is conceptually procedural, it is implemented as an essentially declarative language.

In the case of the algebra, the generation of evaluation plans is typically based on the
existence of rules for transforming algebraic expressions into equivalent ones. We have
already seen rewrite rules in the context of transforming SPC and SPJR expressions into
normal form (see Propositions 4.4.2 and 4.4.6). A different set of rules is useful in the
present context due to the focus on optimizing the execution time and space requirements.

In Fig. 6.2 we present a family of representative rewrite rules (three with inverses) that
can be used for performing the transformations needed for optimization at the logical level.
In these rules we view cross-product as a special case of equi-join in which the selection
formula is empty. Because of their similarity to the rules used for the normal form results,
several of the rules are shown only in abstract form; detailed formulation of these, as well
as verification of their soundness, is left for the reader (see Exercise 6.1). We also include
the following rule:

Simplify-identities: replace π1,...,arity(q)q by q; replace σi=iq by q; replace q × {〈〉} by q;
replace q × {} by {}; and replace q ��1=1∧···∧arity(q)=arity(q)q by q.

Generating and Choosing between Evaluation Plans

As suggested in Fig. 6.2, in most cases the transformations should be performed in a certain
direction. For example, the fifth rule suggests that it is always desirable to push selections
through joins. However, situations can arise in which pushing a selection through a join is
in fact much more costly than performing it second (see Exercise 6.2). The broad variety
of factors that influence the time needed to execute a given query evaluation plan make
it virtually impossible to find an optimal one using purely analytic techniques. For this
reason, modern optimizers typically adopt the following pragmatic strategy: (1) generate
a possibly large number of alternative evaluation plans; (2) estimate the costs of executing
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σF(σF ′(q)) ↔ σF∧F ′(q)
π�j (π�k(q)) ↔ π�l(q)
σF (π�l(q)) ↔ π�l(σF ′(q))
q1 �� q2 ↔ q2 �� q1

σF(q1 ��G q2) → σF(q1) ��G q2

σF(q1 ��G q2) → q1 ��G σF ′(q2)

σF (q1 ��G q2) → q1 ��G′ q2

π�l(q1 ��G q2) → π�l(q1) ��G′ q2

π�l(q1 ��G q2) → q1 ��G′ π�k(q2)

Figure 6.2: Rewriting rules for SPC algebra

them; and (3) select the one of lowest cost. The database system then executes the selected
evaluation plan.

In early work, the transformation rules used and the method for evaluation plan genera-
tion were essentially intermixed. Motivated in part by the desire to make database systems
extensible, more recent proposals have isolated the transformation rules from the algo-
rithms for generating evaluation plans. This has the advantages of exposing the semantics
of evaluation plan generation and making it easier to incorporate new kinds of information
into the framework.

A representative system for generating evaluation plans was developed in connection
with the Exodus database toolkit. In this system, techniques from AI are used and, a set
of transformation rules is assumed. During processing, a set of partial evaluation plans is
maintained along with a set of possible locations where rules can be applied. Heuristics are
used to determine which transformation to apply next, so that an exhaustive search through
all possible evaluation plans can be avoided while still having a good chance of finding an
optimal or near-optimal evaluation plan. Several of the heuristics include weighting factors
that can be tuned, either automatically or by the dba, to reflect experience gained while
using the optimizer.

Early work on estimating the cost of evaluation plans was based essentially on
“thought experiments” similar to those used earlier in this chapter. These analyses use
factors including the size of relations, their expected statistical properties, selectivity fac-
tors of joins and selections, and existing indexes. In the context of large queries involving
multiple joins, however, it is difficult if not impossible to predict the sizes of intermediate
results based only on statistical properties. This provides one motivation for recent research
on using random and background sampling to estimate the size of subquery answers, which
can provide more reliable estimates of the overall cost of an evaluation plan.

Sideways Information Passing

We close this section by considering two practical approaches to implementing multiway
joins as they arise in practical query languages.

Much of the early research on practical query optimization was performed in con-
nection with the System R and INGRES systems. The basic building block of the query
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languages used in these systems (SQL and Quel, respectively) takes the form of “select-
from-where” clauses or blocks. For example, as detailed further in Chapter 7, Query (4.4)
can be expressed in SQL as

select Theater, Address
from Movies, Location, Pariscope
where Director = “Bergman”

and Movies.Title = Pariscope.Title
and Pariscope.Theater = Location.Theater.

This can be translated into the algebra as a join between the three relations of the from
part, using join condition given by the where and projecting onto the columns mentioned
in the select. Thus a typical select-from-where block can be expressed by an SPC query as

π�j (σF (R1 × · · · × Rn)).

With such expressions, the System R query optimizer pushes selections that affect a
single relation into the join and then considers evaluation plans based on left-to-right joins
that have the form

(. . . (Ri1 �� Ri2) �� · · · �� Rin)

using different orderings Ri1, . . . , Rin. We now present a heuristic based on “sideways in-
formation passing,” which is used in the System R optimizer for eliminating some possible
orderings from consideration. Interestingly, this heuristic has also played an important role
in developing evaluation techniques for recursive datalog queries, as discussed in Chap-
ter 13.

To describe the heuristic, we rewrite the preceding SPC query as a (generalized) rule
that has the form

(∗) ans(u)← R1(u1), . . . , Rn(un), C1, . . . , Cm,

where all equalities of the selection condition F are incorporated by using constants and
equating variables in the free tuples u1, . . . , un, and the expressions C1, . . . , Cm are con-
ditions in the selection condition F not captured in that way. (This might include, e.g.,
inequalities and conditions based on order.) We shall call the Ri(ui)’s relation atoms and
the Cj ’s constraint atoms.

Example 6.1.1 Consider the rule

ans(z)← P(a, v),Q(b,w, x), R(v,w, y), S(x, y, z), v ≤ x,

where a, b denote constants. A common assumption in this case is that there are few values
for v such that P(a, v) is satisfied. This in turn suggests that there will be few triples
(v,w, y) satisfying P(a, v) ∧ R(v,w, y). Continuing by transitivity, then, we also expect
there to be few 5-tuples (v,w, y, x, z) that satisfy the join of this with S(x, y, z).
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Figure 6.3: A sip graph

More generally, the sideways information passing graph, or sip graph, of a rule ρ that
has the form (∗) just shown has vertexes the set of relation atoms of a rule, and includes
an undirected edge between atoms Ri(ui), Rj(uj) if ui and uj have at least one variable in
common. Furthermore, each node with a constant appearing is specially marked. The sip
graph for the rule of Example 6.1.1 is shown in Fig. 6.3.

Let us assume that the sip graph for a rule ρ is connected. In this case, a sideways
information passing strategy (sip strategy) for ρ is an ordering A1, . . . , An of the atoms in
the rule, such that for each j > 1, either

(a) a constant occurs in Aj ;

(b) Aj is a relational atom and there is at least one i < j such that {Ai,Aj} is an
edge of the sip graph of (ρ); or

(c) Aj is a constraint atom and each variable occurring in Aj occurs in some atom
Ai for i < j .

Example 6.1.2 A representative sample of the several sip strategies for the rule of Ex-
ample 6.1.1 is as follows:

P(a, v),Q(b,w, x), v ≤ x,R(v,w, y), S(x, y, z)

P (a, v), R(v,w, y), S(x, y, z), v ≤ x,Q(b,w, x)

Q(b,w, x), R(v,w, y), P (a, v), S(x, y, z), v ≤ x.

A sip strategy for the case in which the sip graph of rule ρ is not connected is a set
of sip strategies, one for each connected component of the sip graph. (Incorporation of
constraint atoms whose variables lie in distinct components is left for the reader.) The
System R optimizer focuses primarily on joins that have connected sip graphs, and it
considers only those join orderings that correspond to sip strategies. In some cases a more
efficient evaluation plan can be obtained if an arbitrary tree of binary joins is permitted;
see Exercise 6.5. While generating sip strategies the System R optimizer also considers
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alternative implementations for the binary joins involved and records information about
the orderings that the partial results would have if computed. An additional logical-level
technique used in System R is illustrated in the following example.

Example 6.1.3 Let us consider again the rule

ans(z)← P(a, v), R(v,w, y), S(x, y, z), v ≤ x,Q(b,w, x).

Suppose that a left-to-right join is performed according to the sip strategy shown. At
different intermediate stages certain variables can be “forgotten,” because they are not used
in the answer, nor are they used in subsequent joins. In particular, after the third atom the
variable y can be projected out, after the fourth atom v can be projected out, and after the
fifth atom w and x can be projected out. It is straightforward to formulate a general policy
for when to project out unneeded variables (see Exercise 6.4).

Query Decomposition: Join Detachment and Tuple Substitution

We now briefly discuss the two main techniques used in the original INGRES system for
evaluating join expressions. Both are based on decomposing multiway joins into smaller
ones.

While again focusing on SPC queries of the form

π�j (σF (R1 × · · · × Rn))

for this discussion, we use a slightly different notation. In particular, tuple variables rather
than domain variables are used. We consider expressions of the form

(∗∗) ans(s)← R1(s1), . . . , Rn(sn), C1, . . . , Cm, T ,

where s, s1, . . . , sn are tuple variables; C1, . . . , Cn are Boolean conditions referring to
coordinates of the variables s1, . . . , sn (e.g., s1.3 = s4.1 ∨ s2.4 = a); and T is a target
condition that gives a value for each coordinate of the target variable s. It is generally
assumed that none of C1, . . . , Cn has ∧ as its parent connective.

A condition Cj is called single variable if it refers to only one of the variables si. At
any point in the processing it is possible to apply one or more single-variable conditions to
some Ri, thereby constructing an intermediate relation R′i that can be used in place of Ri.
In the INGRES optimizer, this is typically combined with other steps.

Join detachment is useful for separating a query into two separate queries, where the
second refers to the first. Consider a query that has the specialized form

(†)

ans(t)← P1(p1), . . . , Pm(pm), C1, . . . , Ck, T ,

Q(q),

R1(r1), . . . , Rn(rn),D1, . . . , Dl,
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where conditions C1, . . . , Ck, T refer only to variables t, p1, . . . , pm, q and D1, . . . , Dl

refer only to q, r1, . . . , rn. It is easily verified that this is equivalent to the sequence

temp(q)←Q(q), R1(r1), . . . , Rn(rn),D1, . . . , Dl

ans(t)← P1(p1), . . . , Pm(pm), temp(q), C1, . . . , Ck, T .

In this example, variable q acts as a “pivot” around which the detachment is performed.
More general forms of join detachment can be developed in which a set of variables serves
as the pivot (see Exercise 6.6).

Tuple substitution chooses one of the underlying relations Rj and breaks the n-variable
join into a set of (n− 1)-variable joins, one for each tuple in Rj . Consider again a query
of form (∗∗) just shown. The tuple substitution of this on Ri is given by the “program”

for each r inRi do

ans(s) +← R1(s1), . . . , Ri−1(si−1), Ri+1(si+1), . . . , Rn(sn),

(C1, . . . , Cm, T )[si/r].

Here we use +← to indicate that ans is to accumulate the values stemming from all tuples
r in (the value of) Ri; furthermore, r is substituted for si in all of the conditions.

There is an obvious trade-off here between reducing the number of variables in the join
and the number of tuples in Ri. In the INGRES optimizer, each of the Ri’s is considered as a
candidate for forming the tuple substitution. During this process single-variable conditions
may be applied to the Ri’s to decrease their size.

6.2 Global Optimization

The techniques for creating evaluation plans presented in the previous section are essen-
tially local in their operation: They focus on clusters of contiguous nodes in a query tree. In
this section we develop an approach to the global optimization of conjunctive queries. This
allows a transformation of an algebra query that removes several joins in a single step, a
capability not provided by the techniques of the previous section. The global optimization
technique is based on an elegant Homomorphism Theorem.

The Homomorphism Theorem

For two queries q1, q2 over the same schema R, q1 is contained in q2, denoted q1 ⊆
q2, if for each I over R, q1(I) ⊆ q2(I). Clearly, q1 ≡ q2 iff q1 ⊆ q2 and q2 ⊆ q1. The
Homomorphism Theorem provides a characterization for containment and equivalence of
conjunctive queries.

We focus here on the tableau formalism for conjunctive queries, although the rule-
based formalism could be used equally well. In addition, although the results hold for
tableau queries over database schemas involving more than one relation, the examples
presented focus on queries over a single relation.

Recall the notion of valuation—a mapping from variables to constants extended to be
the identity on constants and generalized to free tuples and tableaux in the natural fashion.
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Figure 6.4: Tableau queries used to illustrate the Homomorphism Theorem

Valuations are used in the definition of the semantics of tableau queries. More generally, a
substitution is a mapping from variables to variables and constants, which is extended to be
the identity on constants and generalized to free tuples and tableaux in the natural fashion.
As will be seen, substitutions play a central role in the Homomorphism Theorem.

We begin the discussion with two examples. The first presents several simple examples
of the Homomorphism Theorem in action.

Example 6.2.1 Consider the four tableau queries shown in Fig. 6.4. By using the Ho-
momorphism Theorem, it can be shown that q0 ⊆ q1 ⊆ q2 ⊆ qω.

To illustrate the flavor of the proof of the Homomorphism Theorem, we argue infor-
mally that q1 ⊆ q2. Note that there is substitution θ such that θ(T2)⊆ T1 and θ(〈x, y〉)=
〈x, y〉 [e.g., let θ(x1)= θ(x2)= x1 and θ(y1)= θ(y2)= y1]. Now suppose that I is an in-
stance over AB and that t ∈ q1(I ). Then there is a valuation ν such that ν(T1) ⊆ I and
ν(〈x, y〉)= t . It follows that θ ◦ ν is a valuation that embeds T2 into I with θ ◦ ν(〈x, y〉)=
t , whence t ∈ q2(I ).

Intuitively, the existence of a substitution embedding the tableau of q2 into the tableau
of q1 and mapping the summary of q2 to the summary of q1 implies that q1 is more re-
strictive than q2 (or more correctly, no less restrictive than q2.) Surprisingly, the Homo-
morphism Theorem states that this is also a necessary condition for containment (i.e., if
q ⊆ q ′, then q is more restrictive than q ′ in this sense).

The second example illustrates a limitation of the techniques discussed in the previous
section.

Example 6.2.2 Consider the two tableau queries shown in Fig. 6.5. It can be shown that
q ≡ q ′ but that q ′ cannot be obtained from q using the rewrite rules of the previous section
(see Exercise 6.3) or the other optimization techniques presented there.



6.2 Global Optimization 117

R A B

x

x

x

(a) (b)

R A B

x y1

y1 y2

yn

x

x

…

yn–1

yn

x x
…

q = (T, u) q′ = (T ′, u)

Figure 6.5: Pair of equivalent tableau queries

Let q = (T, u) and q ′ = (T′, u′) be two tableau queries over the same schema R. A
homomorphism from q ′ to q is a substitution θ such that θ(T′)⊆ T and θ(u′)= u.

Theorem 6.2.3 (Homomorphism Theorem) Let q = (T, u) and q ′ = (T′, u′) be tab-
leau queries over the same schema R. Then q ⊆ q ′ iff there exists a homomorphism from
(T′, u′) to (T, u).

Proof Suppose first that there exists a homomorphism θ from q ′ to q. Let I be an instance
over R. To see that q(I) ⊆ q ′(I), suppose that w ∈ q(I). Then there is a valuation ν that
embeds T into I such that ν(u)= w. It is clear that θ ◦ ν embeds T′ into I and θ ◦ ν(u′)= w,
whence w ∈ q ′(I) as desired.

For the opposite inclusion, suppose that q ⊆ q ′ [i.e., that (T, u)⊆ (T′, u′)]. Speaking
intuitively, we complete the proof by applying both q and q ′ to the “instance” T. Because
q will yield the free tuple u, q ′ also yields u (i.e., there is an embedding θ of T′ into T that
maps u′ to u). To make this argument formal, we construct an instance IT that is isomorphic
to T.

Let V be the set of variables occurring in T. For each x ∈ V , let ax be a new distinct
constant not occurring in T or T′. Let µ be the valuation mapping each x to ax, and
let IT = µ(T). Because µ is a bijection from V to µ(V ), and because µ(V ) has empty
intersection with the constants occurring in T, the inverse µ−1 of µ is well defined on
adom(IT).

It is clear that µ(u) ∈ q(IT), and so by assumption, µ(u) ∈ q ′(IT). Thus there is a
valuation ν that embeds T′ into IT such that ν(u′) = µ(u). It is now easily verified that
ν ◦ µ−1 is a homomorphism from q ′ to q.

Permitting a slight abuse of notation, we have the following (see Exercise 6.8).

Corollary 6.2.4 For tableau queries q = (T, u) and q ′ = (T′, u′), q ⊆ q ′ iff u ∈ q ′(T).
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We also have

Corollary 6.2.5 Tableau queries q, q ′ over schema R are equivalent iff there are
homomorphisms from q to q ′ and from q ′ to q.

In particular, if q = (T, u) and q ′ = (T′, u′) are equivalent, then u and u′ are identical
up to one-one renaming of variables.

Only one direction of the preceding characterization holds if the underlying domain is
finite (see Exercise 6.12). In addition, the direct generalization of the theorem to tableau
queries with equality does not hold (see Exercise 6.9).

Query Optimization by Tableau Minimization

Although the Homomorphism Theorem yields a decision procedure for containment and
equivalence between conjunctive queries, it does not immediately provide a mechanism,
given a query q, to find an “optimal” query equivalent to q. The theorem is now applied to
obtain just such a mechanism.

We note first that there are simple algorithms for translating tableau queries into
(satisfiable) SPC queries and vice versa. More specifically, given a tableau query, the
corresponding generalized SPC query has the form π�j (σF (R1 × · · · × Rk)), where each
component Ri corresponds to a distinct row of the tableau. For the opposite direction, one
algorithm for translating SPC queries into tableau queries is first to translate into the normal
form for generalized SPC queries and then into a tableau query. A more direct approach
that inductively builds tableau queries corresponding to subexpressions of an SPC query
can also be developed (see Exercise 4.18). Analogous remarks apply to SPJR queries.

The goal of the optimization presented here is to minimize the number of rows in
the tableau. Because the number of rows in a tableau query is one more than the number
of joins in the SPC (SPJR) query corresponding to that tableau (see Exercise 4.18c), the
tableau minimization procedure provides a way to minimize the number of joins in SPC
and SPJR queries.

Surprisingly, we show that an optimal tableau query equivalent to tableau query q can
be obtained simply by eliminating some rows from the tableau of q.

We say that a tableau query (T, u) is minimal if there is no query (S, v) equivalent to
(T, u) with |S|< |T| (i.e., where S has strictly fewer rows than T).

We can now demonstrate the following.

Theorem 6.2.6 Let q = (T, u) be a tableau query. Then there is a subset T′ of T such
that q ′ = (T′, u) is a minimal tableau query and q ′ ≡ q.

Proof Let (S, v) be a minimal tableau that is equivalent to q. By Corollary 6.2.5, there
are homomorphisms θ from q to (S, v) and λ from (S, v) to q. Let T′ = θ ◦ λ(S). It is
straightforward to verify that (T′, u)≡ q and |T′| ≤ |S|. By minimality of (S, v), it follows
that |T′| = |S|, and (T′, u) is minimal.

Example 6.2.7 illustrates how one might minimize a tableau by hand.
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R A B C

u1 x2 y1 z

u2 x y1 z1

u3 x1 y z1

u4 x y2 z2

u5 x2 y2 z

u x y z

Figure 6.6: The tableau (T , u)

Example 6.2.7 Let R be a relation schema of sort ABC and (T , u) the tableau over R

in Fig. 6.6. To minimize (T , u), we wish to detect which rows of T can be eliminated.
Consider u1. Suppose there is a homomorphism θ from (T , u) onto itself that eliminates
u1 [i.e., u1 �∈ θ(T )]. Because any homomorphism on (T , u) is the identity on u, θ(z)= z.
Thus θ(u1) must be u5. But then θ(y1) = y2, and θ(u2) ∈ {u4, u5}. In particular, θ(z1) ∈
{z2, z}. Because u3 involves z1, it follows that θ(u3) �= u3 and θ(y) �= y. But the last
inequality is impossible because y is in u so θ(y) = y. It follows that row u1 cannot be
eliminated and is in the minimal tableau. Similar arguments show that u2 and u3 cannot
be eliminated. However, u4 and u5 can be eliminated using θ(y2) = y1, θ(z2) = z1 (and
identity everywhere else). The preceding argument emphasizes the global nature of tableau
minimization.

The preceding theorem suggests an improvement over the optimization strategies de-
scribed in Section 6.1. Specifically, given a (satisfiable) conjunctive query q, the following
steps can be used:

1. Translate q into a tableau query.

2. Minimize the number of rows in the tableau of this query.

3. Translate the result into a generalized SPC expression.

4. Apply the optimization techniques of Section 6.1.

As illustrated by Examples 6.2.2, 6.2.7, and 6.2.8, this approach has the advantage of
performing global optimizations that typical query rewriting systems cannot achieve.

Example 6.2.8 Consider the relation schema R of sort ABC and the SPJR query q

over R:

πAB(σB=5(R)) �� πBC(πAB(R) �� πAC(σB=5(R))).
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R A B C

x 5 z1

x1 5 z2

x1 5 z

u x 5 z

Figure 6.7: Tableau equivalent to q

The tableau (T , u) corresponding to it is that of Fig. 6.7. To minimize (T , u), we wish to
find a homomorphism that ”folds” T onto a subtableau with minimal number of rows. (If
desired, this can be done in several stages, each of which eliminates one or more rows.)
Note that the first row cannot be eliminated because every homomorphism is the identity
on u and therefore on x. A similar observation holds for the third row. However, the second
row can be eliminated using the homomorphism that maps z2 to z and is the identity
everywhere else. Thus the minimal tableau equivalent to (T , u) consists of the first and
third rows of T . An SPJR query equivalent to the minimized tableau is

πAB(σB=5(R)) �� πBC(σB=5(R)).

Thus the optimization procedure resulted in saving one join operation.

Before leaving minimal tableau queries, we present a result that describes a strong
correspondence between equivalent minimal tableau queries. Two tableau queries (T, u),
(T′, u′) are isomorphic if there is a one-one substitution θ that maps variables to variables
such that θ((T, u)) = (T′, u′). In other words, (T , u) and (T ′, u′) are the same up to
renaming of variables. The proof of this result is left to the reader (see Exercise 6.11).

Proposition 6.2.9 Let q = (T, u) and q ′ = (T′, u′) be minimal and equivalent. Then q

and q ′ are isomorphic.

Complexity of Tableau Decision Problems

The following theorem shows that determining containment and equivalence between
tableau queries is np-complete and tableau query minimization is np-hard.

Theorem 6.2.10 The following problems, given tableau queries q, q ′, are np-complete:

(a) Is q ⊆ q ′?
(b) Is q ≡ q ′?
(c) Suppose that the tableau of q is obtained by deleting free tuples of the tableau of

q ′. Is q ≡ q ′ in this case?
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These results remain true if q, q ′ are restricted to be single-relation typed tableau queries
that have no constants.

Proof The proof is based on a reduction from the “exact cover” problem to the different
tableau problems. The exact cover problem is to decide, given a set X = {x1, . . . , xn} and
a collection S = {S1, . . . , Sm} of subsets of X such that ∪S =X, whether there is an exact
cover of X by S (i.e., a subset S ′ of S such that each member of X occurs in exactly one
member of S ′). The exact cover problem is known to be np-complete.

We now sketch a polynomial transformation from instances E = (X,S) of the exact
cover problem to pairs qE, q ′E of typed tableau queries. This construction is then applied
in various ways to obtain the np-completeness results. The construction is illustrated in
Fig. 6.8.

Let E = (X,S) be an instance of the exact cover problem, where X = {x1, . . . , xn} and
S = {S1, . . . , Sm}. Let A1, . . . , An, B1, . . . , Bm be a listing of distinct attributes, and let R
be chosen to have this set as its sort. Both qE and q ′E are over relation R, and both queries
have as summary t = 〈A1 : a1, . . . , An : an〉, where a1, . . . , an are distinct variables.

Let b1, . . . , bm be an additional set of m distinct variables. The tableau TE of qE has n

tuples, each corresponding to a different element of X. The tuple for xi has ai for attribute
Ai; bj for attribute Bj for each j such that xi ∈ Sj ; and a new, distinct variable for all other
attributes.

Let c1, . . . , cm be an additional set of m distinct variables. The tableau T ′E of q ′E has m

tuples, each corresponding to a different element of S. The tuple for Sj has ai for attribute
Ai for each i such that xi ∈ Sj ; cj ′ for attribute Bj ′ for each j ′ such that j ′ �= j ; and a new,
distinct variable for all other attributes.

To illustrate the construction, let E = (X,S) be an instance of the exact cover problem,
where X = {x1, x2, x3, x4} and S = {S1, S2, S3} where

S1 = {x1, x3}
S2 = {x2, x3, x4}
S3 = {x2, x4}.

The tableau queries qξ and q ′ξ corresponding to (X,S) are shown in Fig. 6.8. (Here the
blank entries indicate distinct, new variables.) Note that ξ = (X,S) is satisfiable, and
q ′ξ ⊆ qξ .

More generally, it is straightforward to verify that for a given instance ξ = (X,S) of
the exact cover problem, X has an exact cover in S iff q ′ξ ⊆ qξ . Verification of this, and of
parts (b) and (c) of the theorem, is left for Exercise 6.16.

A subclass of the typed tableau queries for which containment and equivalence is
decidable in polynomial time is considered in Exercise 6.21.

Although an np-completeness result often suggests intractability, this conclusion may
not be warranted in connection with the aforementioned result. The complexity there is
measured relative to the size of the query rather than in terms of the underlying stored
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Figure 6.8: Tableau queries corresponding to an exact cover

data. Given an n-way join, the System R optimizer may potentially consider n! evaluation
strategies based on different orderings of the n relations; this may be exponential in the size
of the query. In many cases, the search for a minimal tableau (or optimal left-to-right join)
may be justified because the data is so much larger than the initial query. More generally,
in Part D we shall examine both “data complexity” and “expression complexity,” where the
former focuses on complexity relative to the size of the data and the latter relative to the
size of queries.

6.3 Static Analysis of the Relational Calculus

We now demonstrate that the decidability results for conjunctive queries demonstrated in
the previous section do not hold when negation is incorporated (i.e., do not hold for the first-
order queries). In particular, we present a general technique for proving the undecidability
of problems involving static analysis of first-order queries and demonstrate the undecid-
ability of three such problems.

We begin by focusing on the basic property of satisfiability. Recall that a query q

is satisfiable if there is some input I such that q(I) is nonempty. All conjunctive queries
are satisfiable (Proposition 4.2.2), and if equality is incorporated then satisfiability is not
guaranteed but it is decidable (Exercise 4.5). This no longer holds for the calculus.

To prove this result, we use a reduction of the Post Correspondence Problem (PCP)
(see Chapter 2) to the satisfiability problem. The reduction is most easily described in terms
of the calculus; of course, it can also be established using the algebras or nr-datalog¬.

At first glance, it would appear that the result follows trivially from the analogous re-
sult for first-order logic (i.e., the undecidability of satisfiability of first-order sentences).
There is, however, an important difference. In conventional first-order logic (see Chap-
ter 2), both finite and infinite interpretations are considered. Satisfiability of first-order sen-
tences is co-recursively enumerable (co-r.e.) but not recursive. This follows from Gödel’s
Completeness Theorem. In contrast, in the context of first-order queries, only finite in-
stances are considered legal. This brings us into the realm of finite model theory. As will
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be shown, satisfiability of first-order queries is recursively enumerable (r.e.) but not recur-
sive. (We shall revisit the contrast between conventional first-order logic and the database
perspective, i.e., finite model theory, in Chapters 9 and 10.)

Theorem 6.3.1 Satisfiability of relational calculus queries is r.e. but not recursive.

Proof To see that the problem is r.e., imagine a procedure that, when given query q over
R as input, generates all instances I over R and tests q(I)= ∅ until a nonempty answer is
found.

To show that satisfiability is not recursive, we reduce the PCP to the satisfiability
problem. In particular, we show that if there were an algorithm for solving satisfiability,
then it could be used to construct an algorithm that solves the PCP.

LetP = (u1, . . . , un; v1, . . . , vn) be an instance of the PCP (i.e., a pair of sequences of
nonempty words over alphabet {0,1}). We describe now a (domain independent) calculus
query qP = {〈〉 | ϕP} with the property that qP is satisfiable iff P has a solution.

We shall use a relation schema R having relations ENC(ODING) with sort [A,B,

C,D,E] and SYNCH(RONIZATION) with sort [F,G]. The query qP shall use constants
{0, 1, $, c1, . . . , cn, d1, . . . , dn}. (The use of multiple relations and constants is largely a
convenience; the result can be demonstrated using a single ternary relation and no con-
stants. See Exercise 6.19.)

To illustrate the construction of the algorithm, consider the following instance of the
PCP:

u1 = 011, u2 = 011, u3 = 0; v1 = 0, v2 = 11, v3 = 01100.

Note that s = (1, 2, 3, 2) is a solution of this instance. That is,

u1u2u3u2 = 0110110011= v1v2v3v2.

Figure 6.9 shows an input instance Is over R which encodes this solution and satisfies the
query qP constructed shortly.

In the relation ENC of this figure, the first two columns form a cycle, so that the 10
tuples can be viewed as a sequence rather than a set. The third column holds a listing of the
word w = 0110110011 that witnesses the solution to P ; the fourth column describes which
words of sequence (u1, . . . , un) are used to obtain w; and the fifth column describes which
words of sequence (v1, . . . , vn) are used. The relation SYNCH is used to synchronize the
two representations of w by listing the pairs corresponding to the beginnings of new u-
words and v-words.

The formula ϕP constructed now includes subformulas to test whether the various
conditions just enumerated hold on an input instance. In particular,

ϕ = ϕENC-key ∧ ϕcycle ∧ ϕSYNCH-keys ∧ ϕu-encode ∧ ϕv-encode ∧ ϕu-v-synch,

where, speaking informally,
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ENC A B C D E SYNCH F G

$ a1 0 c1 d1 $ $

a1 a2 1 c1 d2 a3 a1

a2 a3 1 c1 d2 a6 a3

a3 a4 0 c2 d3 a7 a8

a4 a5 1 c2 d3

a5 a6 1 c2 d3

a6 a7 0 c3 d3

a7 a8 0 c2 d3

a8 a9 1 c2 d2

a9 $ 1 c2 d2

Figure 6.9: Encoding of a solution to PCP

ϕENC-key: states that the first column of ENC is a key; that is, each value occurring in the
A column occurs in exactly one tuple of ENC.

ϕcycle: states that constant $ occurs in a cycle with length > 1 in the first two columns of
ENC. (There may be other cycles, which can be ignored.)

ϕSYNCH-keys: states that both the first and second columns of SYNCH are keys.

ϕu-encode: states that for each value x occurring in the first column of SYNCH, if tuple
〈x1, y1, z1, ci, dj1〉 is in ENC, then there are at least |ui| − 1 additional tuples in ENC
“after” this tuple, all with value ci in the fourth coordinate, and if these tuples are

〈x2, y2, z2, ci, dj2〉, . . . , 〈xk, yk, zk, ci, djk〉

then z1 . . . zk = ui; none of x2, . . . , xk occurs in the first column of SYNCH; and if
yk �= $, then the A value “after” xk occurs in the first column of SYNCH.

ϕv-encode: is analogous to ϕu-encode.

ϕu-v-synch: states that (1) 〈$, $〉 is in SYNCH; (2) if a tuple 〈x, y〉 is in SYNCH, then the
associated u-word and v-word have the same index; and (3) if a tuple 〈x, y〉 is in
SYNCH , and either x or y are not the “maximum” A value occurring in F or G, then
there exists a tuple 〈x′, y′〉 in SYNCH, where x′ is the first A value “after” x occurring
in F and y′ is the first A value “after” y occurring in G. Finding the A values “after”
x and y is done as in ϕu-encode.

The constructions of these formulas are relatively straightforward; we give two of them
here and leave the others for the reader (see Exercise 6.19). In particular, we let

ψ(x, y)= ∃p, q, r ENC(x, y, p, q, r)

and set
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ϕcycle = ∃x(ψ(x, $) ∧ ¬(x = $)) ∧ ∃y(ψ($, y) ∧ ¬(y = $))∧
∀x((∃yψ(x, y))→ (∃zψ(z, x)))∧
∀x((∃yψ(y, x))→ (∃zψ(x, z)))∧
∀x, y1, y2(ψ(y1, x) ∧ ψ(y2, x)→ y1 = y2).

If ENC satisfies ϕENC−key ∧ ϕcycle, then the first two coordinates of ENC hold one or more
disjoint cycles, exactly one of which contains the value $.

Parts (1) and (2) of ϕu-v-synch are realized by the formula

SYNCH($, $)∧
∀x, y(SYNCH(x, y)→

∃s, p, r, t, p′, q((ENC(x, s, p, c1, r) ∧ ENC(y, t, p′, q, d1))∨
(ENC(x, s, p, c2, r) ∧ ENC(y, t, p′, q, d2))∨

...

(ENC(x, s, p, cn, r) ∧ ENC(y, t, p′, q, dn)))).

Verifying that the query qP is satisfiable if and only if P has a solution is left to the
reader (see Exercise 6.19).

The preceding theorem can be applied to derive other important undecidability results.

Corollary 6.3.2

(a) Equivalence and containment of relational calculus queries are co-r.e. and not
recursive.

(b) Domain independence of a relational calculus query is co-r.e. and not recursive.

Proof It is easily verified that the two problems of part (a) and the problem of part (b)
are co-r.e. (see Exercise 6.20). The proofs of undecidability are by reduction from the
satisfiability problem. For equivalence, suppose that there were an algorithm for deciding
equivalence between relational calculus queries. Then the satisfiability problem can be
solved as follows: For each query q = {x1, . . . , xn | ϕ}, this is unsatisfiable if and only if it
is equivalent to the empty query q∅. This demonstrates that equivalence is not decidable.
The undecidability of containment also follows from this.

For domain independence, let ψ be a sentence whose truth value depends on the
underlying domain. Then {x1, . . . , xn | ϕ ∧ ψ} is domain independent if and only if ϕ is
unsatisfiable.

The preceding techniques can also be used to show that “true” optimization cannot be
performed for the first-order queries (see Exercise 6.20d).
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6.4 Computing with Acyclic Joins

We now present a family of interesting theoretical results on the problem of computing the
projection of a join. In the general case, if both the data set and the join expression are al-
lowed to vary, then the time needed to evaluate such expressions appears to be exponential.
The measure of complexity here is a combination of both “data” and “expression” com-
plexity, and is somewhat non-standard; see Part D. Interestingly, there is a special class
of joins, called acyclic, for which this evaluation is polynomial. A number of interesting
properties of acyclic joins are also presented.

For this section we use the named perspective and focus exclusively on flat project-join
queries of the form

q = πX(R1 �� · · · �� Rn)

involving projection and natural join. For this discussion we assume that R = R1, . . . , Rn

is a fixed database schema, and we use I= (I1, . . . , In) to refer to instances over it.
One of the historical motivations for studying this problem stems from the pure univer-

sal relation assumption (pure URA). An instance I = (I1, . . . , In) over schema R satisfies
the pure URA if I = (πR1(I ), . . . , πRn(I )) for some “universal” instance I over ∪n

j=1Rj .
If I satisfies the pure URA, then I can be stored, and queries against the corresponding
instance I can be answered using joins of components in I. The URA will be considered
in more depth in Chapter 11.

Worst-Case Results

We begin with an example.

Example 6.4.1 Let n > 0 and consider the relations Ri[AiAi+1], i ∈ [1, n − 1], as
shown in Fig. 6.10(a). It is easily seen that the natural join of R1, . . . , Rn−1 is exponential
in n and thus exponential in the size of the input query and data.

Now suppose that n is odd. Let Rn be as in Fig. 6.10(b), and consider the natural join of
R1, . . . , Rn. This is empty. On the other hand, the join of any i of these for i < n has size
exponential in i. It follows that the algorithms of the System R and INGRES optimizers
take time exponential in the size of the input and output to evaluate this query.

The following result implies that it is unlikely that there is an algorithm for computing
projections of joins in time polynomial in the size of the query and the data.

Theorem 6.4.2 It is np-complete to decide, given project-join expression q0 over R,
instance I of R, and tuple t , whether t ∈ q0(I). This remains true if q0 and I are restricted
so that |q0(I)| ≤ 1.

Proof The problem is easily seen to be in np. For the converse, recall from Theo-
rem 6.2.10(a) that the problem of tableau containment is np-complete, even for single-
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Ri Ai Ai+1 Rn An A1

0 a 0 a

0 b 0 b

1 a 1 a

1 b 1 b

a 0 a 0

a 1 a 1

b 0 b 0

b 1 b 1

(a) (b)

Figure 6.10: Relations to illustrate join sizes

relation typed tableaux having no constants. We reduce this to the current problem. Let
q = (T , u) and q ′ = (T ′, u′) be two typed constant-free tableau queries over the same rela-
tion schema. Recall from the Homomorphism Theorem that q ⊆ q ′ iff there is a homomor-
phism of q ′ to q, which holds iff u ∈ q ′(T ).

Assume that the sets of variables occurring in q and in q ′ are disjoint. Without loss
of generality, we view each variable occurring in q to be a constant. For each variable
x occurring in q ′, let Ax be a distinct attribute. For free tuple v = (x1, . . . , xn) in T ′, let
Iv over Ax1, . . . , Axn be a copy of T , where the ith attribute is renamed to Axi . Letting
u′ = 〈u′1, . . . , u′m〉, it is straightforward to verify that

q ′(T )= πAu′
1
,...,Au′m

(��{Iv | v ∈ T ′}).

In particular, u ∈ q ′(T ) iff u is in this projected join.
To see the last sentence of the theorem, let u= 〈u1, . . . , um〉 and use the query

πAu′
1
,...,Au′m

(��{Iv | v ∈ T ′} �� {〈Au′1
: u1, . . . , Au′m : um〉}).

Theorem 6.2.10(a) considers complexity relative to the size of queries. As applied
in the foregoing result, however, the queries of Theorem 6.2.10(a) form the basis for
constructing a database instance {Iv | v ∈ T ′}. In contrast with the earlier theorem, the
preceding result suggests that computing projections of joins is intractable relative to the
size of the query, the stored data, and the output.

Acyclic Joins

In Example 6.4.1, we may ask what is the fundamental difference between R1 �� · · · ��
Rn−1 and R1 �� · · · �� Rn? One answer is that the relation schemas of the latter join form a
cycle, whereas the relation schemas of the former do not.

We now develop a formal notion of acyclicity for joins and four properties equivalent
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to it. All of these are expressed most naturally in the context of the named perspective for
the relational model. In addition, the notion of acyclicity is sometimes applied to database
schemas R= {R1, . . . , Rn} because of the natural correspondence between the schema R
and the join R1 �� · · · �� Rn.

We begin by describing four interesting properties that are equivalent to acyclicity.
Let R = {R1, . . . , Rn} be a database schema, where each relation schema has a different
sort. An instance I of R is said to be pairwise consistent if for each pair j, k ∈ [1, n],
πRj

(Ij �� Ik)= Ij . Intuitively, this means that no tuple of Ij is “dangling” or “lost” after
joining with Ik. Instance I is globally consistent if for each j ∈ [1, n], πRj

(��I)= Ij (i.e.,
no tuple of Ij is dangling relative to the full join). Pairwise consistency can be checked in
ptime, but checking global consistency is np-complete (Exercise 6.25). The first property
that is equivalent to acyclicity is:

Property (1): Each instance I that is pairwise consistent is globally consistent.

Note that the instance for schema {R1, . . . , Rn−1} of Example 6.4.1 is both pairwise and
globally consistent, whereas the instance for {R1, . . . , Rn} is pairwise but not globally
consistent.

The second property we consider is motivated by query processing in a distributed
environment. Suppose that each relation of I is stored at a different site, that the join ��I is
to be computed, and that communication costs are to be minimized. A very naive algorithm
to compute the join is to send each of the Ij to a specific site and then form the join. In
the general case this may cause the shipment of many unneeded tuples because they are
dangling in the full join.

The semi-join operator can be used to alleviate this problem. Given instances I, J over
R, S, then semi-join of I and J is

I �< J = πR(I �� J ).

It is easily verified that I �� J = (I �< J) �� J = (J �< I) �� I . Furthermore there are
many cases in which computing the join in one of these ways can reduce data transmission
costs if I and J are at different nodes of a distributed database (see Exercise 6.24).

Suppose now that R satisfies Property (1). Given an instance I distributed across the
network, one can imagine replacing each relation Ij by its semi-join with other relations of
I. If done cleverly, this might be done with communication cost polynomial in the size of
I, with the result of the replacements satisfying pairwise consistency. Given Property (1),
all relations can now be shipped to a common site, safe in the knowledge that no dangling
tuples have been shipped.

More generally, a semi-join program for R is a sequence of commands

Ri1 := Ri1 �< Rj1;
Ri2 := Ri2 �< Rj2;

...
Rip := Rip �< Rjp;



6.4 Computing with Acyclic Joins 129

R1 A B C R2 B C D E R3 B C D G R4 C D E F

0 3 2 3 2 1 0 3 2 1 4 2 1 1 4

0 1 2 1 2 3 0 1 2 3 2 2 3 0 1

3 1 2 1 3 1 0 1 3 1 0 3 1 0 2

1 1 3 1 3 1 1 3 1 0 3

Figure 6.11: Instance for Example 6.4.3

(In practice, the original values of Rij would not be overwritten; rather, a scratch copy
would be made.) This is a full reducer for R if for each instance I over R, applying this
program yields an instance I′ that is globally consistent.

Example 6.4.3 Let R = {ABC,BCDE,BCDG,CDEF } = {R1, R2, R3, R4} and con-
sider the instance I of R shown in Fig. 6.11. I is not globally consistent; nor is it pairwise
consistent.

A full reducer for this schema is

R2 := R2 �< R1;
R2 := R2 �< R4;
R3 := R3 �< R2;
R2 := R2 �< R3;
R4 := R4 �< R2;
R1 := R1 �< R2;

Note that application of this program to I has the effect of removing the first tuple from
each relation.

We can now state the second property:

Property (2): R has a full reducer.

It can be shown that the schema {R1, . . . , Rn−1} of Example 6.4.1 has a full reducer,
but {R1, . . . , Rn} does not (see Exercise 6.26).

The next property provides a way to view a schema as a tree with certain properties.
A join tree of a schema R is an undirected tree T = (R, E) such that

(i) each edge (R,R′) is labeled by the set of attributes R ∩ R′; and

(ii) for every pair R,R′ of distinct nodes, for each A ∈ R ∩ R′, each edge along the
unique path between R and R′ includes label A.

Property (3): R has a join tree.

For example, two join trees of the schema R of Figure 6.11 are T1 = (R, {(R1, R2),

(R2, R3), (R2, R4)}) and T2 = (R, {(R1, R3), (R3, R2), (R2, R4)}). (The edge labels are not
shown.)
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(a)

(c)

A

B C

R1[AB], R2[BC], R3[AC]

T1[ABC], T2[BCD], T3[ABD], T4[ACD]

(b)

A

C E

S1[ABC], S2[CDE], S3[AFE], S4[ACE]

B F

D

A

B D

C

Figure 6.12: Three schemas and their hypergraphs

The fourth property we consider focuses entirely on the database schema R and is
based on a simple algorithm, called the GYO algorithm.1 This is most easily described in
terms of the hypergraph corresponding to R. A hypergraph is a pair F = (V , F ), where
V is a set of vertexes and F is family of distinct nonempty subsets of V , called edges
(or hyperedges). The hypergraph of schema R is the pair (U,R), where U = ∪R. In what
follows, we often refer to a database schema R as a hypergraph. Three schemas and their
hypergraphs are shown in Fig. 6.12.

A hypergraph is reduced if there is no pair f, f ′ of distinct edges with f a proper
subset of f ′. The reduction of F = (V , F ) is (V , F − {f ∈ F | ∃f ′ ∈ F with f ⊂ f ′}).
Suppose that R is a schema and I over R satisfies the pure URA. If Rj ⊂ Rk, then Ij =

1 This is so named in honor of M. Graham and the team C. T. Yu and M. Z. Ozsoyoglu, who
independently came to essentially this algorithm.
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πRj
(Ik), and thus Ij holds redundant information. It is thus natural in this context to assume

that R, viewed as a hypergraph, is reduced.
An ear of hypergraphF = (V , F ) is an edge f ∈ F such that for some distinct f ′ ∈ F ,

no vertex of f − f ′ is in any other edge or, equivalently, such that f ∩ (∪(F − {f }))⊆ f ′.
In this case, f ′ is called a witness that f is an ear. As a special case, if there is an edge f

of F that intersects no other edge, then f is also considered an ear.
For example, in the hypergraph of Fig. 6.12(b), edge ABC is an ear, with witness ACE.

On the other hand, the hypergraph of Fig. 6.12(a) has no ears.
We now have

Algorithm 6.4.4 (GYO Algorithm)

Input: Hypergraph F = (V , F )

Output: A hypergraph involving a subset of edges of F
Do until F has no ears:

1. Nondeterministically choose an ear f of F .
2. Set F := (V ′, F − {f }), where V ′ = ∪(F − {f }).

The output of the GYO algorithm is always reduced.
A hypergraph is empty if it is (∅,∅). In Fig. 6.12, it is easily verified that the output

of the GYO algorithm is empty for part (b), but that parts (a) and (c) have no ears and so
equal their output under the algorithm. The output of the GYO algorithm is independent of
the order of steps taken (see Exercise 6.28).

We now state the following:

Property (4): The output of the GYO algorithm on R is empty.

Speaking informally, Example 6.4.1 suggests that an absence of cycles yields Prop-
erties (1) to (4), whereas the presence of a cycle makes these properties fail. This led
researchers in the late 1970s to search for a notion of acyclicity for hypergraphs that
both generalized the usual notion of acyclicity for conventional undirected graphs and was
equivalent to one or more of the aforementioned properties. For example, the conventional
notion of hypergraph acyclicity from graph theory is due to C. Berge; but it turns out that
this condition is necessary but not sufficient for the four properties (see Exercise 6.32).

We now define the notion of acyclicity that was found to be equivalent to the four
aforementioned properties. Let F = (V , F ) be a hypergraph. A path in F from vertex v to
vertex v′ is a sequence of k ≥ 1 edges f1, . . . , fk such that

(i) v ∈ f1;

(ii) v′ ∈ fk;

(iii) fi ∩ fi+1 �= ∅ for i ∈ [1, k − 1].

Two vertexes are connected in F if there is a path between them. The notions of connected
pair of edges, connected component, and connected hypergraph are now defined in the
usual manner.

Now let F = (V , F ) be a hypergraph, and U ⊆ V . The restriction of F to U , denoted
F |U , is the result of forming the reduction of (U, {f ∩ U | f ∈ F } − {∅}).
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Let F = (V , F ) be a reduced hypergraph, let f, f ′ be distinct edges, and let g =
f ∩ f ′. Then g is an articulation set ofF if the number of connected components ofF |V−g

is greater than the number of connected components of F . (This generalizes the notion of
articulation point for ordinary graphs.)

Finally, a reduced hypergraph F = (V , F ) is acyclic if for each U ⊆ V , if F |U is
connected and has more than one edge then it has an articulation set; it is cyclic otherwise.
A hypergraph is acyclic if its reduction is.

Note that if F = (V , F ) is an acyclic hypergraph, then so is F |U for each U ⊆ V .

Property (5): The hypergraph corresponding to R is acyclic.

We now present the theorem stating the equivalence of these five properties. Addi-
tional equivalent properties are presented in Exercise 6.31 and in Chapter 8, where the
relationship of acyclicity with dependencies is explored.

Theorem 6.4.5 Properties (1) through (5) are equivalent.

Proof We sketch here arguments that (4)⇒ (2)⇒ (1)⇒ (5)⇒ (4). The equivalence of
(3) and (4) is left as Exercise 6.30(a).

We assume in this proof that the hypergraphs considered are connected; generalization
to the disconnected case is straightforward.

(4)⇒ (2): Suppose now that the output of the GYO algorithm on R = {R1, . . . , Rn} is
empty. Let S1, . . . , Sn be an ordering of R corresponding to a sequence of ear removals
stemming from an execution of the GYO algorithm, and let Ti be a witness for Si for
i ∈ [1, n − 1]. An induction on n (“from the inside out”) shows that the following is a
full reducer (see Exercise 6.30a):

T1 := T1 �< S1;
T2 := T2 �< S2;

...
Tn−1 := Tn−1 �< Sn−1;
Sn−1 := Sn−1 �< Tn−1;

...
S2 := S2 �< T2;
S1 := S1 �< T1;

(2)⇒ (1): Suppose that R has a full reducer, and let I be a pairwise consistent instance
of R. Application of the full reducer to I yields an instance I′ that is globally consistent.
But by pairwise consistency, each step of the full reducer leaves I unchanged. It follows
that I = I′ is globally consistent.

(1) ⇒ (5): This is proved by contradiction. Suppose that there is a hypergraph that
satisfies Property (1) but violates the definition of acyclic. Let R = {R1, . . . , Rn} be such a
hypergraph where n is minimal among such hypergraphs and where the size of U = ∪R is
minimal among such hypergraphs with n edges.
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I A1 A2 . . . Ap B1 . . . Bq

1 0 . . . 0 1 . . . 1

0 1 . . . 0 2 . . . 2
...

...
...

...
...

...
...

0 0 . . . 1 p . . . p

Figure 6.13: Instance for proof of Theorem 6.4.5

It follows easily from the minimality conditions that R is reduced. In addition, by
minimality no vertex (attribute) in U is in only one edge (relation schema).

Consider now the schema R′ = {R2 − R1, . . . , Rn − R1}. Two cases arise:

Case 1: R′ is connected. Suppose that R1 = {A1, . . . , Ap} and U − R1 = {B1 . . . , Bq}.
Consider the instance I over U shown in Fig. 6.13. Define I = {I1, . . . , In} so that

Ij = πRj
(I ) for j ∈ [2, n], and

I1 = πR1(I ) ∪ {〈0, 0, . . . , 0〉}.

Using the facts that R′ is connected and that each vertex of R occurs in at least two edges,
it is straightforward to verify that I is pairwise consistent but not globally consistent, which
is a contradiction (see Exercise 6.30b).

Case 2: R′ is not connected. Choose a connected component of R′ and let {S1, . . . , Sk} be
the set of edges of R− {R1} involved in that connected component. Let S = ∪k

i=1Si and let
R′1 = R1 ∩ S. Two subcases arise:

Subcase 2.a: R′1 ⊆ Sj for some j ∈ [1, k]. If this holds, then R′1 ∩ Sj is an articulation
set for R, which is a contradiction (see Exercise 6.30b).

Subcase 2.b: R′1 �⊆ Sj for each j ∈ [1, k]. In this case R′′ = {S1, . . . , Sk, R
′
1} is a reduced

hypergraph with fewer edges than R. In addition, it can be verified that this hypergraph
satisfies Property (1) (see Exercise 6.30b). By minimality of n, this implies that R′′ is
acyclic. Because it is connected and has at least two edges, it has an articulation set. Two
nested subcases arise:

Subcase 2.b.i: Si ∩ Sj is an articulation pair for some i, j . We argue in this case that
Si ∩ Sj is an articulation pair for R. To see this, let x ∈ R′1− (Si ∩ Sj) and let y be a vertex
in some other component of R′′|S−{Si∩Sj }. Suppose that Ri1, . . . , Ril is a path in R from
y to x. Let Rip be the first edge in this path that is not in {S1, . . . , Sk}. By the choice of
{S1, . . . , Sk}, Rip = R1. It follows that there is a path from y to x in R′′|S−{Si∩Sj }, which
is a contradiction. We conclude that R has an articulation pair, contradicting the initial
assumption in this proof.

Subcase 2.b.ii: R′1 ∩ Si is an articulation pair for some i. In this case R1 ∩ Si is an
articulation pair for R (see Exercise 6.30b), again yielding a contradiction to the initial
assumption of the proof.
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(5) ⇒ (4): We first show inductively that each connected reduced acyclic hypergraph
F with at least two edges has at least two ears. For the case in which F has two edges, this
result is immediate. Suppose now thatF = (V , F ) is connected, reduced, and acyclic, with
|F |> 2. Let h= f ∩ f ′ be an articulation set of F . Let G be a connected component of
F |V−h. By the inductive hypothesis, this has at least two ears. Let g be an ear of G that is
different from f − h and different from f ′ − h. Let g′ be an edge ofF such that g = g′ − h.
It is easily verified that g′ is an ear of F (see Exercise 6.30b). Because F |V−h has more
than two connected components, it follows that F has at least two ears.

Finally, suppose that F = (V , F ) is acyclic. If there is only one edge, then the GYO
algorithm yields the empty hypergraph. Suppose that it has more than one edge. If F is
not reduced, the GYO algorithm can be applied to reduce it. If F is reduced, then by the
preceding argument F has an ear, say f . Then a step of the algorithm can be applied to
yield F |∪(F−{f }). This is again acyclic. An easy induction now yields the result.

Recall from Theorem 6.4.2 that computing projections of arbitrary joins is probably
intractable if both query and data size are considered. The following shows that this is not
the case when the join is acyclic.

Corollary 6.4.6 If R is acyclic, then for each instance I over R, the expression
πX(��I) can be computed in time polynomial in the size of IR, the input, and the output.

Proof Because the computation for each connected component of R can be performed
separately, we assume without loss of generality that R is connected. Let R=(R1, . . . , Rn)

and I = (I1, . . . , In). First apply a full reducer to I to obtain I′ = (I ′1, . . . , I
′
n). This takes

time polynomial in the size of the query and the input; the result is globally consistent; and
�� II= �� II′.

Because R is acyclic, by Theorem 6.4.5 there is a join tree T for R. Choose a root
for T , say R1. For each subtree Tk of T with root Rk �= R1, let Xk =X ∩ (∪{R | R ∈ Tk}),
and Zk = Rk∩ (the parent of Rk). Let Jk = I ′k for k ∈ [1, n]. Inductively remove nodes Rk

and replace instances Jk from leaf to root of T as follows: Delete node Rk with parent Rm

by replacing Jm with Jm �� πXkZk
Jk. A straightforward induction shows that immediately

before nonleaf node Rk is deleted, then Jk = πXkRk
(��Rl∈Tk I ′l ). It follows that at the end

of this process the answer is πXJ1 and that at each intermediate stage each instance Jk has
size bounded by |I ′k| · |πX(��IIk)| (see Exercise 6.33).
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Exercises

Exercise 6.1

(a) Give detailed definitions for the rewrite rules proposed in Section 6.1. In other words,
provide the conditions under which they preserve equivalence.

(b) Give the step-by-step description of how the query tree of Fig. 6.1(a) can be trans-
formed into the query tree of Fig. 6.1(b) using these rewrite rules.
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Exercise 6.2 Consider the transformation σF(q1 ��G q2)→ σF(q1) ��G q2 of Fig. 6.2. De-
scribe a query q and database instance for which applying this transformation yields a query
whose direct implementation is dramatically more expensive than that of q.

Exercise 6.3

(a) Write generalized SPC queries equivalent to the two tableau queries of Exam-
ple 6.2.2.

(b) Show that the optimization of this example cannot be achieved using the rewrite rules
or multiway join techniques of System/R or INGRES discussed in Section 6.1.

(c) Generate an example analogous to that of Example 6.2.2 that shows that even for
typed tableau queries, the rewrite rules of Section 6.1 cannot achieve the optimiza-
tions of the Homomorphism Theorem.

Exercise 6.4 Present an algorithm that identifies when variables can be projected out during
a left-to-right join of a sip strategy.

Exercise 6.5 Describe a generalization of sip strategies that permits evaluation of multiway
joins according to an arbitrary binary tree rather than using only left-to-right join processing.
Give an example in which this yields an evaluation plan more efficient than any left-to-right
join.

Exercise 6.6 Consider query expressions that have the form (†) mentioned in the discussion
of join detachment in Section 6.1.

(a) Describe how the possibility of applying join detachment depends on how equali-
ties are expressed in the conditions (e.g., Is there a difference between using con-
ditions ‘x.1= y.1, y.1= z.1’ versus ‘x.1= z.1, z.1= y.1’?). Describe a technique
for eliminating this dependence.

(b) Develop a generalization of join detachment in which a set of variables serves as the
pivot.

Exercise 6.7 [WY76]

(a) Describe some heuristics for choosing the atom Ri(si) for forming a tuple substitu-
tion. These may be in the context of using tuple substitution and join detachment for
the resulting subqueries, or they may be in a more general context.

(b) Develop a query optimization algorithm based on applying single-variable condi-
tions, join detachment, and tuple substitution.

Exercise 6.8 Prove Corollary 6.2.4.

Exercise 6.9

(a) State the direct generalization of Theorem 6.2.3 for tableau queries with equality,
and show that it does not hold.

(b) State and prove a correct generalization of Theorem 6.2.3 that handles tableau
queries with equality.

Exercise 6.10 For queries q, q ′, write q ⊂ q ′ to denote that q ⊆ q ′ and q �≡ q ′. The meaning
of q ⊃ q ′ is defined analogously.
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(a) Exhibit an infinite set {q0, q1, q2, . . .} of typed tableau queries involving no constants
over a single relation with the property that q0 ⊂ q1 ⊂ q2 ⊂ . . . .

(b) Exhibit an infinite set {q ′0, q ′1, q ′2, . . .} of (possibly nontyped) tableau queries involv-
ing no constants over a single relation such that q ′i �⊆ q ′j and q ′j �⊆ q ′i for each pair
i �= j .

(c) Exhibit an infinite set {q ′′0 , q ′′1 , q ′′2 , . . .} of (possibly nontyped) tableau queries involv-
ing no constants over a single relation with the property that q ′′0 ⊃ q ′′1 ⊃ q ′′2 ⊃ . . . .

(d) Do parts (b) and (c) for typed tableau queries that may contain constants.

� (e) [FUMY83] Do parts (b) and (c) for typed tableau queries that contain no constants.

Exercise 6.11 [CM77] Prove Proposition 6.2.9.

Exercise 6.12

(a) Prove that if the underlying domain dom is finite, then only one direction of the
statement of Theorem 6.2.3 holds.

(b) Let n > 1 be arbitrary. Exhibit a pair of tableau queries q, q ′ such that under the
assumption that dom has n elements, q ⊆ q ′, but there is no homomorphism from q ′
to q. In addition, do this using typed tableau queries.

(c) Show for arbitrary n > 1 that Theorem 6.2.6 and Proposition 6.2.9 do not hold if
dom has n elements.

Exercise 6.13 Let R be a relation schema of sort ABC. For each of the following SPJR queries
over R, construct an equivalent tableau (see Exercise 4.19), minimize the tableau, and construct
from the minimized tableau an equivalent SPJR query with minimal number of joins.

(a) πAC[πAB(R) �� πBC(R)] �� πA[πAC(R) �� πCB(R)]

(b) πAC[πAB(R) �� πBC(R)] �� πAB(σB=8(R)) �� πBC(σA=5(R))

(c) πAB(σC=1(R)) �� πBC(R) �� πAB[σC=1(πAC(R)) �� πCB(R)]

♠Exercise 6.14 [SY80]

(a) Give a decision procedure for determining whether one union of tableaux query
is contained in another one. Hint: Let the queries be q = ({T1, . . . ,Tn}, u) and
q ′ = ({S1, . . . ,Sm}, v); and prove that q ⊆ q ′ iff for each i ∈ [1, n] there is some
j ∈ [1,m] such that (Ti, u)⊆ (Sj , v). (The case of queries equivalent to q∅ must be
handled separately.)

A union of tableaux query ({T1, . . . ,Tn}, u) is nonredundant if there is no distinct pair i, j such
that (Ti, u)⊆ (Tj , u).

(b) Prove that if ({T1, . . . ,Tn}, u) and ({S1, . . . ,Sm}, v) are nonredundant and equiva-
lent, then n=m; for each i ∈ [1, n] there is a j ∈ [1, n] such that (Ti, u)≡ (Sj , v);
and for each j ∈ [1, n] there is a i ∈ [1, n] such that (Sj , v)≡ (Ti, u).

(c) Prove that for each union of tableaux query q there is a unique (up to renaming)
equivalent union of tableaux query that has a minimal total number of atoms.

Exercise 6.15 Exhibit a pair of typed restricted SPJ algebra queries q1, q2 over a relation R

and having no constants, such that there is no conjunctive query equivalent to q1 ∪ q2. Hint: Use
tableau techniques.
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♠Exercise 6.16 [SY80]

(a) Complete the proof of part (a) of Theorem 6.2.10.

(b) Prove parts (b) and (c) of that theorem. Hint: Given ξ and qξ = (Tξ, t) and q ′ξ =
(T ′ξ , t) as in the proof of part (a), set q ′′ξ = (Tξ ∪ T ′ξ , t). Show that ξ is satisfiable iff
q ′′ξ ≡ q ′ξ .

(c) Prove that it is np-hard to determine, given a pair q, q ′ of typed tableau queries over
the same relation schema, whether q is minimal and equivalent to q ′. Conclude that
optimizing conjunctive queries, in the sense of finding an equivalent with minimal
number of atoms, is np-hard.

Exercise 6.17 [ASU79b] Prove Theorem 6.2.10 using a reduction from 3-SAT (see Chapter 2)
rather than from the exact cover problem.

Exercise 6.18 [ASU79b]

(a) Prove that determining containment between two typed SPJ queries of the form
πX(��ni=1(πXi

R)) is np-complete. Hint: Use Exercise 6.16.

(b) Prove that the problem of finding, given an SPJ query q of the form πX(��ni=1
(πXi

R)), an SPJ query q ′ equivalent to q that has the minimal number of join
operations among all such queries is np-hard.

Exercise 6.19

(a) Complete the proof of Theorem 6.3.1.

(b) Describe how to modify that proof so that qP uses no constants.

(c) Describe how to modify the proof so that no constants and only one ternary relation is
used. Hint: Speaking intuitively, a tuple t = 〈a1, . . . , a5〉 of ENC can be simulated as
a set of tuples {〈bt, b1, a1〉, . . . , 〈bt, b5, a5〉}, where bt is a value not used elsewhere
and b1, . . . , b5 are values established to serve as integers 1, . . . , 5.

(d) Describe how, given instance P of the PCP, to construct an nr-datalog¬ program that
is satisfiable iff P has a solution.

Exercise 6.20 This exercise develops further undecidability results for the relational calculus.

(a) Prove that containment and equivalence of range-safe calculus queries are co-r.e.

(b) Prove that domain independence of calculus queries is co-r.e. Hint: Theorem 5.6.1 is
useful here.

(c) Prove that containment of safe-range calculus queries is undecidable.

(d) Show that there is no algorithm that always halts and on input calculus query q gives
an equivalent query q ′ of minimum length. Conclude that “complete” optimization
of the relational calculus is impossible. Hint: If there were such an algorithm, then it
would map each unsatisfiable query to a query with formula (of form) ¬(a = b).

♠Exercise 6.21 [ASU79a, ASU79b] In a typed tableau query (T , u), a summary variable is
a variable occurring in u. A repeated nonsummary variable for attribute A is a nonsummary
variable in πA(T ) that occurs more than once in T . A typed tableau query is simple if for each
attribute A, there is a repeated nonsummary variable in πA(T ), then no other constant or variable
in πA(T ) occurs more than once πA(T ). Many natural typed restricted SPJ queries translate into
simple tableau queries.
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(a) Show that the tableau query over R[ABCD] corresponding to

πAC(πAB(R) �� πBC(R)) �� (πAB(R) �� πBD(R))

is not simple.

(b) Exhibit a simple tableau query that is not the result of transforming a typed restricted
SPJ query under the algorithm of Exercise 4.19.

(c) Prove that if (T , u) is simple, T ′ ⊆ T , and (T ′, u) is a tableau query, then (T ′, u) is
simple.

(d) Develop an O(n4) algorithm that, on input a simple tableau query q, produces a
minimal tableau query equivalent to q.

(e) Develop an O(n3) algorithm that, given simple tableau queries q, q ′, determines
whether q ≡ q ′.

(f) Prove that testing containment for simple tableau queries is np-complete.

♠Exercise 6.22 [SY80] Characterize containment and equivalence between queries of the form
q1 − q2, where q1, q2 are SPCU queries. Hint: First develop characterizations for the case in
which q1, q2 are SPC queries.

Exercise 6.23 Recall from Exercise 5.9 that an arbitrary nonrecursive datalog¬ rule can be
described as a difference q1 − q2, where q1 is an SPC query and q2 is an SPCU query.

(a) Show that Exercise 5.9 cannot be strengthened so that q2 is an SPC query.

(b) Show that containment between pairs of nonrecursive datalog¬ rules is decidable.
Hint: Use Exercise 6.22.

(c) Recall that for each nr-datalog program P with a single-relation target there is an
equivalent nr-datalog program P ′ such that all rule heads have the same relation name
(see Exercise 4.24). Prove that the analogous result does not hold for nr-datalog¬
programs.

Exercise 6.24

(a) Verify that I �� J = (I �< J) �� J .

(b) Analyze the transmission costs incurred by the left-hand and right-hand sides of this
equation, and describe conditions under which one is more efficient than the other.

Exercise 6.25 [HLY80] Prove that the problem of deciding, given instance I of database
schema R, whether I is globally consistent is np-complete.

Exercise 6.26 Prove the following without using Theorem 6.4.5.

(a) The database schema R = {AB,BC,CA} has no full reducer.

(b) For arbitrary n > 1, the schema {R1, . . . , Rn−1} of Example 6.4.1 has a full reducer.

(c) For arbitrary (odd or even) n > 1, the schema {R1, . . . , Rn} of Example 6.4.1 has no
full reducer.

Exercise 6.27

(a) Draw the hypergraph of the schema of Example 6.4.3.

(b) Draw the hypergraph of Fig. 6.12(b) in a fashion that suggests it to be acyclic.
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Exercise 6.28 Prove that the output of Algorithm 6.4.4 is independent of the nondeterministic
choices.

Exercise 6.29 As originally introduced, the GYO algorithm involved the following steps:

Nondeterministically perform either step,
until neither can be applied

1. If v ∈ V is in exactly one edge f ∈ F

then F := (V − {v}, (F − {f } ∪ {f − {v}})− {∅}).
2. If f ⊆ f ′ for distinct f, f ′ ∈ F ,

then F := (V , F − {f }).
The result of applying the original GYO algorithm to a schema R is the GYO reduction of R.

(a) Prove that the original GYO algorithm yields the same output independent of the
nondeterministic choices.

(b) [FMU82] Prove that Algorithm 6.4.4 given in the text yields the empty hypergraph
on R iff the GYO reduction of R is the empty hypergraph.

Exercise 6.30 This exercise completes the proof of Theorem 6.4.5.

(a) [BG81] Prove that (3)⇔ (4).

(b) Complete the other parts of the proof.

Exercise 6.31 [BFMY83] R has the running intersection property if there is an ordering
R1, . . . , Rn of R such that for 2 ≤ i ≤ n there exists ji < i such that Ri ∩ (R1 ∪ · · · ∪ Ri−1)⊆
Rji . In other words, the intersection of each Ri with the union of the previous R′js is contained
in one of these. Prove that R has the running intersection property iff R is acyclic.

Exercise 6.32 [BFMY83] A Berge cycle in a hypergraph F is a sequence (f1, v1, f2, v2, . . . ,

fn, vn, fn+1) such that

(i) v1, . . . , vn are distinct vertexes of F ;

(ii) f1, . . . , fn are distinct edges of F , and fn+1 = f1;

(iii) n≥ 2; and

(iv) vi ∈ fi ∩ fi+1 for i ∈ [1, n].

A hypergraph is Berge cyclic if it has a Berge cycle, and it is Berge acyclic otherwise.

(a) Prove that Berge acyclicity is necessary but not sufficient for acyclicity.

(b) Show that any hypergraph in which two edges have two nodes in common is Berge
cyclic.

Exercise 6.33 [Yan81] Complete the proof of Corollary 6.4.6.


