
5 Adding Negation: Algebra
and Calculus

Alice: Conjunctive queries are great. But what if I want to see a movie that
doesn’t feature Woody Allen?

Vittorio: We have to introduce negation.
Sergio: It is basically easy.

Riccardo: But the calculus is a little feisty.

As indicated in the previous chapter, the conjunctive queries, even if extended by union,
cannot express queries such as the following:

(5.1) What are the Hitchcock movies in which Hitchcock did not play?

(5.2) What movies are featured at the Gaumont Opera but not at the Gaumont les
Halles?

(5.3) List those movies for which all actors of the movie have acted under Hitchcock’s
direction.

This chapter explores how negation can be added to all forms of the conjunctive queries
(except for the tableau queries) to provide the power needed to express such queries. This
yields languages in the various paradigms that have the same expressive power. They in-
clude relational algebra, relational calculus, and nonrecursive datalog with negation. The
class of queries they express is often referred to as the first-order queries because relational
calculus is essentially first-order predicate calculus without function symbols. These lan-
guages are of fundamental importance in database systems. They provide adequate power
for many applications and at the same time can be implemented with reasonable efficiency.
They constitute the basis for the standard commercial relational languages, such as SQL.

In the case of the algebras, negation is added using the set difference operator, yielding
the language(s) generally referred to as relational algebra (Section 5.1). In the case of
the rule-based paradigm, we consider negative literals in the bodies of rules, which are
interpreted as the absence of the corresponding facts; this yields nonrecursive datalog¬
(Section 5.2).

Adding negation in the calculus paradigm raises some serious problems that require
effort and care to resolve satisfactorily. In the development in this chapter, we proceed in
two stages. First (Section 5.3) we introduce the calculus, illustrate the problematic issues of
“safety” and domain independence, and develop some simple solutions for them. We also
show the equivalence between the algebra and the calculus at this point. The material in this
section provides a working knowledge of the calculus that is adequate for understanding
the study of its extensions in Parts D and E. The second stage in our study of the calculus
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(Section 5.4) focuses on the important problem of finding syntactic restrictions on the
calculus that ensure domain independence.

The chapter concludes with brief digressions concerning how aggregate functions can
be incorporated into the algebra and calculus (Section 5.5), and concerning the emerging
area of constraint databases, which provide a natural mechanism for representing and
manipulating infinite databases in a finite manner (Section 5.6).

From the theoretical perspective, the most important aspects of this chapter include
the demonstration of the equivalence of the algebra and calculus (including a relatively
direct transformation of calculus queries into equivalent algebra ones) and the application
of the classical proof technique of structural induction used on both calculus formulas and
algebra expressions.

5.1 The Relational Algebras

Incorporating the difference operator, denoted ‘−’, into the algebras is straightforward. As
with union and intersection, this can only be applied to expressions that have the same sort,
in the named case, or arity, in the unnamed case.

Example 5.1.1 In the named algebra, query (5.1) is expressed by

πTitleσDirector=“Hitchcock”(Movies)− πTitleσActor=“Hitchcock”(Movies).

The unnamed relational algebra is obtained by adding the difference operator to the
SPCU algebra. It is conventional also to permit the intersection operator, denoted ‘∩’ in
this algebra, because it is simulated easily using cross-product, select, and project or using
difference (see Exercise 5.4). Because union is present, nonsingleton constant relations
may be used in this algebra. Finally, the selection operator can be extended to permit
negation (see Exercise 5.4).

The named relational algebra is obtained in an analogous fashion, and similar gener-
alizations can be developed.

As shown in Exercise 5.5, the family of unnamed algebra operators {σ, π,×,∪,−} is
nonredundant, and the same is true for the named algebra operators {σ, π, '(, δ,∪,−}. It
is easily verified that the algebras are not monotonic, nor are all algebra queries satisfiable
(see Exercise 5.6). In addition, the following is easily verified (see Exercise 5.7):

Proposition 5.1.2 The unnamed and named relational algebras have equivalent
expressive power.

The notion of composition of relational algebra queries can be defined in analogy
to the composition of conjunctive queries described in the previous chapter. It is easily
verified that the relational algebras, and hence the other equivalent languages presented in
this chapter, are closed under composition.



72 Adding Negation: Algebra and Calculus

5.2 Nonrecursive Datalog with Negation

To obtain a rule-based language with expressive power equivalent to the relational algebra,
we extend nonrecursive datalog programs by permitting negative literals in rule bodies.
This yields the nonrecursive datalog with negation also denoted nonrecursive datalog¬
and nr-datalog¬.

A nonrecursive datalog¬ (nr-datalog¬) rule is a rule of the form

q : S(u)← L1, . . . , Ln,

where S is a relation name, u is a free tuple of appropriate arity, and each Li is a literal [i.e.,
an expression of the form R(v) or ¬R(v), where R is a relation name and v is a free tuple
of appropriate arity and where S does not occur in the body]. This rule is range restricted
if each variable x occurring in the rule occurs in at least one literal of the form R(v) in
the rule body. Unless otherwise specified, all datalog¬ rules considered are assumed to be
range restricted.

To give the semantics of the foregoing rule q, let R be a relation schema that includes
all of the relation names occurring in the body of the rule q, and let I be an instance of R.
Then the image of I under q is

q(I)= {ν(u) | ν is a valuation and for each i ∈ [1, n],

ν(ui) ∈ I(Ri), if Li = Ri(ui), and

ν(ui) �∈ I(Ri), if Li =¬Ri(ui)}.

In general, this image can be expressed as a difference q1 − q2, where q1 is an SPC query
and q2 is an SPCU query (see Exercise 5.9).

Equality may be incorporated by permitting literals of the form s = t and s �= t for
terms s and t . The notion of range restriction in this context is defined as it was for rule-
based conjunctive queries with equality. The semantics are defined in the natural manner.

To obtain the full expressive power of the relational algebras, we must consider sets
of nr-datalog¬ rules; these are analogous to the nr-datalog programs introduced in the
previous chapter. A nonrecursive datalog¬ program (with or without equality) over schema
R is a sequence

S1 ← body1

S2 ← body2

...
Sm← bodym

of nr-datalog¬ rules, where no relation name in R occurs in a rule head; the same relation
name may appear in more than one rule head; and there is some ordering r1, . . . , rm of
the rules so that the relation name in the head of a rule ri does not occur in the body
of a rule rj whenever j ≤ i. The semantics of these programs are entirely analogous to
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the semantics of nr-datalog programs. An nr-datalog¬ query is a query defined by some
nr-datalog¬ program with a specified target relation.

Example 5.2.1 Assume that each movie in Movies has one director. Query (5.1) is
answered by

ans(x)←Movies(x, “Hitchcock”, z),

¬Movies(x, “Hitchcock”, “Hitchcock”).

Query (5.3) is answered by

Hitch-actor(z)←Movies(x, “Hitchcock”, z)

not-ans(x)←Movies(x, y, z), ¬Hitch-actor(z)

ans(x)←Movies(x, y, z), ¬not-ans(x).

Care must be taken when forming nr-datalog¬ programs. Consider, for example, the fol-
lowing program, which forms a kind of merging of the first two rules of the previous
program. (Intuitively, the first rule is a combination of the first two rules of the preceding
program, using variable renaming in the spirit of Example 4.3.1.)

bad-not-ans(x)←Movies(x, y, z), ¬Movies(x′, “Hitchcock”, z),

Movies(x′, “Hitchcock”, z′),
ans(x)←Movies(x, y, z), ¬bad-not-ans(x)

Rather than expressing query (5.3), it expresses the following:

(5.3′) (Assuming that all movies have only one director) list those movies for which all
actors of the movie acted in all of Hitchcock’s movies.

It is easily verified that each nr-datalog¬ program with equality can be simulated by
an nr-datalog¬ program not using equality (see Exercise 5.10). Furthermore (see Exer-
cise 5.11), the following holds:

Proposition 5.2.2 The relational algebras and the family of nr-datalog¬ programs that
have single relation output have equivalent expressive power.

5.3 The Relational Calculus

Adding negation in the calculus paradigm yields an extremely flexible query language,
which is essentially the predicate calculus of first-order logic (without function symbols).
However, this flexibility brings with it a nontrivial cost: If used without restriction, the
calculus can easily express queries whose “answers” are infinite. Much of the theoretical
development in this and the following section is focused on different approaches to make
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the calculus “safe” (i.e., to prevent this and related problems). Although considerable effort
is required, it is a relatively small price to pay for the flexibility obtained.

This section first extends the syntax of the conjunctive calculus to the full calculus.
Then some intuitive examples are presented that illustrate how some calculus queries can
violate the principle of “domain independence.” A variety of approaches have been devel-
oped to resolve this problem based on the use of both semantic and syntactic restrictions.

This section focuses on semantic restrictions. The first step in understanding these
is a somewhat technical definition based on “relativized interpretation” for the semantics
of (arbitrary) calculus queries; the semantics are defined relative to different “underlying
domains” (i.e., subsets of dom). This permits us to give a formal definition of domain
independence and leads to a family of different semantics for a given query.

The section closes by presenting the equivalence of the calculus under two of the se-
mantics with the algebra. This effectively closes the issue of expressive power of the calcu-
lus, at least from a semantic point of view. One of the semantics for the calculus presented
here is the “active domain” semantics; this is particularly convenient in the development of
theoretical results concerning the expressive power of a variety of languages presented in
Parts D and E.

As noted in Chapter 4, the calculus presented in this chapter is sometimes called the
domain calculus because the variables range over elements of the underlying domain of
values. Exercise 5.23 presents the tuple calculus, whose variables range over tuples, and
its equivalence with the domain calculus and the algebra. The tuple calculus and its variants
are often used in practice. For example, the practical languages SQL and Quel can be
viewed as using tuple variables.

Well-Formed Formulas, Revisited

We obtain the relational calculus from the conjunctive calculus with equality by adding
negation (¬), disjunction (∨), and universal quantification (∀). (Explicit equality is needed
to obtain the full expressive power of the algebras; see Exercise 5.12.) As will be seen, both
disjunction and universal quantification can be viewed as consequences of adding negation,
because ϕ ∨ ψ ≡¬(¬ϕ ∧ ¬ψ) and ∀xϕ ≡¬∃x¬ϕ.

The formal definition of the syntax of the relational calculus is a straightforward
extension of that for the conjunctive calculus given in the previous chapter. We include
the full definition here for the reader’s convenience. A term is a constant or a variable. For
a given input schema R, the base formulas include, as before, atoms over R and equality
(inequality) atoms of the form e = e′ (e �= e′) for terms e, e′. The (well-formed) formulas
of the relational calculus over R include the base formulas and formulas of the form

(a) (ϕ ∧ ψ), where ϕ and ψ are formulas over R;

(b) (ϕ ∨ ψ), where ϕ and ψ are formulas over R;

(c) ¬ϕ, where ϕ is a formula over R;

(d) ∃xϕ, where x is a variable and ϕ a formula over R;

(e) ∀xϕ, where x is a variable and ϕ a formula over R.

As with conjunctive calculus,
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∃x1, x2, . . . , xmϕ abbreviates ∃x1∃x2 . . . ∃xmϕ, and

∀x1, x2, . . . , xmϕ abbreviates∀x1∀x2 . . .∀xmϕ.
It is sometimes convenient to view the binary connectives∧ and∨ as polyadic connectives.
In some contexts, e �= e′ is viewed as an abbreviation of ¬(e = e′).

It is often convenient to include two additional logical connectives, implies (→) and
is equivalent to (↔). We view these as syntactic abbreviations as follows:

ϕ→ ψ ≡¬ϕ ∨ ψ

ϕ↔ ψ ≡ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).
The notions of free and bound occurrences of variables in a formula, and of free(ϕ)

for formula ϕ, are defined analogously to their definition for the conjunctive calculus. In
addition, the notion of relational calculus query is defined, in analogy to the notion of
conjunctive calculus query, to be an expression of the form

{〈e1, . . . , em〉 : A1, . . . , Am | ϕ}, in the named perspective,

{e1, . . . , em | ϕ}, in the unnamed perspective,

or if the sort is understood from the context,

where e1, . . . , em are terms, repeats permitted, and where the set of variables occurring in
e1, . . . , em is exactly free(ϕ).

Example 5.3.1 Suppose that each movie has just one director. Query (5.1) can be ex-
pressed in the relational calculus as

{xt | ∃xaMovies(xt , “Hitchcock”, xa) ∧
¬Movies(xt , “Hitchcock”, “Hitchcock”)}.

Query (5.3) is expressed by

{xt | ∃xd, xa Movies(xt, xd, xa) ∧
∀ya (∃ydMovies(xt, yd, ya)

→∃zt Movies(zt , “Hitchock”, ya))}.
The first conjunct ensures that the variable xt ranges over titles in the current value of
Movies, and the second conjunct enforces the condition on actors of the movie identified
by xt .

“Unsafe” Queries

Before presenting the alternative semantics for the relational calculus, we present an in-
tuitive indication of the kinds of problems that arise if the conventional definitions from
predicate calculus are adapted directly to the current context.
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The fundamental problems of using the calculus are illustrated by the following ex-
pressions:

(unsafe-1) {x | ¬Movies(“Cries and Whispers”, “Bergman”, x)}
(unsafe-2) {x, y |Movies(“Cries and Whispers”, “Bergman”, x)

∨ Movies(y, “Bergman”, “Ullman”)}.

If the usual semantics of predicate calculus are adapted directly to this context, then
the query (unsafe-1) produces all tuples 〈a〉 where a ∈ dom and 〈“Cries and Whispers”,
“Bergman”, a〉 is not in the input. Because all input instances are by definition finite, the
query yields an infinite set on all input instances. The same is true of query (unsafe-2), even
though it does not use explicit negation.

An intuitively appealing approach to resolving this problem is to view the different
relation columns as typed and to insist that variables occurring in a given column range
over only values of the appropriate type. For example, this would imply that the answer to
query (unsafe-1) is restricted to the set of actors. This approach is not entirely satisfactory
because query answers now depend on the domains of the types. For example, different
answers are obtained if the type Actor includes all and only the current actors [i.e., persons
occurring in πActor(Movies)] or includes all current and potential actors. This illustrates
that query (unsafe-1) is not independent of the underlying domain within which the query
is interpreted (i.e., it is not “domain independent”). The same is true of query (unsafe-2).

Even if the underlying domain is finite, users will typically not know the exact contents
of the domains used for each variable. In this case it would be disturbing to have the result
of a user query depend on information not directly under the user’s control. This is another
argument for permitting only domain-independent queries.

A related but more subtle problem arises with regard to the interpretation of quantified
variables. Consider the query

(unsafe-3) {x | ∀yR(x, y)}.

The answer to this query is necessarily finite because it is a subset of π1(R). However, the
query is not domain independent. To see why, note that if y is assumed to range over all
of dom, then the answer is always the empty relation. On the other hand, if the underlying
domain of interpretation is finite, it is possible that the answer will be nonempty. (This
occurs, for example, if the domain is {1, . . . , 5}, and the input for R is {〈3, 1〉, . . . 〈3, 5〉}.)
So again, this query depends on the underlying domain(s) being used (for the different
variables) and is not under the user’s control.

There is a further difficulty of a more practical nature raised by query (unsafe-3).
Specifically, if the intuitively appealing semantics of the predicate calculus are used, then
the naive approach to evaluating quantifiers leads to the execution of potentially infinite
procedures. Although the proper answer to such queries can be computed in a finite manner
(see Theorem 5.6.1), this is technically intricate.

The following example indicates how easy it is to form an unsafe query mistakenly in
practice.
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Example 5.3.2 Recall the calculus query answering query (5.3) in Example 5.3.1. Sup-
pose that the first conjunct of that query is omitted to obtain the following:

{xt | ∀ya(∃ydMovies(xt, yd, ya)

→∃ztMovies(zt , “Hitchcock”, ya))}.

This query returns all titles of movies that have the specified property and also all elements
of dom not occurring in πTitle(Movies). Even if xt were restricted to range over the set of
actual and potential movie titles, it would not be domain independent.

Relativized Interpretations

We now return to the formal development. As the first step, we present a definition that will
permit us to talk about calculus queries in connection with different underlying domains.

Under the conventional semantics associated with predicate calculus, quantified vari-
ables range over all elements of the underlying domain, in our case, dom. For our purposes,
however, we generalize this notion to permit explicit specification of the underlying domain
to use (i.e., over which variables may range).

A relativized instance over schema R is a pair (d, I), where I is an instance over R and
adom(I)⊆ d⊆ dom. A calculus formula ϕ is interpretable over (d,I) if adom(ϕ)⊆ d. In
this case, if ν is a valuation over free(ϕ) with range contained in d, then I satisfies ϕ for ν
relative to d, denoted I |=d ϕ[ν], if

(a) ϕ = R(u) is an atom and ν(u) ∈ I(R);

(b) ϕ = (s = s′) is an equality atom and ν(s)= ν(s′);
(c) ϕ = (ψ ∧ ξ) and1 I |=d ψ[ν|free(ψ)] and I |=d ξ [ν|free(ξ)];

(d) ϕ = (ψ ∨ ξ) and I |=d ψ[ν|free(ψ)] or I |=d ξ [ν|free(ξ)];

(e) ϕ =¬ψ and I �|=d ψ[ν] (i.e., I |=d ψ[ν] does not hold);

(f) ϕ = ∃xψ and for some c ∈ d, I |=d ψ[ν ∪ {x/c}]; or

(g) ϕ = ∀xψ and for each c ∈ d, I |=d ψ[ν ∪ {x/c}].
The notion of “satisfies . . . relative to” just presented is equivalent to the usual notion

of satisfaction found in first-order logic, where the set d plays the role of the universe of
discourse in first-order logic. In practical database settings it is most natural to assume that
the underlying universe is dom; for this reason we use specialized terminology here.

Recall that for a query q and input instance I, we denote adom(q) ∪ adom(I) by
adom(q, I), and the notation adom(ϕ, I) for formula ϕ is defined analogously.

We can now define the relativized semantics for the calculus. Let R be a schema,
q = {e1, . . . , en | ϕ} a calculus query over R, and (d, I) a relativized instance over R. Then

1 ν|V for variable set V denotes the restriction of ν to V .
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the image of I under q relative to d is

qd(I)= {ν(〈e1, . . . , en〉) | I |=d ϕ[ν],

ν is a valuation over free(ϕ) with range⊆ d}.
Note that if d is infinite, then this image may be an infinite set of tuples.

As a minor generalization, for arbitrary d ⊆ dom, the image of q on I relative to d is
defined by2

qd(I)= qd∪adom(q,I)(I).

Example 5.3.3 Consider the query

q = {x | R(x) ∧ ∃y(¬R(y) ∧ ∀z(R(z) ∨ z= y))}

Then

qdom(I )= {} for any instance I over R

q{1,2,3,4}(J1)= {} for J1 = {〈1〉, 〈2〉} over R

q{1,2,3,4}(J2)= J2 for J2 = {〈1〉, 〈2〉, 〈3〉} over R

q{1,2,3,4}(J3)= {} for J3 = {〈1〉, 〈2〉, 〈3〉, 〈4〉} over R

q{1,2,3,4}(J4)= J4 for J4 = {〈1〉, 〈2〉, 〈3〉, 〈5〉} over R.

This illustrates that under an interpretation relative to a set d, a calculus query q on input I
may be affected by |d− adom(q, I)|.

It is important to note that the semantics of algebra and datalog¬ queries q evaluated
on instance I are independent of whether dom or some subset d satisfying adom(q, I)⊆
d⊆ dom is used as the underlying domain.

The Natural and Active Domain Semantics for Calculus Queries

The relativized semantics for calculus formulas immediately yields two important seman-
tics for calculus queries. The first of these corresponds most closely to the conventional
interpretation of predicate calculus and is thus perhaps the intuitively most natural seman-
tics for the calculus.

Definition 5.3.4 For calculus query q and input instance I, the natural (or unrestricted)
interpretation of q on I, denoted qnat(I), is qdom(I) if this is finite and is undefined other-
wise.

2 Unlike the convention of first-order logic, interpretations over an empty underlying domain are
permitted; this arises only with empty instances.
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The second interpretation is based on restricting quantified variables to range over the
active domain of the query and the input. Although this interpretation is unnatural from the
practical perspective, it has the advantage that the output is always defined (i.e., finite). It
is also a convenient semantics for certain theoretical developments.

Definition 5.3.5 For calculus query q and input instance I, the active domain interpre-
tation of q on I, denoted qadom(I), is qadom(q,I)(I). The family of mappings obtained from
calculus queries under the active domain interpretation is denoted CALCadom.

Example 5.3.6 Recall query (unsafe-2). Under the natural interpretation on input the
instance I shown in Chapter 3, this query yields the undefined result. On the other hand,
under the active domain interpretation this yields as output (written informally) ({actors
in “Cries and Whispers”} × adom(I)) ∪ (adom(I) × {movies by Bergman featuring
Ullman}), which is finite and defined.

Domain Independence

As noted earlier, there are two difficulties with the natural interpretation of the calculus
from a practical point of view: (1) it is easy to write queries with undefined output, and (2)
even if the output is defined, the naive approach to computing it may involve consideration
of quantifiers ranging over an infinite set. The active domain interpretation solves these
problems but generally makes the answer dependent on information (the active domain)
not readily available to users. One approach to resolving this situation is to restrict attention
to the class of queries that yield the same output on all possible underlying domains.

Definition 5.3.7 A calculus query q is domain independent if for each input instance I,
and each pair d, d′ ⊆ dom, qd(I)= qd′(I). If q is domain independent, then the image of q
on input instance I, denoted simply q(I), is qdom(I) [or equivalently, qadom(I)]. The family
of mappings obtained from domain-independent calculus queries is denoted CALCdi.

In particular, if q is domain independent, then the output according to the natural
interpretation can be obtained by computing the active domain interpretation. Thus,

Lemma 5.3.8 CALCdi & CALCadom.

Example 5.3.9 The two calculus queries of Example 5.3.1 are domain independent, and
the query of Example 5.3.2 is not (see Exercise 5.15).

Equivalence of Algebra and Calculus

We now demonstrate the equivalence of the various languages introduced so far in this
chapter.
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Theorem 5.3.10 (Equivalence Theorem) The domain-independent calculus, the calcu-
lus under active domain semantics, the relational algebras, and the family of nr-datalog¬
programs that have single-relation output have equivalent expressive power.

Proposition 5.2.2 shows that nr-datalog¬ and the algebras have equivalent expressive
power. In addition, Lemma 5.3.8 shows that CALCdi & CALCadom. To complete the proof,
we demonstrate that

(i) algebra & CALCdi (Lemma 5.3.11)

(ii) CALCadom & algebra (Lemma 5.3.12).

Lemma 5.3.11 For each unnamed algebra query, there is an equivalent domain-indepen-
dent calculus query.

Proof Let q be an unnamed algebra query with arity n. We construct a domain-
independent query q ′ = {x1, . . . , xn | ϕq} that is equivalent to q. The formula ϕq is con-
structed using an induction on subexpressions of q. In particular, for subexpression E of
q, we define ϕE according to the following cases:

(a) E is R for some R ∈ R: ϕE is R(x1, . . . , xarity(R)).

(b) E is {u1, . . . , um}, where each uj is a tuple of arity α: ϕE is

(x1 = u1(1) ∧ · · · ∧ xα = u1(α)) ∨ · · · ∨ (x1 = um(1) ∧ · · · ∧ xα = um(α)).

(c) E is σF(E1): ϕE is ϕE1 ∧ ψF , where ψF is the formula obtained from F by
replacing each coordinate identifier i by variable xi.

(d) E is πi1,...,in(E1): ϕE is

∃yi1, . . . , yin((x1 = yi1 ∧ · · · ∧ xn = yin) ∧ ∃yj1 . . . ∃yjlϕE1(y1, . . . , yarity(E1))),

where j1, . . . , jl is a listing of [1, arity(E1)]− {i1, . . . , in}.
(e) E is E1 × E2: ϕE is ϕE1 ∧ ϕE2(xarity(E1)+1, . . . , xarity(E1)+arity(E2)).

(f) E is E1 ∪ E2: ϕE is ϕE1 ∨ ϕE2.

(g) E is E1 − E2: ϕE is ϕE1 ∧ ¬ϕE2.

We leave verification of this construction and the properties of q ′ to the reader (see Exer-
cise 5.13a).

Lemma 5.3.12 For each calculus query q, there is a query in the unnamed algebra that is
equivalent to q under the active domain interpretation.

Crux Let q = {x1, . . . , xn | ϕ} be a calculus query over R. It is straightforward to develop
a unary algebra query Eadom such that for each input instance I,
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Eadom(I)= {〈a〉 | a ∈ adom(q, I)}.

Next an inductive construction is performed. To each subformula ψ(y1, . . . , ym) of ϕ this
associates an algebra expression Eψ with the property that (abusing notation slightly)

{y1, . . . , ym | ψ}adom(q,I)(I)= Eψ(I) ∩ (adom(q, I))m.

[This may be different from using the active domain semantics on ψ , because we may have
adom(ψ, I) ⊂ adom(q, I).] It is clear that Eϕ is equivalent to q under the active domain
semantics.

We now illustrate a few cases of the construction of expressions Eψ and leave the
rest for the reader (see Exercise 5.13b). Suppose that ψ is a subformula of ϕ. Then Eψ is
constructed in the following manner:

(a) ψ(y1, . . . , ym) is R(t1, . . . , tl), where each ti is a constant or in $y: Then Eψ ≡
π$k(σF (R)), where $k and F are chosen in accordance with $y and $t .

(b) ψ(y1, y2) is y1 �= y2: Eψ is σ1�=2(Eadom × Eadom).

(c) ψ(y1, y2, y3) is ψ ′(y1, y2)∨ψ ′′(y2, y3): Eψ is (Eψ ′ ×Eadom)∪ (Eadom×Eψ ′′).

(d) ψ(y1, . . . , ym) is ¬ψ ′(y1, . . . , ym): Eψ is (Eadom × · · · × Eadom)− Eψ ′.

5.4 Syntactic Restrictions for Domain Independence

As seen in the preceding section, to obtain the natural semantics for calculus queries,
it is desirable to focus on domain independent queries. However, as will be seen in the
following chapter (Section 6.3), it is undecidable whether a given calculus query is domain
independent. This has led researchers to develop syntactic conditions that ensure domain
independence, and many such conditions have been proposed.

Several criteria affect the development of these conditions, including their generality,
their simplicity, and the ease with which queries satisfying the conditions can be translated
into the relational algebra or other lower-level representations. We present one such con-
dition here, called “safe range,” that is relatively simple but that illustrates the flavor and
theoretical properties of many of these conditions. It will serve as a vehicle to illustrate
one approach to translating these restricted queries into the algebra. Other examples are
explored in Exercises 5.25 and 5.26; translations of these into the algebra are considerably
more involved.

This section begins with a brief digression concerning equivalence preserving rewrite
rules for the calculus. Next the family CALCsr of safe-range queries is introduced. It is
shown easily that the algebra & CALCsr . A rather involved construction is then presented
for transforming safe-range queries into the algebra. The section concludes by defining a
variant of the calculus that is equivalent to the conjunctive queries with union.
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1 ϕ ∧ ψ ↔ ψ ∧ ϕ

2 ψ1 ∧ · · · ∧ ψn ∧ (ψn+1 ∧ ψn+2) ↔ ψ1 ∧ · · · ∧ ψn ∧ ψn+1 ∧ ψn+2

3 ϕ ∨ ψ ↔ ψ ∨ ϕ

4 ψ1 ∨ · · · ∨ ψn ∨ (ψn+1 ∨ ψn+2) ↔ ψ1 ∨ · · · ∨ ψn ∨ ψn+1 ∨ ψn+2

5 ¬(ϕ ∧ ψ) ↔ (¬ϕ) ∨ (¬ψ)
6 ¬(ϕ ∨ ψ) ↔ (¬ϕ) ∧ (¬ψ)
7 ¬(¬ϕ) ↔ ϕ

8 ∃xϕ ↔ ¬∀x¬ϕ
9 ∀xϕ ↔ ¬∃x¬ϕ

10 ¬∃xϕ ↔ ∀x¬ϕ
11 ¬∀xϕ ↔ ∃x¬ϕ
12 ∃xϕ ∧ ψ ↔ ∃x(ϕ ∧ ψ) (x not free in ψ)
13 ∀xϕ ∧ ψ ↔ ∀x(ϕ ∧ ψ) (x not free in ψ)
14 ∃xϕ ∨ ψ ↔ ∃x(ϕ ∨ ψ) (x not free in ψ)
15 ∀xϕ ∨ ψ ↔ ∀x(ϕ ∨ ψ) (x not free in ψ)
16 ∃xϕ ↔ ∃yϕxy (y not free in ϕ)
17 ∀xϕ ↔ ∀yϕxy (y not free in ϕ)

Figure 5.1: Equivalence-preserving rewrite rules for calculus formulas

Equivalence-Preserving Rewrite Rules

We now digress for a moment to present a family of rewrite rules for the calculus. These
preserve equivalence regardless of the underlying domain used to evaluate calculus queries.
Several of these rules will be used in the transformation of safe-range queries into the
algebra.

Calculus formulas ϕ,ψ over schema R are equivalent, denoted ϕ ≡ ψ , if for each I
over R, d ⊆ dom, and valuation ν with range ⊆ d

I |=d∪adom(ϕ,I) ϕ[ν] if and only if I |=d∪adom(ψ,I) ψ[ν].

(It is verified easily that this generalizes the notion of equivalence for conjunctive calculus
formulas.)

Figure 5.1 shows a number of equivalence-preserving rewrite rules for calculus for-
mulas. It is straightforward to verify that if ψ transforms to ψ ′ by a rewrite rule and if ϕ′
is the result of replacing an occurrence of subformula ψ of ϕ by formula ψ ′, then ϕ′ ≡ ϕ

(see Exercise 5.14).
Note that, assuming x �∈ free(ψ) and y �∈ free(ϕ),

∃xϕ ∧ ∀yψ ≡ ∃x∀y(ϕ ∧ ψ)≡ ∀y∃x(ϕ ∧ ψ).

Example 5.4.1 Recall from Chapter 2 that a formula ϕ is in prenex normal form (PNF)
if it has the form %1x1 . . .%nxnψ , where each %i is either ∀ or ∃, and no quantifiers occur
in ψ . In this case, ψ is called the matrix of formula ϕ.
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A formula ψ without quantifiers or connectives → or ↔ is in conjunctive normal
form (CNF) if it has the form ξ1 ∧ · · · ∧ ξm (m≥ 1), where each conjunct ξj has the form
L1∨ · · · ∨Lk (k ≥ 1) and where eachLl is a literal (i.e., atom or negated atom). Similarly, a
formula ψ without quantifiers or connectives→ or↔ is in disjunctive normal form (DNF)
if it has the form ξ1 ∨ · · · ∨ ξm, where each disjunct ξj has the form L1 ∧ · · · ∧ Lk where
each Ll is a literal (i.e., atom or negated atom).

It is easily verified (see Exercise 5.14) that the rewrite rules can be used to transform
an arbitrary calculus formula into an equivalent formula that is in PNF with a CNF matrix,
and into an equivalent formula that is in PNF with a DNF matrix.

Safe-Range Queries

The notion of safe range is presented now in three stages, involving (1) a normal form
called SRNF, (2) a mechanism for determining how variables are “range restricted” by
subformulas, and (3) specification of a required global property of the formula.

During this development, it is sometimes useful to speak of calculus formulas in terms
of their parse trees. For example, we will say that the formula (R(x) ∧ ∃y(S(y, z)) ∧
¬T (x, z)) has ‘and’ or ∧ as a root (which has an atom, an ∃, and a ¬ as children).

The normalization of formulas puts them into a form more easily analyzed for
safety without substantially changing their syntactic structure. The following equivalence-
preserving rewrite rules are used to place a formula into safe-range normal form (SRNF):

Variable substitution: This is from Section 4.2. It is applied until no distinct pair of quan-
tifiers binds the same variable and no variable occurs both free and bound.

Remove universal quantifiers: Replace subformula ∀$xψ by ¬∃$x¬ψ . (This and the next
condition can be relaxed; see Example 5.4.5.)

Remove implications: Replace ψ→ ξ by ¬ψ ∨ ξ , and similarly for↔.

Push negations: Replace

(i) ¬¬ψ by ψ

(ii) ¬(ψ1 ∨ · · · ∨ ψn) by (¬ψ1 ∧ · · · ∧ ¬ψn)

(iii) ¬(ψ1 ∧ · · · ∧ ψn) by (¬ψ1 ∨ · · · ∨ ¬ψn)

so that the child of each negation is either an atom or an existentially quantified
formula.

Flatten ‘and’s, ‘or’s, and existential quantifiers: This is done so that no child of an ‘and’
is an ‘and,’ and similarly for ‘or’ and existential quantifiers.

The SRNF formula resulting from applying these rules to ϕ is denoted SRNF(ϕ). A formula
ϕ (query {$e | ϕ}) is in SRNF if SRNF(ϕ)= ϕ.

Example 5.4.2 The first calculus query of Example 5.3.1 is in SRNF. The second calcu-
lus query is not in SRNF; the corresponding SRNF query is
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{xt | ∃xd, xaMovies(xt, xd, xa)∧
¬∃ya(∃ydMovies(xt, yd, ya)

∧ ¬∃ztMovies(zt , “Hitchcock”, ya))}.
Transforming the query of Example 5.3.2 into SRNF yields

{xt | ¬∃ya(∃ydMovies(xt, yd, ya)

∧ ¬∃ztMovies(zt , “Hitchcock”, ya))}.

We now present a syntactic condition on SRNF formulas that ensures that each variable
is “range restricted,” in the sense that its possible values all lie within the active domain of
the formula or the input. If a quantified variable is not range restricted, or if one of the
free variables is not range restricted, then the associated query is rejected. To make the
definition, we first define the set of range-restricted variables of an SRNF formula using
the following procedure, which returns either the symbol⊥, indicating that some quantified
variable is not range restricted, or the set of free variables that is range restricted.

Algorithm 5.4.3 (Range restriction (rr))

Input: a calculus formula ϕ in SRNF

Output: a subset of the free variables of ϕ or3 ⊥
begin

case ϕ of

R(e1, . . . , en) : rr(ϕ)= the set of variables in {e1, . . . , en};
x = a or a = x : rr(ϕ)= {x};

ϕ1 ∧ ϕ2 : rr(ϕ)= rr(ϕ1) ∪ rr(ϕ2);

ϕ1 ∧ x = y : rr(ϕ)=
{
rr(ψ) if {x, y} ∩ rr(ψ)= ∅,
rr(ψ) ∪ {x, y} otherwise;

ϕ1 ∨ ϕ2 : rr(ϕ)= rr(ϕ1) ∩ rr(ϕ2);
¬ϕ1 : rr(ϕ)= ∅;
∃$xϕ1 : if $x ⊆ rr(ϕ1)

then rr(ϕ)= rr(ϕ1)− $x
else return ⊥

end case
end

3 In the following, for eachZ,⊥∪Z =⊥∩Z =⊥−Z = Z−⊥=⊥. In addition, we show the case
of binary ‘and’s, etc., but we mean this to include polyadic ‘and’s, etc. Furthermore, we sometimes
use ‘$x’ to denote the set of variables occurring in $x.
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Intuitively, the occurrence of a variable x in a base relation or in an atom of the
form x = a restricts that variable. This restriction is propagated through ∧, possibly lost
in ∨, and always lost in ¬. In addition, each quantified variable must be restricted by the
subformula it occurs in.

A calculus query {u | ϕ} is safe range if rr(SRNF(ϕ))= free(ϕ). The family of safe-
range queries is denoted by CALCsr .

Example 5.4.4 Recall Examples 5.3.1 and 5.4.2. The first query of Example 5.3.1 is safe
range. The first query of Example 5.4.2 is also safe range. However, the second query of
Example 5.4.2 is not because the free variable xt is not range restricted by the formula.

Before continuing, we explore a generalization of the notion of safe range to permit
universal quantification.

Example 5.4.5 Suppose that formula ϕ has a subformula of the form

ψ ≡ ∀$x(ψ1($x)→ ψ2($y)),

where $x and $y might overlap. Transforming into SRNF (and assuming that the parent of ψ
is not ¬), we obtain

ψ ′ ≡ ¬∃$x(ψ1($x) ∧ ¬ψ2($y)).

Now rr(ψ ′) is defined iff

(a) rr(ψ1)= $x, and

(b) rr(ψ2) is defined.

In this case, rr(ψ ′)= ∅. This is illustrated by the second query of Example 5.3.1, that was
transformed into SRNF in Example 5.4.2.

Thus SRNF can be extended to permit subformulas that have the form of ψ without
materially affecting the development.

The calculus query constructed in the proof of Lemma 5.3.11 is in fact safe range. It
thus follows that the algebra & CALCsr .

As shown in the following each safe range query is domain independent (Theo-
rem 5.4.6). For this reason, if q is safe range we generally use the natural interpretation
to evaluate it; we may also use the active domain interpretation.

The development here implies that all of CALCsr , CALCdi, and CALCadom are equiv-
alent. When the particular choice is irrelevant to the discussion, we use the term relational
calculus to refer to any of these three equivalent query languages.
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From Safe Range to the Algebra

We now present the main result of this section (namely, the translation of safe-range queries
into the named algebra). Speaking loosely, this translation is relatively direct in the sense
that the algebra query E constructed for calculus query q largely follows the structure of
q. As a result, evaluation of E will in most cases be more efficient than using the algebra
query that is constructed for q by the proof of Lemma 5.3.12.

Examples of the construction used are presented after the formal argument.

Theorem 5.4.6 CALCsr ≡ the relational algebra. Furthermore, each safe-range query
is domain independent.

The proof of this theorem involves several steps. As seen earlier, the algebra &
CALCsr . To prove the other direction, we develop a translation from safe-range queries
into the named algebra. Because the algebra is domain independent, this will also imply
the second sentence of the theorem.

To begin, let ϕ be a safe-range formula in SRNF. An occurrence of a subformula ψ in
ϕ is self-contained if its root is ∧ or if

(i) ψ = ψ1 ∨ · · · ∨ ψn and rr(ψ)= rr(ψ1)= · · · = rr(ψn)= free(ψ);

(ii) ψ = ∃$xψ1 and rr(ψ)= free(ψ1); or

(iii) ψ =¬ψ1 and rr(ψ)= free(ψ1).

A safe-range, SRNF formula ϕ is in4 relational algebra normal form (RANF) if each
subformula of ϕ is self-contained.

Intuitively, if ψ is a self-contained subformula of ϕ that does not have ∧ as a root, then
all free variables in ψ are range restricted within ψ . As we shall see, if ϕ is in RANF, this
permits construction of an equivalent relational algebra query Eϕ using an induction from
leaf to root.

We now develop an algorithm RANF-ALG that transforms safe-range SRNF formulas
into RANF. It is based on the following rewrite rules:

(R1) Push-into-or: Consider the subformula

ψ = ψ1 ∧ · · · ∧ ψn ∧ ξ,

where

ξ = ξ1 ∨ · · · ∨ ξm.

Suppose that rr(ψ)= free(ψ), but rr(ξ1 ∨ · · · ∨ ξm) �= free(ξ1 ∨ · · · ∨ ξm). Nondeter-
ministically choose a subset i1, . . . , ik of 1, . . . , n such that

ξ ′ = (ξ1 ∧ ψi1 ∧ · · · ∧ ψik) ∨ · · · ∨ (ξm ∧ ψi1 ∧ · · · ∧ ψik)

4 This is a variation of the notion of RANF used elsewhere in the literature; see Bibliographic Notes.
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satisfies rr(ξ ′) = free(ξ ′). (One choice of i1, . . . , ik is to use all of 1, . . . , n; this
necessarily yields a formula ξ ′ with this property.) Letting {j1, . . . , jl} = {1, . . . , n} −
{i1, . . . , ik}, set

ψ ′ = SRNF(ψj1 ∧ · · · ∧ ψjl ∧ ξ ′).

The application of SRNF to ξ ′ only has the effect of possibly renaming quantified
variables5 and of flattening the roots of subformulas ξp ∧ ψi1 ∧ · · · ∧ ψik, where ξp
has root ∧; analogous remarks apply. The rewrite rule is to replace subformula ψ by
ψ ′ and possibly apply SRNF to flatten an ∨, if both l = 0 and the parent of ψ is ∨.

(R2) Push-into-quantifier: Suppose that

ψ = ψ1 ∧ · · · ∧ ψn ∧ ∃$xξ,

where rr(ψ)= free(ψ), but rr(ξ) �= free(ξ). Then replace ψ by

ψ ′ = SRNF(ψj1 ∧ · · · ∧ ψjl ∧ ∃$xξ ′),

where

ξ ′ = ψi1 ∧ · · · ∧ ψik ∧ ξ

and where rr(ξ ′)= free(ξ ′) and {j1, . . . , jl} = {1, . . . , n} − {i1, . . . , ik}. The rewrite
rule is to replace ψ by ψ ′ and possibly apply SRNF to flatten an ∃.

(R3) Push-into-negated-quantifier: Suppose that

ψ = ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ,

where rr(ψ)= free(ψ), but rr(ξ) �= free(ξ). Then replace ψ by

ψ ′ = SRNF(ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ ′),

where

ξ ′ = ψi1 ∧ · · · ∧ ψik ∧ ξ

and where rr(ξ ′)= free(ξ ′) and {i1, . . . , ik} ⊆ {1, . . . , n}. That ψ ′ is equivalent to ψ

follows from the observation that the propositional formulas p ∧ q ∧ ¬r and p ∧ q ∧
¬(p ∧ r) are equivalent. The rewrite rule is to replace ψ by ψ ′.

The algorithm RANF-ALG for applying these rewrite rules is essentially top-down
and recursive. We sketch the algorithm now (see Exercise 5.19).

5 It is assumed that under SRNF renamed variables are chosen so that they do not occur in the full
formula under consideration.
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Algorithm 5.4.7 (Relational Algebra Normal Form (RANF-ALG))

Input: a safe-range calculus formula ϕ in SRNF

Output: a RANF formula ϕ′ = RANF(ϕ) equivalent to ϕ

begin
while some subformula ψ (with its conjuncts possibly reordered) of ϕ satisfies the
premise of R1, R2, or R3
do

case R1: (left as exercise)
R2: (left as exercise)
R3: Let ψ = ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ

and ψi1, . . . , ψik satisfy the conditions of R3;
α := RANF(ψ1 ∧ · · · ∧ ψn);
β := RANF(SRNF(ψi1 ∧ · · · ∧ ψik ∧ ξ));
ψ ′ := α ∧ ¬∃$xβ;
ϕ := result of replacing ψ by ψ ′ in ϕ;

end case
end while

end

The proof that these rewrite rules can be used to transform a safe-range SRNF for-
mula into a RANF formula has two steps (see Exercise 5.19). First, a case analysis can
be used to show that if safe-range ϕ in SRNF is not in RANF, then one of the rewrite
rules (R1, R2, R3) can be applied. Second, it is shown that Algorithm 5.4.7 terminates.
This is accomplished by showing that (1) each successfully completed call to RANF-ALG
reduces the number of non-self-contained subformulas, and (2) if a call to RANF-ALG on
ψ invokes other calls to RANF-ALG, the input to these recursive calls has fewer non-self-
contained subformulas than does ψ .

We now turn to the transformation of RANF formulas into equivalent relational algebra
queries. We abuse notation somewhat and assume that each variable is also an attribute.
(Alternatively, a one-one mapping var-to-att : var→ att could be used.) In general, given
a RANF formula ϕ with free variables x1, . . . , xn, we shall construct a named algebra
expression Eϕ over attributes x1, . . . , xn such that for each input instance I, Eϕ(I) =
{x1, . . . , xn | ϕ}(I). (The special case of queries {e1, . . . , en | ϕ}, where some of the ei are
constants, is handled by performing a join with the constants at the end of the construction.)

A formula ϕ is in modified relational algebra normal form (modified RANF) if it is
RANF, except that each polyadic ‘and’ is ordered and transformed into binary ‘and’s,
so that atoms x = y (x �= y) are after conjuncts that restrict one (both) of the variables
involved and so that each free variable in a conjunct of the form ¬ξ occurs in some
preceding conjunct. It is straightforward to verify that each RANF formula can be placed
into modified RANF. Note that each subformula of a modified RANF formula is self-
contained.

Let RANF formula ϕ be fixed. The construction of Eϕ is inductive, from leaf to root,
and is sketched in the following algorithm. The special operator diff, on inputs R and S

where att(S)⊂ att(R), is defined by



5.4 Syntactic Restrictions for Domain Independence 89

R diff S = R − (R '( S).

(Many details of this transformation, such as the construction of renaming function f ,
projection list $k, and selection formula F in the first entry of the case statement, are left to
the reader; see Example 5.4.9 and Exercise 5.19.)

Algorithm 5.4.8 (Translation into the Algebra)

Input: a formula ϕ in modified RANF

Output: an algebra query Eϕ equivalent to ϕ

begin
case ϕ of

R($e) δf (π$k(σF (R)))

x = a {〈x : a〉}

ψ ∧ ξ if ξ is x = x, then Eψ

if ξ is x = y (with x, y distinct), then
σx=y(Eψ), if {x, y} ⊆ free(ψ)
σx=y(Eψ '( δx→yEψ), if x ∈ free(ψ) and y �∈ free(ψ)
σx=y(Eψ '( δy→xEψ), if y ∈ free(ψ) and x �∈ free(ψ)

if ξ is x �= y, then σx �=y(Eψ)

if ξ =¬ξ ′, then
Eψ diff Eξ ′, if free(ξ ′)⊂ free(ψ)
Eψ − Eξ ′, if free(ξ ′)= free(ψ)

otherwise, Eψ '( Eξ

¬ψ {〈〉} − Eψ

(in the case that ¬ψ does not have ‘and’ as parent)

ψ1 ∨ · · · ∨ ψn Eψ1 ∪ · · · ∪ Eψn

∃x1, . . . , xnψ(x1, . . . , xn, y1, . . . , ym)

πy1,...,ym(Eψ)

end case
end

Finally, let q = {x1, . . . , xn | ϕ} be safe range. Because the transformations used for
SRNF and RANF are equivalence preserving, without loss of generality we can assume
that ϕ is in modified RANF. To conclude the proof of Theorem 5.4.6, it must be shown
that q and Eϕ are equivalent. In fact, it can be shown that for each instance I and each d
satisfying adom(q, I)⊆ d⊆ dom,

qd(I)= Eϕ(I).
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This will also yield that q is domain independent.
Let I and d be fixed. A straightforward induction can be used to show that for each

subformula ψ(y1, . . . , ym) of ϕ and each variable assignment ν with range d,

I |=d ψ[ν]⇔ 〈ν(y1), . . . , ν(ym)〉 ∈ Eψ(I)

(see Exercise 5.19.) This completes the proof of Theorem 5.4.6.

Example 5.4.9 (a) Consider the query

q1 = {〈a, x, y〉 : A1A2A3 | ∃z(P (x, y, z) ∨ [R(x, y)∧
([S(z) ∧ ¬T (x, z)] ∨ [T (y, z)])])}.

The formula of q1 is in SRNF. Transformation into RANF yields

∃z(P (x, y, z) ∨ [R(x, y) ∧ S(z) ∧ ¬T (x, z)] ∨ [R(x, y) ∧ T (y, z)]).

Assuming the schemas P [B1B2B3], R[C1C2], S[D], and T [F1F2], transformation of this
into the algebra yields

E = πx,y(δB1B2B3→xyz(P )

∪ ((δC1C2→xy(R) '( δD→z(S)) diff δF1F2→yz(T ))

∪ (δC1C2→xy(R) '( δF1F2→yz(T ))).

Finally, an algebra query equivalent to q1 is

{〈A1 : a〉} '( δxy→A2A3(E).

(b) Consider the query

q2 = {x | ∃y[R(x, y) ∧ ∀z(S(z, a)→ T (y, z))

∧ ∃v,w(¬T (v,w) ∧ w = b ∧ v = x)]}.

Transforming to SRNF, we have

∃y[R(x, y) ∧ ¬∃z(S(z, a) ∧ ¬T (y, z)) ∧ ∃v,w(¬T (v,w) ∧ w = b ∧ v = x)].

Transforming to RANF and reordering the conjunctions, we obtain

∃y[∃v,w(R(x, y)∧w = b∧v = x∧¬T (v,w))∧¬∃z(R(x, y)∧S(z, a)∧¬T (y, z))].

Assuming schemas R[A1, A2], S[B1, B2], and T [C1, C2], the equivalent algebra query is
obtained using the program
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E1 := (δA1A2→xy(R) '( {〈w : b〉});
E2 := (σv=x(E1 '( δx→v(E1))) diff δC1C2→vw(T );
E3 := πx,y(E2);
E4 := πx,y(δA1A2→xy(R) '( δB1→z(πB1(σB2=a(S))) diff δC1C2→yz(T ));
E5 := πx(E3 − E4).

The Positive Existential Calculus

In Chapter 4, disjunction was incorporated into the rule-based conjunctive queries, and
union was incorporated into the tableau, SPC, and SPJR queries. Incorporating disjunction
into the conjunctive calculus was more troublesome because of the possibility of infi-
nite “answers.” We now apply the tools developed earlier in this chapter to remedy this
situation.

A positive existential (calculus) query is a domain-independent calculus query q =
{e1, . . . , en | ϕ}, possibly with equality, in which the only logical connectives are ∧, ∨,
and ∃. It is decidable whether a query q with these logical connectives is domain inde-
pendent; and if so, q is equivalent to a safe-range query using only these connectives (see
Exercise 5.16). The following is easily verified.

Theorem 5.4.10 The positive existential calculus is equivalent to the family of conjunc-
tive queries with union.

5.5 Aggregate Functions

In practical query languages, the underlying domain is many-sorted, with sorts such as
boolean, string, integer, or real. These languages allow the use of comparators such as ≤
between database entries in an ordered sort and “aggregate” functions such as sum, count,
or average on numeric sorts. In this section, aggregate operators are briefly considered.
In the next section, a novel approach for incorporating arithmetic constraints into the
relational model will be addressed.

Aggregate operators operate on collections of domain elements. The next example
illustrates how these are used.

Example 5.5.1 Consider a relation Sales[Theater, Title, Date, Attendance], where a
tuple 〈th, ti, d, a〉 indicates that on date d a total of a people attended showings of movie
ti at theater th. We assume that {Theater, Title, Date} is a key, i.e., that two distinct tuples
cannot share the same values on these three attributes. Two queries involving aggregate
functions are

(5.4) For each theater, list the total number of movies that have been shown there.

(5.5) For each theater and movie, list the total attendance.
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Informally, the first query might be expressed in a pidgin language as

{〈th,c〉 | th is a theater occurring in Sales

and c = |πTitle(σTheater=th(Sales))|}
and the second as

{〈th, ti, s〉 | 〈th, ti〉 is a theater-title pair appearing in Sales

and s is the sum that includes each occurrence of each a-value in
σTheater=th∧Title=t i(Sales)}

A subtlety here is that this second query cannot be expressed simply as

{〈th, ti, s〉 | 〈th, ti〉 is a theater-title pair appearing in Sales

and s =#{a ∈ πAttendance(σTheater=th∧Title=ti(Sales))}}
since a value a has to be counted as many times as it occurs in the selection. This sug-
gests that a more natural setting for studying aggregate functions would explicitly include
bags (or multisets, i.e., collections in which duplicates are permitted) and not just sets, a
somewhat radical departure from the model we have used so far.

The two queries can be expressed as follows using aggregate functions in an algebraic
language:

πTheater; count(Title)(Sales)

πTheater,Title; sum(Attendance)(Sales).

We now briefly present a more formal development. To simplify, the formalism is
based on the unnamed perspective, and we assume that dom = N, i.e., the set of non-
negative integers. We stay within the relational model although as noted in the preceding
example, a richer data model with bags would be more natural. Indeed, the complex value
model that will be studied in Chapter 20 provides a more appropriate context for consider-
ing aggregate functions.

We shall adopt a somewhat abstract view of aggregate operators. An aggregate func-
tion f is defined to be a family of functions f1, f2, . . . such that for each j ≥ 1 and each
relation schema S with arity(S)≥ j , fj : Inst(S)→ N. For instance, for the sum aggregate
function, we will have sum1 to sum the first column and, in general, sumi to sum the ith

one. As in the case of sum, we want the fi to depend only on the content of the column
to which they are applied, where the “content” includes not only the set of elements in the
column, but also the number of their occurrences (so, columns are viewed as bags). This
requirement is captured by the following uniformity property imposed on each aggregate
function f :

Suppose that the ith column of I and the j th of J are identical, i.e., for each a,
there are as many occurrences of a in the ith column of I and in the j th column of
J . Then fi(I )= fj(J ).
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All of the commonly arising aggregate functions satisfy this uniformity property. The
uniformity condition is also used when translating calculus queries with aggregates into
the algebra with aggregates.

We next illustrate how aggregate functions can be incorporated into the algebra and
calculus (we do not discuss how this is done for nr-datalog¬, since it is similar to the alge-
bra.) Aggregate functions are added to the algebra using an extended projection operation.
Specifically, the projection function for aggregate function f on relation instance I is de-
fined as follows:

πj1,...,jm;f (k)(I )= {〈aj1, . . . , ajm, fk(σj1=aj1∧···∧jm=ajm(I ))〉 | 〈a1, . . . , an〉 ∈ I }.

Note that the aggregate function fk is applied separately to each group of tuples in I

corresponding to a different possible value for the columns j1, . . . , jm.
Turning to the calculus, we begin with an example. Query (5.5) can be expressed in

the extended calculus as

{th, ti, s | ∃d1, a1(Sales(th, ti, d1, a1)

∧ s = sum2{d2, a2 | Sales(th, ti, d2, a2)})}
where sum2 is the aggregate function summing the second column of a relation. Note that
the subexpression {d2, a2 | Sales(th, ti, d2, a2)} has free variables th and ti that do not occur
in the target of the subexpression. Intuitively, different assignments for these variables will
yield different values for the subexpression.

More formally, aggregate functions are incorporated into the calculus by permitting
aggregate terms that have the form fj{$x | ψ}, where f is an aggregate function, j ≤
arity($x) and ψ is a calculus formula (possibly with aggregate terms). When defining the
extended calculus, care must be taken to guarantee that aggregate terms do not recursively
depend on each other. This can be accomplished with a suitable generalization of safe
range. This generalization will also ensure that free variables occurring in an aggregate
term are range restricted by a subformula containing it. It is straightforward to define
the semantics of the generalized safe-range calculus with aggregate functions. One can
then show that the extensions of the algebra and safe-range calculus with the same set of
aggregate functions have the same expressive power.

5.6 Digression: Finite Representations of Infinite Databases

Until now we have considered only finite instances of relational databases. As we have
seen, this introduced significant difficulty in connection with domain independence of
calculus queries. It is also restrictive in connection with some application areas that involve
temporal or geometric data. For example, it would be convenient to think of a rectangle in
the real plane as an infinite set of points, even if it can be represented easily in some finite
manner.

In this short section we briefly describe some recent and advanced material that uses
logic to permit the finite representation of infinite databases. We begin by presenting an
alternative approach to resolving the problem of safety, that permits queries to have answers
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that are infinite but finitely representable. We then introduce a promising generalization of
the relational model that uses constraints to represent infinite databases, and we describe
how query processing can be performed against these in an efficient manner.

An Alternative Resolution to the Problem of Safety

As indicated earlier, much of the research on safety has been directed at syntactic restric-
tions to ensure domain independence. An alternative approach is to use the natural inter-
pretation, even if the resulting answer is infinite. As it turns out, the answers to such queries
are recursive and have a finite representation.

For this result, we shall use a finite set d ⊂ dom, which corresponds intuitively to the
active domain of a query and input database; and a setC = {c1, . . . , cm} ofm distinct “new”
symbols, which will serve as placeholders for elements of dom − d. Speaking intuitively,
the elements of C sometimes act as elements of dom, and so it is not appropriate to view
them as simple variables.

A tuple with placeholders is a tuple t = 〈t1, . . . , tn〉, where each ti is in d ∪ C. The
semantics of such t relative to d are

semd(t)= {ρ(t) | ρ is a one-one mapping from d ∪ C

that leaves d fixed and maps C into dom− d}.
The following theorem, stated without proof, characterizes the result of applying an

arbitrary calculus query using the natural semantics.

Theorem 5.6.1 Let q = {e1, . . . , en | ϕ} be an arbitrary calculus query, such that each
quantifier in ϕ quantifies a distinct variable that is not free in ϕ. Let C = {c1, . . . , cm} be
a set of m distinct “new” symbols not occurring in dom, but viewed as domain elements,
where m is the number of distinct variables in ϕ. Then for each input instance I,

qdom(I)= ∪{semadom(q,I)(t) | t ∈ qadom(q,I)∪C(I)}.

This shows that if we apply a calculus query (under the natural semantics) to a finite
database, then the result is recursive, even if infinite. But is the set of infinite databases
described in this manner closed under the application of calculus queries? The affirmative
answer is provided by an elegant generalization of the relational model presented next (see
Exercise 5.31).

Constraint Query Languages

The following generalization of the relational model seems useful to a variety of new
applications. The starting point is to consider infinite databases with finite representations
based on the use of constraints. To begin we define a generalized n-tuple as a conjunction
of constraints over n variables. The constraints typically include =, �=, ≤, etc. In some
sense, such a constraint can be viewed as a finite representation of a (possibly infinite) set
of (normal) n-tuples (i.e., the valuations of the variables that satisfy the constraint).
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Example 5.6.2 Consider the representation of rectangles in the plane. Suppose first that
rectangles are given using 5-tuples (n, x1, y1, x2, y2), where n is the name of the rectangle,
(x1, y1) are the coordinates of the lower left corner, and (x2, y2) are the coordinates of the
upper right. The set of points 〈u, v〉 in such a rectangle delimited by x1, y1, x2, y2 is given
by the constraint

x1 ≤ u≤ x2 ∧ y1 ≤ v ≤ y2.

Now the names of intersecting rectangles from a relation R are given by

{〈n1, n2〉 | ∃ x1, y1, x2, y2, x
′
1, y

′
1, x

′
2, y

′
2, u, v

(R(n1, x1, y1, x2, y2) ∧ (x1 ≤ u≤ x2 ∧ y1 ≤ v ≤ y2)∧
R(n2, x

′
1, y

′
1, x

′
2, y

′
2) ∧ (x′1 ≤ u≤ x′2 ∧ y′1 ≤ v ≤ y′2))}.

This is essentially within the framework of the relational model presented so far, except
that we are using an infinite base relation ≤. There is a level of indirection between the
representation of a rectangle (a, x1, y1, x2, y2) and the actual set of points that it contains.

In the following constraint formalism, a named rectangle can be represented by a
“generalized tuple” (i.e., a constraint). For instance, the rectangle of name a with corners
(0.5, 1.0) and (1.5, 5.5) is represented by the constraint

z1 = a ∧ 0.5≤ z2 ∧ z2 ≤ 1.5 ∧ 1.0 ≤ z3 ∧ z3 ≤ 5.5.

This should be viewed as a finite syntactic representation of an infinite set of triples. A
triple 〈z1, z2, z3〉 satisfying this constraint indicates that the point of coordinates (z2, z3) is
in a rectangle with name z1.

One can see a number of uses in allowing constraints in the language. First, con-
straints arise naturally for domains concerning measures (price, distance, time, etc.). The
introduction of time has already been studied in the active area of temporal databases (see
Section 22.6). In other applications such as spatial databases, geometry plays an essential
role and fits nicely in the realm of constraint query languages.

One can clearly obtain different languages by considering various domains and vari-
ous forms of constraints. Relational calculus, relational algebra, or some other relational
languages can be extended with, for instance, the theory of real closed fields or the the-
ory of dense orders without endpoints. Of course, a requirement is the decidability of the
resulting language.

Assuming some notion of constraints (to be formalized soon), we now define some-
what more precisely the constraint languages and then illustrate them with two examples.

Definition 5.6.3 A generalized n-tuple is a finite conjunction of constraints over vari-
ables x1, . . . , xn. A generalized instance of arity n is a finite set of generalized n-tuples
(the corresponding formula is the disjunction of the constraints).
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Suppose that I is a generalized instance. We refer to I as a syntactic database and to
the set of conventional tuples represented by I as the semantic database.

We now present two applications of this approach, one in connection with the reals
and the other with the rationals.

We assume now that the constants are interpreted over a real closed field (e.g., the
reals). The constraints are polynomial inequality constraints [i.e., inequalities of the form
p(x1, . . . , xn)≥ 0, where p is a polynomial]. Two 3-tuples in this context are

(3.56× x2
1 + 4.0× x2 ≥ 0) ∧ (x3 − x1 ≥ 0)

(x1 + x2 + x3 ≥ 0).

One can evaluate queries algebraically bottom-up (i.e., at each step of the computation,
the result is still a generalized instance). This is a straightforward consequence of Tarski’s
decision procedure for the theory of real closed fields. A difficulty resides in projection
(i.e., quantifier elimination). The procedure for projection is extremely costly in the size of
the query. However, for a fixed query, the complexity in the size of the syntactic database
is reasonable (in nc).

We assume now that the constants are interpreted over a countably infinite set with a
binary relation ≤ that is a dense order (e.g., the rationals). The constraints are of the form
xθy or xθc, where x, y are variables, c is a constant, and θ is among ≤, <,=. An example
of a 3-tuple is

(x1 ≤ x2) ∧ (x2 < x3).

Here again, a bottom-up algebraic evaluation is feasible. Indeed, evaluation is in ac0

in the size of the syntactic database (for a fixed query).
In the remainder of this book, we consider standard databases and not generalized

ones.
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Exercises

Exercise 5.1 Express queries (5.2 and 5.3) in (1) the relational algebras, (2) nonrecursive
datalog¬, and (3) domain-independent relational calculus.

Exercise 5.2 Express the following queries against the CINEMA database in (1) the relational
algebras, (2) nonrecursive datalog¬, and (3) domain-independent relational calculus.

(a) Find the actors cast in at least one movie by Kurosawa.

(b) Find the actors cast in every movie by Kurosawa.

(c) Find the actors cast only in movies by Kurosawa.

(d) Find all pairs of actors who act together in at least one movie.

(e) Find all pairs of actors cast in exactly the same movies.

(f) Find the directors such that every actor is cast in one of his or her films.

(Assume that each film has exactly one director.)

Exercise 5.3 Prove or disprove (assuming X ⊆ sort(P )= sort(Q)):

(a) πX(P ∪Q)= πX(P ) ∪ πX(Q);

(b) πX(P ∩Q)= πX(P ) ∩ πX(Q).

Exercise 5.4

(a) Give formal definitions for the syntax and semantics of the unnamed and named
relational algebras.

(b) Show that in the unnamed algebra ∩ can be simulated using (1) the difference oper-
ator −; (2) the operators ×, π, σ .

(c) Give a formal definition for the syntax and semantics of selection operators in the un-
named algebra that permit conjunction, disjunction, and negation in their formulas.
Show that these selection operators can be simulated using atomic selection opera-
tors, union, intersect, and difference.

J (d) Show that the SPCU algebra, in which selection operators with negation in the
formulas are permitted, cannot simulate the difference operator.

J (e) Formulate and prove results analogous to those of parts (b), (c), and (d) for the named
algebra.

Exercise 5.5

(a) Prove that the unnamed algebra operators {σ, π,×,∪,−} are nonredundant.

(b) State and prove the analogous result for the named algebra.

Exercise 5.6

(a) Exhibit a relational algebra query that is not monotonic.

(b) Exhibit a relational algebra query that is not satisfiable.
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Exercise 5.7 Prove Proposition 5.1.2 (i.e., that the unnamed and named relational algebras
have equivalent expressive power).

Exercise 5.8 (Division) The division operator, denoted ÷, is added to the named algebra as
follows. For instances I and J with sort(J )⊆ sort(I ), the value of I ÷ J is the set of tuples
r ∈ πsort(I )−sort(J )(I ) such that ({r} '( J ) ⊆ I . Use the division to express algebraically the
query, “Which theater is featuring all of Hitchcock’s movies?”. Describe how nr-datalog¬ can
be used to simulate division. Describe how the named algebra can simulate division. Is division
a monotonic operation?

Exercise 5.9 Show that the semantics of each nr-datalog¬ rule can be described as a difference
q1 − q2, where q1 is an SPJR query and q2 is an SPJRU query.

Exercise 5.10 Verify that each nr-datalog¬ program with equality can be simulated by one
without equality.

Exercise 5.11 Prove Proposition 5.2.2. Hint: Use the proof of Theorem 4.4.8 and the fact that
the relational algebra is closed under composition.

JExercise 5.12 Prove that the domain-independent relational calculus without equality is
strictly weaker than the domain-independent relational calculus. Hint: Suppose that calculus
query q without equality is equivalent to {x | R(x) ∧ x �= a}. Show that q can be translated into
an algebra query q ′ that is constructed without using a constant base relation and such that all
selections are on base relation expressions. Argue that on each input relation I over R, each
subexpression of q ′ evaluates to either In for some n ≥ 0, or to the empty relation for some
n≥ 0.

Exercise 5.13

(a) Complete the proof of Lemma 5.3.11.

(b) Complete the proof of Lemma 5.3.12.

Exercise 5.14

(a) Prove that the rewrite rules of Figure 5.1 preserve equivalence.

(b) Prove that these rewrite rules can be used to transform an arbitrary calculus formula
into an equivalent formula in PNF with CNF matrix. State which rewrite rules are
needed.

(c) Do the same as (b), but for DNF matrix.

(d) Prove that the rewrite rules of Figure 5.1 are not complete in the sense that there
are calculus formulas ϕ and ψ such that (1) ϕ ≡ ψ , but (2) there is no sequence of
applications of the rewrite rules that transforms ϕ into ψ .

Exercise 5.15 Verify the claims of Example 5.3.9.

Exercise 5.16

(a) Show that each positive existential query is equivalent to one whose formula is in
PNF with either CNF or DNF matrix and that they can be expressed in the form
{e1, . . . , en | ψ1 ∨ · · · ∨ ψm}, where each ψj is a conjunctive calculus formula with
free(ψj) = the set of variables occurring in e1, . . . , en. Note that this formula is safe
range.
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(b) Show that it is decidable, given a relational calculus query q (possibly with equality)
whose only logical connectives are ∧, ∨, and ∃, whether q is domain independent.

(c) Prove Theorem 5.4.10.

Exercise 5.17 Use the construction of the proof of Theorem 5.4.6 to transform the following
into the algebra.

(a) {〈 〉 | ∃x(R(x) ∧ ∃y(S(x, y) ∧ ¬∃z(T (x, y, a))))}
(b) {w, x, y, z | (R(w, x, y) ∨ R(w, x, z)) ∧ (R(y, z,w) ∨ R(y, z, x))}

Exercise 5.18 For each of the following queries, indicate whether it is domain independent
and/or safe range. If it is not domain independent, give examples of different domains yielding
different answers on the same input; and if it is safe range, translate it into the algebra.

(a) {x, y | ∃z[T (x, z) ∧ ∃wT (w, x, y)] ∧ x = y}
(b) {x, y | [x = a ∨ ∃z(R(y, z))] ∧ S(y)}
(c) {x, y | [x = a ∨ ∃z(R(y, z))] ∧ S(y) ∧ T (x)}
(d) {x | ∀y(R(y)→ S(x, y))}
(e) {〈〉 | ∃x∀y(R(y)→ S(x, y))}
(f) {x, y | ∃zT (x, y, z) ∧ ∃u, v([(R(u) ∨ S(u, v)) ∧ R(v)]
→ [∃w(T (x,w, v) ∧ T (u, v, y))])}

JExercise 5.19 Consider the proof of Theorem 5.4.6.

(a) Give the missing parts of Algorithm 5.4.7.

(b) Show that Algorithm 5.4.7 is correct and terminates on all input.

(c) Give the missing parts of Algorithm 5.4.8 and verify its correctness.

(d) Given q = {〈x1, . . . , xn〉 | ϕ} with ϕ in modified RANF, show for each instance I and
each d satisfying adom(q, I)⊆ d⊆ dom that qd(I)= Eϕ(I).

Exercise 5.20 Consider the proof of Theorem 5.4.6.

(a) Present examples illustrating how the nondeterministic choices in these rewrite rules
can be used to help optimize the algebra query finally produced by the construction of
the proof of this lemma. (Refer to Chapter 6 for a general discussion of optimization.)

(b) Consider a generalization of rules (R1) and (R2) that permits using a set of indexes
{j1, . . . , jl} ⊆ {1, . . . , n} − {i1, . . . , ik}. What are the advantages of this generaliza-
tion? What restrictions must be imposed to ensure that Algorithm 5.4.8 remains
correct?

Exercise 5.21 Develop a direct proof that CALCadom & CALCsr . Hint: Given calculus query
q, first build a formula ξadom(x) such that I |= ξadom(x)[ν] iff ν(x) ∈ adom(q, I). Now perform
an induction on subformulas.

JExercise 5.22 [Coh86] Let R have arity n. Define the gen(erator) operator so that for instance
I of R, indexes 1≤ i1 < · · ·< ik ≤ n, and constants a1, . . . , ak,

geni1:a1,...,ik:ak(I )= πj1,...,jl(σi1=a1∧···∧ik=ak(I )),

where {j1, . . . , jl} is a listing in order of (some or all) indexes in {1, . . . , n} − {i1, . . . , ik}. Note
that the special case of gen1:b1,...,n:bn(I ) can be viewed as a test of 〈b1, . . . , bn〉 ∈ I ; and gen[ ](I )
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is a test of whether I is nonempty. In some research in AI, the primitive mechanism for accessing
relations is based on generators that are viewed as producing a stream of tuples as output. For
example, the query {〈x, y, z〉 | R(x, y) ∧ S(y, z)} can be computed using the algorithm

for each tuple 〈x, y〉 generated by gen1:x,2:y(R)

for each value 〈z〉 generated by gen1:y(S)

output 〈x, y, z〉
end for each

end for each

Develop an algorithm for translating calculus queries into programs using generators.
Describe syntactic restrictions on the calculus that ensure that your algorithm succeeds.

♠Exercise 5.23 [Cod72b] (Tuple calculus.) We use a set tvar of sorted tuple variables. The
tuple calculus is defined as follows. If t is a tuple variable and A is an attribute in the sort of t ,
t.A is a term. A constant is also a term. The atomic formulas are either of the form R(t) with
the appropriate constraint on sorts, or e = e′, where e, e′ are terms. Formulas are constructed as
in the standard relational calculus. For example, query (5.1) is expressed by the tuple calculus
query

{t : title | ∃s: title, director, actor[Movie(s) ∧ t.title= s.title

∧ s.director = “Hitchcock”]

∧ ¬∃u: title, director, actor[Movie(u) ∧ u.title= s.title

∧ u.actor = “Hitchcock”]}.
Give a formal definition for the syntax of the tuple calculus and for the relativized interpretation,
active domain, and domain-independent semantics. Develop an analog of safe range. Prove the
equivalence of conventional calculus and tuple calculus under all of these semantics.

Exercise 5.24 Prove that the relational calculus and the family of nr-datalog¬ programs with
single-relation output have equivalent expressive power by using direct simulations between the
two families.

♠Exercise 5.25 [Top87] Let R be a database schema, and define the binary relation gen(erates)
on variables and formulas as follows:

gen(x, ϕ) if ϕ = R(u) for some R ∈ R and x ∈ free(ϕ)
gen(x,¬ϕ) if gen(x, pushnot(¬ϕ))
gen(x, ∃yϕ) if x, y are distinct and gen(x, ϕ)
gen(x,∀yϕ) if x, y are distinct and gen(x, ϕ)
gen(x, ϕ ∨ ψ) if gen(x, ϕ) and gen(x, ψ)

gen(x, ϕ ∧ ψ) if gen(x, ϕ) or gen(x, ψ),

where pushnot(¬ϕ) is defined in the natural manner to be the result of pushing the negation
into the next highest level logical connective (with consecutive negations cancelling each other)
unless ϕ is an atom (using the rewrite rules 5, 6, 7, 10, and 11 from Fig. 5.1). A formula ϕ is
allowed

(i) if x ∈ free(ϕ) then gen(x, ϕ);

(ii) if for each subformula ∃yψ of ϕ, gen(y, ψ) holds; and
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(iii) if for each subformula ∀yψ of ϕ, gen(y,¬ψ) holds.

A calculus query is allowed if its formula is allowed.

(a) Exhibit a query that is allowed but not safe range.

� (b) Prove that each allowed query is domain independent.

In [VanGT91, EHJ93] a translation of allowed formulas into the algebra is presented.)

�Exercise 5.26 [Nic82] The notion of “range-restricted” queries, which ensures domain inde-
pendence, is based on properties of the normal form equivalents of queries. Let q = {�x | ϕ} be
a calculus query, and let ϕDNF = �%y(D1 ∨ · · · ∨Dn) be the result of transforming ϕ into PNF
with DNF matrix using the rewrite rules of Fig. 5.1; and similarly let ϕCNF = �%z(C1∧ · · · ∧Cm)

be the result of transforming ϕ into PNF with CNF matrix. The query q is range restricted if

(i) each free variable x in ϕ occurs in a positive literal (other than x = y) in every Di;

(ii) each existentially quantified variable x in ϕDNF occurs in a positive literal (other than
x = y) in every Di where x occurs; and

(iii) each universally quantified variable x in ϕCNF occurs in a negative literal (other than
x �= y) in every Cj where x occurs.

Prove that range-restricted queries are domain independent. (In [VanGT91] a translation of the
range-restricted queries into the algebra is presented.)

Exercise 5.27 [VanGT91] Suppose that R[Product, Part] holds project numbers and the parts
that are used to make them, and S[Supplier, Part] holds supplier names and the parts that they
supply. Consider the queries

q1 = {x | ∀y(R(100, y)→ S(x, y))}
q2 = {〈〉 | ∃x∀y(R(100, y)→ S(x, y))}

(a) Prove that q1 is not domain independent.

(b) Prove that q2 is not allowed (Exercise 5.25) but it is range restricted (Exercise 5.26)
and hence domain independent.

(c) Find an algebra query q ′ equivalent to q2.

Exercise 5.28 [Klu82] Consider a database schema with relations Dept[Name, Head, Col-
lege], Faculty[Name, Dname], and Grad[Name, MajorProf , GrantAmt], and the query

For each department in the Letters and Science College, compute the total graduate
student support for each of the department’s faculty members, and produce as output a
relation that includes all pairs 〈d, a〉where d is a department in the Letters and Science
College, and a is the average graduate student support per faculty member in d.

Write algebra and calculus queries that express this query.

Exercise 5.29 We consider constraint databases involving polynomial inequalities over the re-
als. Let I1 = {(9x2

1 + 4x2 ≥ 0)} be a generalized instance over AB, where x1 ranges over A and
x2 ranges over B, and let I2 = {(x3− x1 ≥ 0)} over AC. Express πBC(I1 �� I2) as a generalized
instance.

�Exercise 5.30 Recall Theorem 5.6.1.
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(a) Let finite d ⊂ dom be fixed, C be a set of new symbols, and t be a tuple with
placeholders. Describe a generalized tuple (in the sense of constraint databases) t ′
whose semantics are equal to semd(t).

(b) Show that the family of databases representable by sets of tuples with placeholders
is closed under the relational calculus.

♠Exercise 5.31 Prove Theorem 5.6.1.

Exercise 5.32 [Mai80] (Unrestricted algebra) For this exercise we permit relations to be finite
or infinite. Consider the complement operator c defined on instances I of arity n by I c =
domn − I . (The analogous operator is defined for the named algebra.) Prove that the calculus
under the natural interpretation is equivalent to the algebra with operators {σ, π,×,∪,c }.

�Exercise 5.33 A total mapping τ from instances over R to instances over S is C-generic for
C ⊆ dom, iff for each bijection ρ over dom that is the identity on C, τ and ρ commute. That
is, τ(ρ(I))= ρ(τ(I)) for each instance I of R. The mapping τ is generic if it is C-generic for
some finite C ⊆ dom. Prove that each relational algebra query is generic—in particular, that
each algebra query q is adom(q)-generic.

♠Exercise 5.34 Let R be a unary relation name. A hyperplane query over R is a query of the
form σF(R × · · · × R) (with 0 or more occurrences of R), where F is a conjunction of atoms
of the form i = j , i �= j , i = a, or i �= a (for indexes i, j and constant a). A formula F of this
form is called a hyperplane formula. A hyperplane-union query over R is a query of the form
σF(R × · · · × R), where F is a disjunction of hyperplane formulas; a formula of this form is
called a hyperplane-union formula.

(a) Show that if q is an algebra query over R, then there is an n ≥ 0 and a hyperplane-
union query q ′ such that for all instances I over R, if |I | ≥ n and adom(I ) ∩
adom(q)= ∅, then q(I )= q ′(I ).

The query even is defined over R as follows: even(I ) = {〈〉} (i.e., yes) if |I | is even; and
even(I )= {} (i.e., no) otherwise.

(b) Prove that there is no algebra query q over R such that q ≡ even.

Exercise 5.35 [CH80b] (Unsorted algebra) An h-relation (for heterogeneous relation) is a
finite set of tuples not necessarily of the same arity.

(a) Design an algebra for h-relations that is at least as expressive as relational algebra.

� (b) Show that the algebra in (a) can be chosen to have the additional property that if
q is a query in this algebra taking standard relational input and producing standard
relational output, then there is a standard algebra query q ′ such that q ′ ≡ q.

♠Exercise 5.36 [IL84] (Cylindric algebra) Let n be a positive integer, R[A1, . . . , An] a relation
schema, and C a (possibly infinite) set of constants. Recall that a Boolean algebra is a 6-tuple
(B,∨,∧, ,⊥, ), where B is a set containing ⊥ and  ; ∨,∧ are binary operations on B; and

is a unary operation on B such that for all x, y, z ∈ B:

(a) x ∨ y = y ∨ x;

(b) x ∧ y = y ∧ x;

(c) x ∨ (y ∧ z)= (x ∨ y) ∧ (x ∨ z);

(d) x ∧ (y ∨ z)= (x ∧ y) ∨ (x ∧ z);
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(e) x ∧ ⊥=⊥;

(f) x ∨  = ;

(g) x ∧ x =⊥;

(h) x ∨ x = ; and

(i) ⊥ �=  .

For a Boolean algebra, define x ≤ y to mean x ∧ y = x.

(a) Show that 〈RC,∪,∩,c ,∅, Cn〉 is a Boolean algebra where RC is the set of all (pos-
sibly infinite) R-relations over constants in C and c denotes the unary complement
operator, defined so that I c = Cn − I . In addition, show that I ≤ J iff I ⊆ J .

Let the diagonals dij be defined by the statement, “for each i, j , dij = σAi=Aj
(Cn)”; and let the

ith cylinder Ci be defined for each I by the statement, “CiI is the relation overRC defined by

CiI = {t | πA1...Ai−1Ai+1...An(t) ∈ πA1...Ai−1Ai+1...An(I ) and t (Ai) ∈ C}.”

(b) Show the following properties of cylindric algebras: (1) Ci∅ = ∅; (2) x ≤ Cix; (3)
Ci(x ∩ Ciy)= Cix ∩ Ciy; (4) CiCjx = CjCix; (5) dii = Cn; (6) if i �= j and i �= k,
then djk = Ci(dji ∩ dik); (7) if i �= j , then Ci(dij ∩ x) ∩ Ci(dij ∩ x)= ∅.

(c) Let h be the mapping from any (possibly infinite) relation S with sort(S)⊂ A1 . . . An

with entries in C to a relation over R obtained by extending each tuple in S to
A1 . . . An in all possible ways with values in C. Prove that (1) h(R1 �� R2)= h(R1)∩
h(R2) and (2) if A1 ∈ sort(R), then h(πA1(R))= C1h(R1).


