
4 Conjunctive Queries

Alice: Shall we start asking queries?
Sergio: Very simple ones for the time being.

Riccardo: But the system will answer them fast.
Vittorio: And there is some nice theory.

In this chapter we embark on the study of queries for relational databases, a rich topic
that spans a good part of this book. This chapter focuses on a limited but extremely

natural and commonly arising class of queries called conjunctive queries. Five equivalent
versions of this query family are presented here: one from each of the calculus and datalog
paradigms, two from the algebra paradigm, and a final one that has a more visual form.
In the context of conjunctive queries, the three nonalgebraic versions can be viewed as
minor syntactic variants of each other; but these similarities diminish as the languages are
generalized to incorporate negation and/or recursion. This chapter also discusses query
composition and its interaction with user views, and it extends conjunctive queries in a
straightforward manner to incorporate union (or disjunction).

The conjunctive queries enjoy several desirable properties, including, for example,
decidability of equivalence and containment. These results will be presented in Chapter 6,
in which a basic tool, the Homomorphism Theorem, is developed. Most of these results
extend to conjunctive queries with union.

In the formal framework that we have developed in this book, we distinguish between
a query, which is a syntactic object, and a query mapping, which is the function defined by
a query interpreted under a specified semantics. However, we often blur these two concepts
when the meaning is clear from the context. In the relational model, query mappings
generally have as domain the family of all instances of a specified relation or database
schema, called the input schema; and they have as range the family of instances of an
output schema, which might be a database schema or a relation schema. In the latter case,
the relation name may be specified as part of the syntax of the query or by the context, or
it may be irrelevant to the discussion and thus not specified at all. We generally say that
a query (mapping) is from (or over) its input schema to its output schema. Finally, two
queries q1 and q2 over R are equivalent, denoted q1 ≡ q2, if they have the same output
schema and q1(I)= q2(I) for each instance I over R.

This chapter begins with an informal discussion that introduces a family of simple
queries and illustrates one approach to expressing them formally. Three versions of con-
junctive queries are then introduced, and all of them have a basis in logic. Then a brief

37



38 Conjunctive Queries

(4.1) Who is the director of “Cries and Whispers”?

(4.2) Which theaters feature “Cries and Whispers”?

(4.3) What are the address and phone number of the Le Champo?

(4.4) List the names and addresses of theaters featuring a Bergman film.

(4.5) Is a film directed by Bergman playing in Paris?

(4.6) List the pairs of persons such that the first directed the second in a movie, and vice versa.

(4.7) List the names of directors who have acted in a movie they directed.

(4.8) List pairs of actors that acted in the same movie.

(4.9) On any input produce 〈“Apocalypse Now”, “Coppola”〉 as the answer.

(4.10) Where can I see “Annie Hall” or “Manhattan”?

(4.11) What are the films with Allen as actor or director?

(4.12) What films with Allen as actor or director are currently featured at the Concorde?

(4.13) List all movies that were directed by Hitchcock or that are currently playing at the Rex.

(4.14) List all actors and director of the movie “Apocalypse Now.”

Figure 4.1: Examples of conjunctive queries, some of which require union

digression is made to consider query composition and database views. The algebraic per-
spectives on conjunctive queries are then given, along with the theorem showing the equiv-
alence of all five approaches to conjunctive queries. Finally, various forms of union and
disjunction are added to the conjunctive queries.

4.1 Getting Started

To present the intuition of conjunctive queries, consider again the CINEMA database of
Chapter 3. The following correspond to conjunctive queries:

(4.1) Who is the director of “Cries and Whispers”?

(4.2) Which theaters feature “Cries and Whispers”?

(4.3) What are the address and phone number of the Le Champo?

These and other queries used in this section are gathered in Fig. 4.1. Each of the queries
just given calls for extracting information from a single relation. In contrast, queries (4.4)
through (4.7) involve more than one relation.

In queries (4.1–4.4 and 4.6–4.9), the database is asked to find values or tuples of values
for which a certain pattern of data holds in the database, and in query (4.5) the database is
asked whether a certain pattern of data holds. We shall see that the patterns can be described
simply in terms of the existence of tuples that are connected to each other by equality
of some of their coordinates. On the other hand, queries (4.10) through (4.14) cannot be
expressed in this manner unless some form of disjunction or union is incorporated.
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Example 4.1.1 Consider query (4.4). Intuitively, we express this query by stating that

if there are tuples r1, r2, r3 respectively in relations
Movies, Pariscope, Location such that

the Director in r1 is “Bergman”
and the Titles in tuple r1 and r2 are the same
and the Theaters in tuple r2 and r3 are the same

then we want the Theater and Address coordinates from tuple r3.

In this formulation we essentially use variables that range over tuples. Although this is the
basis of the so-called (relational) tuple calculus (see Exercise 5.23 in the next chapter),
the focus of most theoretical investigations has been on the domain calculus, which uses
variables that range over constants rather than tuples. This also reflects the convention
followed in the predicate calculus of first-order logic. Thus we reformulate the preceding
query as

if there are tuples 〈xti, “Bergman”, xac〉, 〈xth, xti, xs〉, and 〈xth, xad, xp〉,
respectively, in relations Movies, Pariscope, and Location

then include the tuple 〈Theater : xth, Address : xad〉 in the answer,

where xti, xac, . . . are variables. Note that the equalities specified in the first formula-
tion are achieved implicitly in the second formulation through multiple occurrences of
variables.

The translation of this into the syntax of rule-based conjunctive queries is now ob-
tained by

ans(xth, xad)←Movies(xti, “Bergman”, xac), Pariscope(xth, xti, xs),

Location(xth, xad, xp)

where ans (for “answer”) is a relation over {Theater,Address}. The atom to the left of the
← is called the rule head, and the set of atoms to the right is called the body.

The preceding rule may be abbreviated as

ans(xth, xad)←Movies(xti, “Bergman”, _), Pariscope(xth, xti, _),

Location(xth, xad, _)

where _ is used to replace all variables that occur exactly once in the rule. Such variables
are sometimes called anonymous.

In general, a rule-based conjunctive query is a single rule that has the form illustrated
in the preceding example. The semantics associated with rule-based conjunctive queries
ensures that their interpretation corresponds to the more informal expressions given in the
preceding example. Rule-based conjunctive queries can be viewed as the basic building
block for datalog, a query language based on logic programming that provides an elegant
syntax for expressing recursion.

A second paradigm for the conjunctive queries has a more visual form and uses tables
with variables and constants. Although we present a more succinct formalism for this
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Movies Title Director Actor

_The Seventh Seal Bergman

Pariscope Title Schedule

_The Seventh Seal

Theater

_Rex

Location Address Phone number

P._1 bd. Poissonnière

Theater

P._Rex

Figure 4.2: A query in QBE

paradigm later in this chapter, we illustrate it in Fig. 4.2 with a query presented in the syntax
of the language Query-By-Example (QBE) (see also Chapter 7). The identifiers starting
with a _ designate variables, and P. indicates what to output. Following the convention
established for QBE, variable names are chosen to reflect typical values that they might
take. Note that the coordinate entries left blank correspond, in terms of the rule given
previously, to distinct variables that occur exactly once in the body and do not occur in
the head (i.e., to anonymous variables).

The third version of conjunctive queries studied in this chapter is a restriction of the
predicate calculus; as will be seen, the term conjunctive query stems from this version. The
fourth and fifth versions are algebraic in nature, one for the unnamed perspective and the
other for the named perspective.

4.2 Logic-Based Perspectives

In this section we introduce and study three versions of the conjunctive queries, all stem-
ming from mathematical logic. After showing the equivalence of the three resulting query
languages, we extend them by incorporating a capability to express equality explicity,
thereby yielding a slightly more powerful family of languages.

Rule-Based Conjunctive Queries

The rule-based version of conjunctive queries is now presented formally. As will be seen
later, the rule-based paradigm is well suited for specifying queries from database schemas
to database schemas. However, to facilitate the comparison between the different variants
of the conjunctive queries, we focus first on rule-based queries whose targets are relation
schemas. We adopt the convention of using the name ans to refer to the name of the target
relation if the name itself is unimportant (as is often the case with relational queries).



4.2 Logic-Based Perspectives 41

Definition 4.2.1 Let R be a database schema. A rule-based conjunctive query over R
is an expression of the form

ans(u)← R1(u1), . . . , Rn(un)

where n ≥ 0, R1, . . . , Rn are relation names in R; ans is a relation name not in R; and
u, u1, . . . , un are free tuples (i.e., may use either variables or constants). Recall that if
v = 〈x1, . . . , xm〉, then ‘R(v)’ is a shorthand for ‘R(x1, . . . , xm)’. In addition, the tuples
u, u1, . . . , un must have the appropriate arities (i.e., u must have arity of ans, and ui must
have the arity of Ri for each i ∈ [1, n]). Finally, each variable occurring in u must also
occur at least once in u1, . . . , un. The set of variables occurring in q is denoted var(q).

Rule-based conjunctive queries are often more simply called rules. In the preceding
rule, the subexpression R1(u1), . . . , Rn(un) is the body of the rule, and ‘ans(u)’ is the
head. The rule here is required by the definition to be range restricted (i.e., each variable
occurring in the head must also occur in the body). Although this restriction is followed in
most of the languages based on the use of rules, it will be relaxed in Chapter 18.

Intuitively, a rule may be thought of as a tool for deducing new facts. If one can find
values for the variables of the rule such that the body holds, then one may deduce the
head fact. This concept of “values for the variables in the rules” is captured by the notion
of “valuation.” Formally, given a finite subset V of var, a valuation ν over V is a total
function ν from V to the set dom of constants. This is extended to be identity on dom and
then extended to map free tuples to tuples in the natural fashion.

We now define the semantics for rule-based conjunctive queries. Let q be the query
given earlier, and let I be an instance of R. The image of I under q is

q(I)= {ν(u) | ν is a valuation over var(q) and ν(ui) ∈ I(Ri),

for each i ∈ [1, n]}.
The active domain of a database instance I, denoted adom(I), is the set of all constants

occurring in I, and the active domain adom(I ) of relation instance I is defined analogously.
In addition, the set of constants occurring in a query q is denoted adom(q). We use
adom(q, I) as an abbreviation for adom(q) ∪ adom(I).

Let q be a rule and I an input instance for q. Because q is range restricted, it is easily
verified that adom(q(I)) ⊆ adom(q, I) (see Exercise 4.2). In other words, q(I) contains
only constants occurring in q or in I. In particular, q(I) is finite, and so it is an instance.

A straightforward algorithm for evaluating a rule q is to consider systematically all
valuations with domain the set of variables occurring in q, and range the set of all constants
occurring in the input or q. More efficient algorithms may be achieved, both by performing
symbolic manipulations of the query and by using auxiliary data structures such as indexes.
Such improvements are considered in Chapter 6.

Returning to the intuition, under the usual perspective a fundamental difference be-
tween the head and body of a rule R0 ← R1, . . . , Rn is that body relations are viewed as
being stored, whereas the head relation is not. Thus, referring to the rule given earlier, the
values of relations R1, . . . , Rn are known because they are provided by the input instance
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I. In other words, we are given the extension of R1, . . . , Rn; for this reason they are called
extensional relations. In contrast, relation R0 is not stored and its value is computed on
request by the query; the rule gives only the “intension” or definition of R0. For this reason
we refer to R0 as an intensional relation. In some cases, the database instance associated
with R1, . . . , Rn is called the extensional database (edb), and the rule itself is referred to
as the intensional database (idb). Also, the defined relation is sometimes referred to as an
idb relation.

We now present the first theoretical property of conjunctive queries. A query q over R
is monotonic if for each I, J over R, I⊆ J implies that q(I)⊆ q(J). A query q is satisfiable
if there is some input I such that q(I) is nonempty.

Proposition 4.2.2 Conjunctive queries are monotonic and satisfiable.

Proof Let q be the rule-based conjunctive query

ans(u)← R1(u1), . . . , Rn(un).

For monotonicity, let I ⊆ J, and suppose that t ∈ q(I). Then for some valuation ν over
var(q), ν(ui) ∈ I(Ri) for each i ∈ [1, n], and t = ν(u). Because I ⊆ J, ν(ui) ∈ J(Ri) for
each i, and so t ∈ q(J).

For satisfiability, let d be the set of constants occurring in q, and let a ∈ dom be new.
Define I over the relation schemas R of the rule body so that

I(R)= (d ∪ {a})arity(R)

[i.e., the set of all tuples formed from (d ∪ {a}) having arity arity(R)]. Finally, let ν map
each variable in q to a. Then ν(ui) ∈ I(Ri) for i ∈ [1, n], and so ν(u) ∈ q(I). Thus q is
satisfiable.

The monotonicity of the conjunctive queries points to limitations in their expressive
power. Indeed, one can easily exhibit queries that are nonmonotonic and therefore not
conjunctive queries. For instance, the query “Which theaters in New York show only
Woody Allen films?” is nonmonotonic.

We close this subsection by indicating how rule-based conjunctive queries can be used
to express yes-no queries. For example, consider the query

(4.5) Is there a film directed by Bergman playing in Paris?

To provide an answer, we assume that relation name ans has arity 0. Then applying the rule

ans()←Movies(x, “Bergman”, y),Pariscope(z, x,w)

returns the relation {〈〉} if the answer is yes, and returns {} if the answer is no.
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Tableau Queries

If we blur the difference between a variable and a constant, the body of a conjunctive
query can be seen as an instance. This leads to a formulation of conjunctive queries called
“tableau”, which is closest to the visual form provided by QBE.

Definition 4.2.3 The notion of tableau over a schema R (R) is defined exactly as was
the notion of instance over R (R), except that both variables and constants may occur. A
tableau query is simply a pair (T, u) [or (T , u)] where T is a tableau and each variable in
u also occurs in T. The free tuple u is called the summary of the tableau query.

The summary tuple u in a tableau query (T, u) represents the tuples included in the
answer to the query. Thus the answer consists of all tuples u for which the pattern described
by T is found in the database.

Example 4.2.4 Let T be the tableau

Movies Title Director Actor

xti “Bergman” xac

Pariscope Theater Title Schedule

xth xti xs

Location Theater Address Phone Number

xth xad xp

The tableau query (T, 〈Theater : xth, Address : xad〉) expresses query (4.4). If the un-
named perspective on tuples is used, then the names of the attributes are not included in u.

The notion of valuation is extended in the natural fashion to map tableaux1 to in-
stances. An embedding of tableau T into instance I is a valuation ν for the variables oc-
curring in T such that ν(T)⊆ I. The semantics for tableau queries is essentially the same
as for rule-based conjunctive queries: The output of (T, u) on input I consists of all tuples
ν(u) where ν is an embedding of T into I.

Aside from the fact that tableau queries do not indicate a relation name for the an-
swer, they are syntactically close to the rule-based conjunctive queries. Furthermore, the
alternative perspective provided by tableaux lends itself to the development of several nat-
ural results. Perhaps the most compelling of these arises in the context of the chase (see

1 One tableau, two tableaux.
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Chapter 8), which provides an elegant characterization of two conjunctive queries yielding
identical results when the inputs satisfy certain dependencies.

A family of restricted tableaux called typed have been used to develop a number of
theoretical results. A tableau query q = (T , u) under the named perspective, where T is
over relation schema R and sort(u)⊆ sort(R), is typed if no variable of T or t is associated
with two distinct attributes in q. Intuitively, the term ‘typed’ is used because it is impossible
for entries from different attributes to be compared. The connection between typed tableaux
and conjunctive queries in the algebraic paradigm is examined in Exercises 4.19 and
4.20. Additional results concerning complexity issues around typed tableau queries are
considered in Exercises 6.16 and 6.21 in Chapter 6. Typed tableaux also arise in connection
with data dependencies, as studied in Part C.

Conjunctive Calculus

The third formalism for expressing conjunctive queries stems from predicate calculus. (A
review of predicate calculus is provided in Chapter 2, but the presentation of the calculus
in this and the following chapter is self-contained.)

We begin by presenting conjunctive calculus queries that can be viewed as syntactic
variants of rule-based conjunctive queries. They involve simple use of conjunction and
existential quantification. As will be seen, the full conjunctive calculus, defined later,
allows unrestricted use of conjunction and existential quantification. This provides more
flexibility in the syntax but, as will be seen, does not increase expressive power.

Consider the conjunctive query

ans(e1, . . . , em)← R1(u1), . . . , Rn(un).

A conjunctive calculus query that has the same semantics is

{e1, . . . , em | ∃x1, . . . , xk(R1(u1) ∧ · · · ∧ Rn(un))},

where x1, . . . , xk are all the variables occurring in the body and not the head. The sym-
bol∧ denotes conjunction (i.e., “and”), and ∃ denotes existential quantification (intuitively,
∃x . . . denotes “there exists an x such that . . .”). The term ‘conjunctive query’ stems from
the presence of conjunctions in the syntax.

Example 4.2.5 In the calculus paradigm, query (4.4) can be expressed as follows:

{xth, xad | ∃xti ∃xac ∃xs ∃xp (Movies(xti, “Bergman”, xac)

Pariscope(xth, xti, xs)

Location(xth, xad, xp))}.
Note that some but not all of the existentially quantified variables play the role of anony-
mous variables, in the sense mentioned in Example 4.1.1.

The syntax used here can be viewed as a hybrid of the usual set-theoretic notation,
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used to indicate the form of the query output, and predicate calculus, used to indicate what
should be included in the output. As discussed in Chapter 2, the semantics associated with
calculus formulas is a restricted version of the conventional semantics found in first-order
logic.

We now turn to the formal definition of the syntax and semantics of the (full) conjunc-
tive calculus.

Definition 4.2.6 Let R be a database schema. A (well-formed) formula over R for the
conjunctive calculus is an expression having one of the following forms:

(a) an atom over R;

(b) (ϕ ∧ ψ), where ϕ and ψ are formulas over R; or

(c) ∃xϕ, where x is a variable and ϕ is a formula over R.

In formulas we permit the abbreviation of ∃x1 . . . ∃xn by ∃x1, . . . , xn.
The usual notion of “free” and “bound” occurrences of variables is now defined. An

occurrence of variable x in formula ϕ is free if

(i) ϕ is an atom; or

(ii) ϕ = (ψ ∧ ξ) and the occurrence of x is free in ψ or ξ ; or

(iii) ϕ = ∃yψ , x and y are distinct variables, and the occurrence of x is free in ψ .

An occurrence of x in ϕ is bound if it is not free. The set of free variables in ϕ, denoted
free(ϕ), is the set of all variables that have at least one free occurrence in ϕ.

Definition 4.2.7 A conjunctive calculus query over database schema R is an expression
of the form

{e1, . . . , em | ϕ},

where ϕ is a conjunctive calculus formula, 〈e1, . . . , em〉 is a free tuple, and the set of
variables occurring in 〈e1, . . . , em〉 is exactly free(ϕ). If the named perspective is being
used, then attributes can be associated with output tuples by specifying a relation name R
of arity m. The notation

{〈e1, . . . , em〉 : A1 . . . Am | ϕ}

can be used to indicate the sort of the output explicitly.

To define the semantics of conjunctive calculus queries, it is convenient to introduce
some notation. Recall that for finite set V ⊂ var, a valuation over V is a total function ν

from V to dom. This valuation will sometimes be viewed as a syntactic expression of the
form

{x1/a1, . . . , xn/an},



46 Conjunctive Queries

where x1, . . . , xn is a listing of V and ai = ν(xi) for each i ∈ [1, n]. This may also be
interpreted as a set. For example, if x is not in the domain of ν and c ∈ dom, then ν ∪ {x/c}
denotes the valuation with domain V ∪ {x} that is identical to ν on V and maps x to c.

Now let R be a database schema, ϕ a conjunctive calculus formula over R, and ν a
valuation over free(ϕ). Then I satisfies ϕ under ν, denoted I |= ϕ[ν], if

(a) ϕ = R(u) is an atom and ν(u) ∈ I(R); or

(b) ϕ = (ψ ∧ ξ) and2 I |= ψ[ν|free(ψ)] and I |= ξ [ν|free(ξ)]; or

(c) ϕ = ∃xψ and for some c ∈ dom, I |= ψ[ν ∪ {x/c}].
Finally, let q = {e1, . . . , em | ϕ} be a conjunctive calculus query over R. For an in-

stance I over R, the image of I under q is

q(I)= {ν(〈e1, . . . , en〉) | I |= ϕ[ν] and ν is a valuation over free(ϕ)}.

The active domain of a formula ϕ, denoted adom(ϕ), is the set of constants occurring
in ϕ; and as with queries q, we use adom(ϕ, I) to abbreviate adom(ϕ) ∪ adom(I). An easy
induction on conjunctive calculus formulas shows that if I |= ϕ[ν], then the range of ν is
contained in adom(I) (see Exercise 4.3). This implies, in turn, that to evaluate a conjunctive
calculus query, one need only consider valuations with range contained in adom(ϕ, I) and,
hence, only a finite number of them. This pleasant state of affairs will no longer hold when
disjunction or negation is incorporated into the calculus (see Section 4.5 and Chapter 5).

Conjunctive calculus formulas ϕ and ψ over R are equivalent if they have the same
free variables and, for each I over R and valuation ν over free(ϕ) = free(ψ), I |= ϕ[ν]
iff I |= ψ[ν]. It is easily verified that if ϕ and ψ are equivalent, and if 9 ′ is the result of
replacing an occurrence of ϕ by ψ in conjunctive calculus formula 9, then 9 and 9 ′ are
equivalent (see Exercise 4.4).

It is easily verified that for all conjunctive calculus formulas ϕ, ψ , and ξ , (ϕ ∧ ψ) is
equivalent to (ψ ∧ ϕ), and (ϕ ∧ (ψ ∧ ξ)) is equivalent to ((ϕ ∧ ψ) ∧ ξ). For this reason,
we may view conjunction as a polyadic connective rather than just binary.

We next show that conjunctive calculus queries, which allow unrestricted nesting
of ∃ and ∧, are no more powerful than the simple conjunctive queries first exhibited,
which correspond straightforwardly to rules. Thus the simpler conjunctive queries provide
a normal form for the full conjunctive calculus. Formally, a conjunctive calculus query
q = {u | ϕ} is in normal form if ϕ has the form

∃x1, . . . , xm(R1(u1) ∧ · · · ∧ Rn(un)).

Consider now the two rewrite (or transformation) rules for conjunctive calculus queries:

Variable substitution: replace subformula

∃x ψ by ∃y ψx
y ,

2 ν|V for variable set V denotes the restriction of ν to V .
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if y does not occur in ψ , where ψx
y denotes the formula obtained by replacing all free

occurrences of x by y in ψ .

Merge-exists: replace subformula

(∃y1, . . . , ynψ ∧ ∃z1, . . . , zmξ) by ∃y1, . . . , yn, z1, . . . , zm(ψ ∧ ξ)

if {y1, . . . , yn} and {z1, . . . , zm} are disjoint, none of {y1, . . . , yn} occur (free or bound)
in ξ , and none of {z1, . . . , zm} occur (free or bound) in ψ .

It is easily verified (see Exercise 4.4) that (1) application of these transformation rules to a
conjunctive calculus formula yields an equivalent formula, and (2) these rules can be used
to transform any conjunctive calculus formula into an equivalent formula in normal form.
It follows that:

Lemma 4.2.8 Each conjunctive calculus query is equivalent to a conjunctive calculus
query in normal form.

We now introduce formal notation for comparing the expressive power of query lan-
guages. Let Q1 and Q2 be two query languages (with associated semantics). Then Q1 is
dominated byQ2 (or,Q1 is weaker thanQ2), denotedQ1 &Q2, if for each query q1 inQ1

there is a query q2 in Q2 such that q1 ≡ q2. Q1 and Q2 are equivalent, denoted Q1 ≡Q2,
if Q1 &Q2 and Q2 &Q1.

Because of the close correspondence between rule-based conjunctive queries, tableau
queries, and conjunctive calculus queries in normal form, the following is easily verified
(see Exercise 4.15).

Proposition 4.2.9 The rule-based conjunctive queries, the tableau queries, and the
conjunctive calculus are equivalent.

Although straightforward, the preceding result is important because it is the first of
many that show equivalence between the expressive power of different query languages.
Some of these results will be surprising because of the high contrast between the languages.

Incorporating Equality

We close this section by considering a simple variation of the conjunctive queries pre-
sented earlier, obtained by adding the capability of explicitly expressing equality between
variables and/or constants. For example, query (4.4) can be expressed as

ans(xth, xad)←Movies(xti, xd, xac), xd = “Bergman”,

Pariscope(xth, xti, xs), Location(xth, xad, xp)

and query (4.6) can be expressed as

ans(y1, y2)←Movies(x1, y1, z1), Movies(x2, y2, z2), y1 = z2, y2 = z1.
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It would appear that explicit equalities like the foregoing can be expressed by con-
junctive queries without equalities by using multiple occurrences of the same variable or
constant. Although this is basically true, two problems arise. First, unrestricted rules with
equality may yield infinite answers. For example, in the rule

ans(x, y)← R(x), y = z

y and z are not tied to relation R, and there are infinitely many valuations satisfying the
body of the rule. To ensure finite answers, it is necessary to introduce an appropriate notion
of range restriction. Informally, an unrestricted rule with equality is range restricted if the
equalities require that each variable in the body be equal to some constant or some variable
occurring in an atom R(ui); Exercise 4.5 explores the notion of range restriction in more
detail. A rule-based conjunctive query with equality is a range-restricted rule with equality.

A second problem that arises is that the equalities in a rule with equality may cause
the query to be unsatisfiable. (In contrast, recall that rules without equality are always
satisfiable; see Proposition 4.2.2.) Consider the following query, in which R is a unary
relation and a, b are distinct constants.

ans(x)← R(x), x = a, x = b.

The equalities present in this query require that a = b, which is impossible. Thus there
is no valuation satisfying the body of the rule, and the query yields the empty relation on
all inputs. We use q∅:R,R (or q∅ if R and R are understood) to denote the query that maps
all inputs over R to the empty relation over R. Finally, note that one can easily check if the
equalities in a conjunctive query with equality are unsatisfiable (and hence if the query is
equivalent to q∅). This is done by computing the transitive closure of the equalities in the
query and checking that no two distinct constants are required to be equal. Each satisfiable
rule with equality is equivalent to a rule without equality (see Exercise 4.5c).

One can incorporate equality into tableau queries in a similar manner by adding sep-
arately a set of required equalities. Once again, no expressive power is gained if the
query is satisfiable. Incorporating equality into the conjunctive calculus is considered in
Exercise 4.6.

4.3 Query Composition and Views

We now present a digression that introduces the important notion of query composition
and describe its relationship to database views. A main result here is that the rule-based
conjunctive queries with equality are closed under composition.

Consider a database R = {R1, . . . , Rn}. Suppose that we have a query q (in any of the
preceding formalisms). Conceptually, this can be used to define a relation with new relation
name S1, which can be used in subsequent queries as any ordinary relation from R. In
particular, we can use S1 in the definition of a new relation S2, and so on. In this context, we
could call each of S1, S2, . . . intensional (in contrast with the extensional relations of R).

This perspective on query composition is expressed most conveniently within the rule-
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based paradigm. Specifically, a conjunctive query program (with or without equality) is a
sequence P of rules having the form

S1(u1)← body1

S2(u2)← body2

...
Sm(um)← bodym,

where each Si is distinct and not in R; and for each i ∈ [1,m], the only relation names
that may occur in bodyi are R1, . . . , Rn and S1, . . . , Si−1. An instance I over R and the
program P can be viewed as defining values for all of S1, . . . , Sm in the following way:
For each i ∈ [1,m], [P(I)](Si) = qi([P(I)]), where qi is the ith rule and defines relation Si
in terms of I and the previous Sj ’s. If P is viewed as defining a single output relation, then
this output is [P(I)](Sm). Analogous to rule-based conjunctive queries, the relations in R
are called edb relations, and the relations occurring in rule heads are called idb relations.

Example 4.3.1 Let R = {Q,R} and consider the conjunctive query program

S1(x, z)←Q(x, y), R(y, z,w)

S2(x, y, z)← S1(x,w), R(w, y, v), S1(v, z)

S3(x, z)← S2(x, u, v),Q(v, z).

Figure 4.3 shows an example instance I for R and the values that are associated to S1, S2, S3

by P(I).
It is easily verified that the effect of the first two rules of P on S2 is equivalent to the

effect of the rule

S2(x, y, z)←Q(x1, y1), R(y1, z1, w1), x = x1, w = z1,

R(w, y, v),Q(x2, y2), R(y2, z2, w2), v = x2, z= z2.

Alternatively, expressed without equality, it is equivalent to

S2(x, y, z)← Q(x, y1), R(y1, w,w1), R(w, y, v),Q(v, y2), R(y2, z, w2).

Note how variables are renamed to prevent undesired “cross-talk” between the different
rule bodies that are combined to form this rule. The effect of P on S3 can also be expressed
using a single rule without equality (see Exercise 4.7).

It is straightforward to verify that if a permutation P ′ of P (i.e., a listing of the elements
of P in a possibly different order) satisfies the restriction that relation names in a rule
body must be in a previous rule head, then P ′ will define the same mapping as P . This
kind of consideration will arise in a richer context when stratified negation is considered in
Chapter 15.
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Q R S1 S2 S3

1 2 1 1 1 1 3 1 1 1 1 2

2 1 2 3 1 2 1 1 1 3 2 2

2 2 3 1 2 2 3 2 1 1

4 4 1 2 1 3

Figure 4.3: Application of a conjunctive query program

Example 4.3.2 Consider the following program P :

T (a, x)← R(x)

S(x)← T (b, x).

Clearly, P always defines the empty relation S, so it is not equivalent to any rule-based
conjunctive query without equality. Intuitively, the use of the constants a and b in P masks
the use of equalities, which in this case are contradictory and yield an unsatisfiable query.

Based on the previous examples, the following is easily verified (see Exercise 4.7).

Theorem 4.3.3 (Closure under Composition) If conjunctive query program P defines
final relation S, then there is a conjunctive query q, possibly with equality, such that on
all input instances I, q(I) = [P(I)](S). Furthermore, if P is satisfiable, then q can be
expressed without equality.

The notion of programs is based on the rule-based formalism of the conjunctive
queries. In the other versions introduced previously and later in this chapter, the notation
does not conveniently include a mechanism for specifying names for the output of inter-
mediate queries. For the other formalisms we use a slightly more elaborate notation that
permits the specification of these names. In particular, all of the formalisms are compatible
with a functional, purely expression-based paradigm:

let S1 = q1 in

let S2 = q2 in

...

let Sm−1 = qm−1 in

qm

and with an imperative paradigm in which the intermediate query values are assigned to
relation variables:
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S1 := q1;
S2 := q2;

...
Sm−1 := qm−1;
Sm := qm.

It is clear from Proposition 4.2.9 and Theorem 4.3.3 that the conjunctive calculus and
tableau queries with equality are both closed under composition.

Composition and User Views

Recall that the top level of the three-level architecture for databases (see Chapter 1) consists
of user views (i.e., versions of the data that are restructured and possibly restricted images
of the database as represented at the middle level). In many cases these views are specified
as queries (or query programs). These may be materialized (i.e., a physical copy of the view
is stored and maintained) or virtual (i.e., relevant information about the view is computed
as needed). In the latter case, queries against the view generate composed queries against
the underlying database, as illustrated by the following example.

Example 4.3.4 Consider the view over schema {Marilyn, Champo-info} defined by the
following two rules:

Marilyn(xt)←Movies(xt, xd, “Monroe”)

Champo-info(xt, xs, xp)← Pariscope(“Le Champo”, xt, xs),

Location(“Le Champo”, xa, xp).

The conjunctive query “What titles in Marilyn are featured at the Le Champo at 21:00?”
can be expressed against the view as

ans(xt)←Marilyn(xt), Champo-info(xt, “21:00”, xp).

Assuming that the view is virtual, evaluation of this query is accomplished by con-
sidering the composition of the query with the view definition. This composition can be
rewritten as

ans(xt)←Movies(xt, xd, “Monroe”),

Pariscope(“Le Champo”, xt, “21:00”)

Location(“Le Champo”, xa, xp).

An alternative expression specifying both view and query now follows. (Expressions
from the algebraic versions of the conjunctive queries could also be used here.)
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Marilyn := {xt | ∃xd(Movies(xt, xd, “Monroe”))};
Champo-info := {xt, xs, xp | ∃xa(Location(“Le Champo”, xt, xs)

∧ Location(“Le Champo”, xa, xp)};
ans := {xt |Marilyn(xt) ∧ ∃xp(Champo-info(xt, “21:00”, xp))}.

This example illustrates the case in which a query is evaluated over a single view;
evaluation of the query involves a two-layer composition of queries. If a series of nested
views is defined, then query evaluation can involve query compositions having two or more
layers.

4.4 Algebraic Perspectives

The use of algebra operators provides a distinctly different perspective on the conjunctive
queries. There are two distinct algebras associated with the conjunctive queries, and they
stem, respectively, from the named, ordered-tuple perspective and the unnamed, function-
based perspective. After presenting the two algebras, their equivalence with the conjunctive
queries is discussed.

The Unnamed Perspective: The SPC Algebra

The algebraic paradigm for relational queries is based on a family of unary and binary oper-
ators on relation instances. Although their application must satisfy some typing constraints,
they are polymorphic in the sense that each of these operators can be applied to instances
of an infinite number of arities or sorts. For example, as suggested in Chapter 3, the union
operator can take as input any two relation instances having the same sort.

Three primitive algebra operators form the unnamed conjunctive algebra: selection,
projection, and cross-product (or Cartesian product). This algebra is more often referred
to as the SPC algebra, based on the first letters of the three operators that form it. (This
convention will be used to specify other algebras as well.) An example is given before the
formal definition of these operators.

Example 4.4.1 We show how query (4.4) can be built up using the three primitive
operators. First we use selection to extract the tuples of Movies that have Bergman as
director.

I1 := σ2=“Bergman”(Movies)

Next a family of “wide” (six columns wide, in fact) tuples is created by taking the cross-
product of I1 and Pariscope.

I2 := I1 × Pariscope
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Another selection is performed to focus on the members of I2 that have first and fifth
columns equal.

I3 := σ1=5(I2)

In effect, the cross-product followed by this selection finds a matching of tuples from I1

and Pariscope that agree on the Title coordinates.
At this point we are interested only in the theaters where these films are playing, so

we use projection to discard the unneeded columns, yielding a unary relation.

I4 := π4(I3)

Finally, this is paired with Location and projected on the Theater and Address columns to
yield the answer.

I5 := π2,3(σ1=2(I4 × Location))

The development just given uses SPC expressions in the context of a simple imperative
language with assignment. In the pure SPC algebra, this query is expressed as

π2,3(σ1=2(π4(σ1=5(σ2=“Bergman”(Movies)× Pariscope))× Location)).

Another query that yields the same result is

π4,8(σ4=7(σ1=5(σ2=“Bergman”(Movies× Pariscope× Location)))).

This corresponds closely to the conjunctive calculus query of Example 4.2.5.

Although the algebraic operators have a procedural feel to them, algebraic queries are
used by most relational database systems as high-level specifications of desired output.
Their actual implementation is usually quite different from the original form of the query,
as will be discussed in Section 6.1.

We now formally define the three operators forming the SPC algebra.

Selection: This can be viewed as a “horizontal” operator. The two primitive forms are
σj=a and σj=k, where j, k are positive integers and a ∈ dom. [In practice, we usually
surround constants with quotes (“ ”).] The operator σj=a takes as input any relation
instance I with arity ≥ j and returns as output an instance of the same arity. In
particular,

σj=a(I )= {t ∈ I | t (j)= a}.

The operator σj=k for positive integers j, k is defined analogously for inputs with arity
≥ max{j, k}. This is sometimes called atomic selection; generalizations of selection
will be defined later.
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Projection: This “vertical” operator can be used to delete and/or permute columns of a
relation. The general form of this operator is πj1,...,jn, where j1, . . . , jn is a possibly
empty sequence of positive integers (the empty sequence is written [ ]), possibly with
repeats. This operator takes as input any relation instance with arity≥max{j1, . . . , jn}
(where the max of ∅ is 0) and returns an instance with arity n. In particular,

πj1,...,jn(I )= {〈t (j1), . . . , t (jn)〉 | t ∈ I }.

Cross-product (or Cartesian product): This operator provides the capability for combining
relations. It takes as inputs a pair of relations having arbitrary arities n and m and
returns a relation with arity n + m. In particular, if arity(I ) = n and arity(J ) = m,
then

I × J = {〈t (1), . . . , t (n), s(1), . . . , s(m)〉 | t ∈ I and s ∈ J }.

Cross-product is associative and noncommutative and has the nonempty 0-ary relation
{〈〉} as left and right identity. Because it is associative, we sometimes view cross-product
as a polyadic operator and write, for example, I1 × · · · × In.

We extend the cross-product operator to tuples in the natural fashion—that is u× v is
a tuple with arity = arity(u)+ arity(v).

The SPC algebra is the family of well-formed expressions containing relation names
and one-element unary constants and closed under the application of the selection, projec-
tion, and cross-product operators just defined. Each expression is considered to be defined
over a given database schema and has an associated output arity. We now give the formal,
inductive definition.

Let R be a database schema. The base SPC (algebra) queries and output arities are

Input relation: Expression R; with arity equal to arity(R).

Unary singleton constant: Expression {〈a〉}, where a ∈ dom; with arity equal to 1.

The family of SPC (algebra) queries contains all base SPC queries and, for SPC queries
q1, q2 with arities α1, α2, respectively,

Selection: σj=a(q1) and σj=k(q1) whenever j, k ≤ α1 and a ∈ dom; these have arity α1.

Projection: πj1,...,jn(q1), where j1, . . . , jn ≤ α1; this has arity n.

Cross product: q1 × q2; this has arity α1 + α2.

In practice, we sometimes use brackets to surround algebraic queries, such as [R×
σ1=a(S)](I). In addition, parentheses may be dropped if no ambiguity results.

The semantics of these queries is defined in the natural manner (see Exercise 4.8).
The SPC algebra includes unsatisfiable queries, such as σ1=a(σ1=b(R)), where

arity(R)≥ 1 and a �= b. This is equivalent to q∅.
As explored in Exercise 4.22, permitting as base SPC queries constant queries that are

not unary (i.e., expressions of the form {〈a1〉, . . . , 〈an〉}) yields expressive power greater
than the rule-based conjunctive queries with equality. This is also true of selection for-
mulas in which disjunction is permitted. As will be seen in Section 4.5, these capabilities
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are subsumed by including an explicit union operator into the SPC algebra. Permitting
negation in selection formulas also extends the expressive power of the SPC algebra (see
Exercise 4.27b).

Before leaving SPC algebra, we mention three operators that can be simulated by the
primitive ones. The first is intersection (∩), which is easily simulated (see Exercise 4.28).
The other two operators involve generalizations of the selection and cross-product oper-
ators. The resulting algebra is called the generalized SPC algebra. We shall introduce a
normal form for generalized SPC algebra expressions.

The first operator is a generalization of selection to permit the specification of multiple
conditions. A positive conjunctive selection formula is a conjunction F = γ1 ∧ · · · ∧ γn
(n≥ 1), where each conjunct γi has the form j = a or j = k for positive integers j, k and
a ∈ dom; and a positive conjunctive selection operator is an expression of the form σF ,
where F is a positive conjunctive selection formula. The intended typing and semantics
for these operators is clear, as is the fact that they can be simulated by a composition of
selections as defined earlier.

The second operator, called equi-join, is a binary operator that combines cross-product
and selection. A (well-formed) equi-join operator is an expression of the form '(F where
F = γ1 ∧ · · · ∧ γn (n≥ 1) is a conjunction such that each conjunct γi has the form j = k.
An equi-join operator '(F can be applied to any pair I, J of relation instances, where the
arity(I )≥ the maximum integer occurring on the left-hand side of any equality in F , and
arity(J ) ≥ the maximum integer occurring on the right-hand side of any equality in F .
Given an equi-join expression I '(F J , let F ′ be the result of replacing each condition
j = k in F by j = arity(I )+ k. Then the semantics of I '(F J is given by σF ′(I × J ). As
with cross-product, equi-join is also defined for pairs of tuples, with an undefined output if
the tuples do not satisfy the conditions specified.

We now develop a normal form for SPC algebra. We stress that this normal form is
useful for theoretical purposes and, in general, represents a costly way to compute the
answer of a given query (see Chapter 6).

An SPC algebra expression is in normal form if it has the form

πj1,...,jn({〈a1〉} × · · · × {〈am〉} × σF(R1 × · · · × Rk)),

where n ≥ 0; m ≥ 0; a1, . . . , am ∈ dom; {1, . . . , m} ⊆ {j1, . . . , jn}; R1, . . . , Rk are rela-
tion names (repeats permitted); and F is a positive conjunctive selection formula.

Proposition 4.4.2 For each (generalized) SPC query q there is a generalized SPC query
q ′ in normal form such that q ≡ q ′.

The proof of this proposition (see Exercise 4.12) is based on repeated application of the
following eight equivalence-preserving SPC algebra rewrite rules (or transformations).

Merge-select: replace σF(σF ′(q)) by σF∧F ′(q).
Merge-project: replace π$j (π$k(q)) by π$l(q), where li = kji for each term li in $l.
Push-select-through-project: replace σF(π$j (q)) by π$j (σF ′(q)), where F ′ is obtained from

F by replacing all coordinate values i by ji.
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Push-select-through-singleton: replace σ1=j (〈a〉 × q) by 〈a〉 × σ(j−1)=a(q).
Associate-cross: replace ((q1× · · · × qn)× q) by (q1× · · · qn× q), and replace (q × (q1×

· · · qn)) by (q × q1 × · · · qn).
Commute-cross: replace (q × q ′) by π$j $j ′(q

′ × q), where $j = arity(q ′)+ 1, . . . , arity(q ′)+
arity(q), and $j ′ = 1, . . . , arity(q ′).

Push-cross-through-select: replace (σF (q)× q ′) by σF(q × q ′), and replace (q × σF(q
′))

by σF ′(q × q ′), where F ′ is obtained from F by replacing all coordinate values i by
i + arity(q).

Push-cross-through-project: replace (π$j (q)× q ′) by π$j (q × q ′), and replace (q × π$j (q
′))

by π $j ′(q × q ′), where $j ′ is obtained from $j by replacing all coordinate values i by
i + arity(q).

For a set S of rewrite rules and algebra expressions q, q ′, write q→S q ′, or simply
q→ q ′ if S is understood from the context, if q ′ is the result of replacing a subexpression
of q according to one of the rules in S. Let ∗→S denote the reflexive, transitive closure
of→S .

A family S of rewrite rules is sound if q→S q ′ implies q ≡ q ′. If S is sound, then
clearly q ∗→S q ′ implies q ≡ q ′.

It is easily verified that the foregoing set of rewrite rules is sound and that for each SPC
query q there is a normal form SPC query q ′ such that q ′ is in normal form, and q ∗→ q ′
(see Exercise 4.12).

In Section 6.1, we describe an approach to optimizing the evaluation of conjunctive
queries using rewrite rules. For example, in that context, the merge-select and merge-
project transformations are helpful, as are the inverses of the push-cross-through-select
and push-cross-through-project.

Finally, note that an SPC query may require, as the result of transitivity, the equality
of two distinct constants. Thus there are unsatisfiable SPC queries equivalent to q∅. This is
analogous to the logic-based conjunctive queries with equality. It is clear, using the normal
form, that one can check whether an SPC query is q∅ by examining the selection formula
F . The set of SPC queries that are not equivalent to q∅ forms the satisfiable SPC algebra.

The Named Perspective: The SPJR Algebra

In Example 4.4.1, the relation I3 was constructed using selection and cross-product by the
expression σ1=5(I1 × Pariscope). As is often the case, the columns used in this selection
are labeled by the same attribute. In the context of the named perspective on tuples, this
suggests a natural variant of the cross-product operator (and of the equi-join operator) that
is called natural join and is denoted by '(. Informally, the natural join requires the tuples
that are concatenated to agree on the common attributes.
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Example 4.4.3 The natural join of Movies and Pariscope is

Movies '( Pariscope

= {u with sort Title Director Actor Theater Schedule |
for some v ∈Movies and w ∈ Pariscope,

u[Title Director Actor]= v and u[Theater Title Schedule]= w}
= π1,2,3,4,6(Movies '(1=2 Pariscope)

(assuming that the sort of the last expression corresponds to that of the previous expres-
sion). More generally, using the natural analog of projection and selection for the named
perspective, query (4.4) can be expressed as

πTheater,Address((σDirector=“Bergman′′(Movies) '( Pariscope) '( Location).

As suggested by the preceding example, natural join can be used in the named context
to replace certain equi-joins arising in the unnamed context. However, a problem arises if
two relations sharing an attribute A are to be joined but without forcing equality on the A
coordinates, or if a join is to be formed based on the equality of attributes not sharing the
same name. For example, consider the query

(4.8) List pairs of actors that acted in the same movie.

To answer this, one would like to join the Movies relation with itself but matching only on
the Title column. This will be achieved by first creating a copy Movies′ of Movies in which
the attribute Director has been renamed to Director′ and Actor to Actor′; joining this with
Movies; and finally projecting onto the Actor and Actor′ columns. Renaming is also needed
for query (4.6) (see Exercise 4.11).

The named conjunctive algebra has four primitive operators: selection, essentially as
before; projection, now with repeats not permitted; (natural) join; and renaming. It is thus
referred to as the SPJR algebra. As with the SPC algebra, we define the individual operators
and then indicate how they are combined to form a typed, polymorphic algebra. In each
case, we indicate the sorts of input and output. If a relation name is needed for the output,
then it is assumed to be chosen to have the correct sort.

Selection: The selection operators have the form σA=a and σA=B , where A,B ∈ att and
a ∈ dom. These operators apply to any instance I with A ∈ sort(I ) [respectively,
A,B ∈ sort(I )] and are defined in analogy to the unnamed selection, yielding an
output with the same sort as the input.

Projection: The projection operator has the form πA1,...,An, n ≥ 0 (repeats not permitted)
and operates on all inputs having sort containing {A1, . . . , An}, producing output with
sort {A1, . . . , An}.

(Natural) join: This operator, denoted '(, takes arbitrary inputs I and J having sorts V and
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W , respectively, and produces an output with sort equal to V ∪W . In particular,

I '( J = {t over V ∪W | for some v ∈ I and w ∈ J,
t[V ]= v and t[W ]= w}.

When sort(I )= sort(J ), then I '( J = I ∩ J , and when sort(I ) ∩ sort(J )= ∅, then
I '( J is the cross-product of I and J . The join operator is associative, commutative, and
has the nonempty 0-ary relation {〈〉} as left and right identity. Because it is associative, we
sometimes view join as a polyadic operator and write, for example, I1 '( · · · '( In.

As with cross-product and equi-join, natural join is extended to operate on pairs of
tuples, with an undefined result if the tuples do not match on the appropriate attributes.

Renaming: An attribute renaming for a finite set U of attributes is a one-one mapping from
U to att. An attribute renaming f for U can be described by specifying the set of pairs
(A, f (A)), where f (A) �= A; this is usually written as A1A2 . . . An→ B1B2 . . . Bn to
indicate that f (Ai)= Bi for each i ∈ [1, n] (n ≥ 0). A renaming operator for inputs
over U is an expression δf , where f is an attribute renaming for U ; this maps to
outputs over f [U ]. In particular, for I over U ,

δf (I )= {v over f [U ] | for some u ∈ I, v(f (A))= u(A) for each A ∈ U}.

Example 4.4.4 Let I, J be the two relations, respectively over R, S, given in Fig. 4.4.
Then I '( J , σA=1(I ), δBC→B ′A(J ), and πA(I) are also shown there. Let K be the one-
tuple relation 〈A : 1, C : 9〉. Then πA,B(I '( K) coincides with σA=1(I ) and J '( K =
{〈A : 1, B : 8, C : 9〉}.

The base SPJR algebra queries are:

Input relation: Expression R; with sort equal to sort(R).

Unary singleton constant: Expression {〈A : a〉}, where a ∈ dom; with sort A.

The remainder of the syntax and semantics of the SPJR algebra is now defined in analogy
to those of the SPC algebra (see Exercise 4.8).

Example 4.4.5 Consider again Fig. 4.4. Let I be the instance over {R, S} such that
I(R) = I and I(S) = J . Then [R] is a query and the answer to that query, denoted
R(I), is just I . Figure 4.4 also gives the values of S(I), [R '( S](I), [σA=1(R)](I),
[δBC→B ′A(S)](I), and [πA(R)](I). Let KA = {〈A : 1〉} and KC = {〈C : 9〉}. Then [KA]
and [KC] are constant queries, and [KA '(KC] is a query that evaluates (on all inputs) to
the relation K of Example 4.4.4.

As with the SPC algebra, we introduce a natural generalization of the selection oper-
ator for the SPJR algebra. In particular, the notions of positive conjunctive selection for-
mula and positive conjunctive selection operator are defined for the context in complete
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R A B S B C [R '( S] A B C

1 2 2 3 1 2 3

4 2 2 5 1 2 5

6 6 6 4 4 2 3

7 7 8 9 4 2 5

1 7 6 6 4

1 6 1 6 4

[σA=1(R)] A B [δBC→B ′A(S)] B ′ A [πA(R)] A

1 2 2 3 1

1 7 2 5 4

1 6 6 4 6

8 9 7

Figure 4.4: Examples of SPJR operators

analogy to the unnamed case. Including this operator yields the generalized SPJR algebra.

A normal form result analogous to that for the SPC algebra is now developed. In
particular, an SPJR algebra expression is in normal form if it has the form

πB1,...,Bn({〈A1 : a1〉} '( · · · '( {〈Am : am〉} '( σF(δf1(R1) '( · · · '( δfk(Rk))),

where n ≥ 0; m ≥ 0; a1, . . . , am ∈ dom; each of A1, . . . , Am occurs in B1, . . . , Bn; the
Ai’s are distinct; R1, . . . , Rk are relation names (repeats permitted); δfj is a renaming
operator for sort(Rj) for each j ∈ [1, k] and no Ai’s occur in any δfj (Rj); the sorts
of δf1(R1), . . . , δfk(Rk) are pairwise disjoint; and F is a positive conjunctive selection
formula. The following is easily verified (see Exercise 4.12).

Proposition 4.4.6 For each (generalized) SPJR query q, there is a generalized SPJR
query q ′ in normal form such that q ≡ q ′.

The set of SPJR queries not equivalent to q∅ forms the satisfiable SPJR algebra.

Equivalence Theorem

We now turn to the main result of the chapter, showing the equivalence of the various
formalisms introduced so far for expressing conjunctive queries. As shown earlier, the three
logic-based versions of the conjunctive queries are equivalent. We now show that the SPC
and SPJR algebras are also equivalent to each other and then obtain the equivalence of the
algebraic languages and the three logic-based languages.
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Lemma 4.4.7 The SPC and SPJR algebras are equivalent.

Crux We prove the inclusion SPC algebra & SPJR algebra; the converse is similar (see
Exercise 4.14). Let q be the following normal form SPC query:

πj1,...,jn({〈a1〉} × · · · × {〈am〉} × σF(R1 × · · · × Rk)).

We now describe an SPJR query q ′ that is equivalent to q; q ′ has the following form:

πAj1,...,Ajn
({〈A1 : a1〉} '( · · · '( {〈Am : am〉} '( σG(δf1(R1) '( · · · '( δfk(Rk))).

We use the renaming functions so that the attributes of δft (Rt) are As, . . . , As′, where
s, . . . , s′ are the coordinate positions of Rt in the expression R1 × · · · × Rk and modify F

into G accordingly. In a little more detail, for each r ∈ [1, k] let β(t)=m+#t
s=0arity(Rs),

and let Am+1, . . . , Aβ(k) be new attributes. For each t ∈ [1, k], choose δft so that it maps
the ith attribute of Rt to the attribute Aβ(t−1)+i. To define G, first define the function γ from
coordinate positions to attribute names so that γ (j)= Am+j , extend γ to be the identity on
constants, and extend it further in the natural manner to map unnamed selection formulas
to named selection formulas. Finally, set G= γ (F ). It is now straightforward to verify that
q ′ ≡ q.

It follows immediately from the preceding lemma that the satisfiable SPC algebra and
the satisfiable SPJR algebra are equivalent.

The equivalence between the two algebraic languages and the three logic-based lan-
guages holds with a minor caveat involving the empty query q∅. As noted earlier, the SPC
and SPJR algebras can express q∅, whereas the logic-based languages cannot, unless ex-
tended with equality. Hence the equivalence result is stated for the satisfiable SPC and
SPJR algebras.

Theorem 4.3.3 (i.e., the closure of the rule-based conjunctive queries under composi-
tion) is used in the proof of this result. The closures of the SPC and SPJR algebras under
composition are, of course, immediate.

Theorem 4.4.8 (Equivalence Theorem) The rule-based conjunctive queries, tableau
queries, conjunctive calculus queries, satisfiable SPC algebra, and satisfiable SPJR algebra
are equivalent.

Proof The proof can be accomplished using the following steps:

(i) satisfiable SPC algebra & rule-based conjunctive queries; and

(ii) rule-based conjunctive queries & satisfiable SPC algebra.

We briefly consider how steps (i) and (ii) might be demonstrated; the details are left
to the reader (Exercise 4.15). For (i), it is sufficient to show that each of the SPC algebra
operations can be simulated by a rule. Indeed, then the inclusion follows from the fact that
rule-based conjunctive queries are closed under composition by Theorem 4.3.3 and that
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satisfiable rules with equality can be expressed as rules without equality. The simulation of
algebra operations by rules is as follows:

1. P ×Q, where P and Q are not constant relations, corresponds to ans($x, $y)←
P($x),Q($y), where $x and $y contain no repeating variables; in the case when P

(Q) are constant relations, $x ($y) are the corresponding constant tuples.

2. σF(R) corresponds to ans($x)← R(σF($y)), where $y consists of distinct variables,
σF($y) denotes the vector of variables and constants obtained by merging variables
of $y with other variables or with constants according to the (satisfiable) selection
formula F , and $x consists of the distinct variables in σF($y).

3. πj1...jn(R) corresponds to ans(xj1 . . . xjn)← R(x1 . . . xm), where x1, . . . , xm are
distinct variables.

Next consider step (ii). Let ans($x)← R1($x1), . . . , Rn($xn) be a rule. There is an equiv-
alent SPC algebra query in normal form that involves the cross-product of R1, . . . , Rn, a
selection reflecting the constants and repeating variables occurring in $x1, . . . , $xn, a fur-
ther cross-product with constant relations corresponding to the constants in $x, and finally
a projection extracting the coordinates corresponding to $x.

An alternative approach to showing step (i) of the preceding theorem is explored in
Exercise 4.18.

4.5 Adding Union

As indicated by their name, conjunctive queries are focused on selecting data based on
a conjunction of conditions. Indeed, each atom added to a rule potentially adds a further
restriction to the tuples produced by the rule. In this section we consider a natural mech-
anism for adding a disjunctive capability to the conjunctive queries. Specifically, we add
a union operator to the SPC and SPJR algebras, and we add natural analogs of it to the
rule-based and tableau-based paradigms. Incorporating union into the conjunctive calculus
raises some technical difficulties that are resolved in Chapter 5. This section also consid-
ers the evaluation of queries with union and introduces a more restricted mechanism for
incorporating a disjunctive capability.

We begin with some examples.

Example 4.5.1 Consider the following query:

(4.10) Where can I see “Annie Hall” or “Manhattan”?

Although this cannot be expressed as a conjunctive query (see Exercise 4.22), it is easily
expressed if union is added to the SPJR algebra:

πTheater(σTitle=“Annie Hall”(Pariscope) ∪ σTitle=“Manhattan”(Pariscope)).
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An alternative formulation of this uses an extended selection operator that permits disjunc-
tions in the selection condition:

πTheater(σTitle=“Annie Hall”∨Title=“Manhattan”(Pariscope)).

As a final algebraic alternative, this can be expressed in the original SPJR algebra but
permitting nonsingleton constant relations as base expressions:

πTheater(Pariscope '( {〈Title: “Annie Hall”〉, 〈Title: “Manhattan”〉}).

The rule-based formalism can accommodate this query by permitting more than one rule
with the same relation name in the head and taking the union of their outputs as the answer:

ans(xt)← Pariscope(xt, “Annie Hall”, xs)

ans(xt)← Pariscope(xt, “Manhattan”, xs).

Consider now the following query:

(4.11) What are the films with Allen as actor or director?

This query can be expressed using any of the preceding formalisms, except for the SPJR
algebra extended with nonsingleton constant relations as base expressions (see Exer-
cise 4.22).

Let I1, I2 be two relations with the same arity. As standard in mathematics, I1 ∪ I2

is the relation having this arity and containing the union of the two sets of tuples. The
definition of the SPCU algebra is obtained by extending the definition of the SPC algebra
to include the union operator. The SPJRU algebra is obtained in the same fashion, except
that union can only be applied to expressions having the same sort.

The SPCU and SPJRU algebras can be generalized by extending the selection oper-
ator (and join, in the case of SPC) as before. We can then define normal forms for both
algebras, which are expressions consisting of one or more normal form SPC (SPJR) ex-
pressions combined using a polyadic union operator (see Exercise 4.23). As suggested by
the previous example, disjunction can also be incorporated into selection formulas with no
increase in expressive power (see Exercise 4.22).

Turning now to rule-based conjunctive queries, the simplest way to incorporate the
capability of union is to consider sets of rules all having the same relation name in the
head. These queries are evaluated by taking the union of the output of the individual rules.

This can be generalized without increasing the expressive power by incorporating
something analogous to query composition. A nonrecursive datalog program (nr-datalog
program) over schema R is a set of rules
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S1 ← body1

S2 ← body2

...
Sm← bodym,

where no relation name in R occurs in a rule head; the same relation name may appear
in more than one rule head; and there is some ordering r1, . . . , rm of the rules so that the
relation name in the head of ri does not occur in the body of a rule rj whenever j ≤ i.

The term ‘nonrecursive’ is used because recursion is not permitted. A simple example
of a recursive rule is

ancestor(x, z)← parent(x, y), ancestor(y, z).

A fixpoint operator is used to give the semantics for programs involving such rules. Recur-
sion is the principal topic of Part D.

As in the case of rule-based conjunctive query programs, the query is evaluated on
input I by evaluating each rule in (one of) the order(s) satisfying the foregoing property and
forming unions whenever two rules have the same relation name in their heads. Equality
atoms can be added to these queries, as they were for the rule-based conjunctive queries.

In general, a nonrecursive datalog program P over R is viewed as having a database
schema as target. Program P can also be viewed as mapping from R to a single relation
(see Exercise 4.24).

Turning to tableau queries, a union of tableaux query over schema R (or R) is an
expression of the form ({T1, . . . ,Tn}, u), where n≥ 1 and (Ti, u) is a tableau query over
R for each i ∈ [1, n]. The semantics of these queries is obtained by evaluating the queries
(Ti, u) independently and then taking the union of their results. Equality is incorporated
into these queries by permitting each of the queries (Ti, u) to have equality.

We can now state (see Exercise 4.25) the following:

Theorem 4.5.2 The following have equivalent expressive power:

1. the nonrecursive datalog programs (with single relation target),

2. the SPCU queries,

3. the SPJRU queries.

The union of tableau queries is weaker than the aforementioned languages with union.
This is essentially because the definition of union of tableau queries does not allow separate
summary rows for each tableau in the union. With just one summary row, the nonrecursive
datalog query

ans(a)←
ans(b)←

cannot be expressed as a union of tableaux query.
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As with conjunctive queries, it is easy to show that the conjunctive queries with union
and equality are closed under composition.

Union and the Conjunctive Calculus

At first glance, it would appear that the power of union can be added to the conjunctive
calculus simply by permitting disjunction (denoted ∨) along with conjunction as a binary
connective for formulas. This approach, however, can have serious consequences.

Example 4.5.3 Consider the following “query”:

q = {x, y, z | R(x, y) ∨ R(y, z)}.

Speaking intuitively, the “answer” of q on nonempty instance I will be (using a slight abuse
of notation)

q(I )= (I × dom) ∪ (dom× I ).

This is an infinite set of tuples and thus not an instance according to the formal definition.

Informally, the query q of the previous example is not “safe.” This notion is one of
the central topics that needs to be resolved when using the first-order predicate calculus as
a relational query language, and it is studied in Chapter 5. We return there to the issue of
adding union to the conjunctive calculus (see also Exercise 4.26).
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Exercises

Exercise 4.1 Express queries (4.1–4.3) and (4.5–4.9) as (a) rule-based conjunctive queries,
(b) conjunctive calculus queries, (c) tableau queries, (d) SPC expressions, and (e) SPJR expres-
sions.

Exercise 4.2 Let R be a database schema and q a rule.

(a) Prove that q(I) is finite for each instance I over R.

(b) Show an upper bound, given instance I of R and output arity for conjunctive query q,
for the number of tuples that can occur in q(I). Show that this bound can be achieved.

Exercise 4.3 Let R be a database schema and I an instance of R.

(a) Suppose that ϕ is a conjunctive calculus formula over R and ν is a valuation for
free(ϕ). Prove that I |= ϕ[ν] implies that the image of ν is contained in adom(I).

(b) Prove that if q is a conjunctive calculus query over R, then only a finite number
of valuations need to be considered when evaluating q(I). (Note: The presence of
existential quantifiers may have an impact on the set of valuations that need to be
considered.)

Exercise 4.4

(a) Let ϕ and ψ be equivalent conjunctive calculus formulas, and suppose that 9 ′ is the
result of replacing an occurrence of ϕ by ψ in conjunctive calculus formula 9. Prove
that 9 and 9 ′ are equivalent.

(b) Prove that the application of the rewrite rules rename and merge-exists to a conjunc-
tive calculus formula yields an equivalent formula.

(c) Prove that these rules can be used to transform any conjunctive calculus formula into
an equivalent formula in normal form.

Exercise 4.5

(a) Formally define the syntax and semantics of rule-based conjunctive queries with
equality and conjunctive calculus queries with equality.

(b) As noted in the text, logic-based conjunctive queries with equality can generally
yield infinite answers if not properly restricted. Give a definition for range-restricted
rule-based and conjunctive calculus queries with equality that ensures that queries
satisfying this condition always yield a finite answer.

(c) Prove for each rule-based conjunctive query with equality q that either q ≡ q∅ or
q ≡ q ′ for some rule-based conjunctive query q ′ without equality. Give a polynomial
time algorithm that decides whether q ≡ q∅, and if not, constructs an equivalent rule-
based conjunctive query q ′.

(d) Prove that each rule-based conjunctive query with equality but no constants is equiv-
alent to a rule-based conjunctive query without equality.

Exercise 4.6 Extend the syntax of the conjunctive calculus to include equality. Give a syn-
tactic condition that ensures that the answer to a query q on I involves only constants from
adom(q, I) and such that the answer can be obtained by considering only valuations whose
range is contained in adom(q, I).

Exercise 4.7 Give a proof of Theorem 4.3.3.
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Exercise 4.8

(a) Give a formal definition for the semantics of the SPC algebra.

(b) Give a formal definition for the syntax and semantics of the SPJR algebra.

Exercise 4.9 Consider the algebra consisting of all SPJR queries in which constants do not
occur.

(a) Define a normal form for this algebra.

(b) Is this algebra closed under composition?

(c) Is this algebra equivalent to the rule-based conjunctive queries without constants or
equality?

Exercise 4.10 Under the named perspective, a selection operator is constant based if it has
the form σA=a, where A ∈ att and a ∈ dom. Prove or disprove: Each SPJR algebra expression
is equivalent to an SPJR algebra expression all of whose selection operators are constant based.

Exercise 4.11 Prove that queries (4.6 and 4.8) cannot be expressed using the SPJ algebra (i.e.,
that renaming is needed).

Exercise 4.12

(a) Prove that the set of SPC transformations presented after the statement of Proposi-
tion 4.4.2 is sound (i.e., preserves equivalence).

(b) Prove Proposition 4.4.2.

(c) Prove that each SPJR query is equivalent to one in normal form. In particular, exhibit
a set of equivalence-preserving SPJR algebra transformations used to demonstrate
this result.

Exercise 4.13

(a) Prove that the nonempty 0-ary relation is the left and right identity for cross product
and for natural join.

(b) Prove that for a fixed relation schema S, there is an identity for union for relations
over S. What if S is not fixed?

(c) Let S be a relational schema. For the binary operations α ∈ {'(,∪}, does there exist
a relation I such that IαJ = I for each relation J over S?

Exercise 4.14 Complete the proof of Lemma 4.4.7 by showing the inclusion SPJR algebra &
SPC algebra.

Exercise 4.15

(a) Prove Proposition 4.2.9.

(b) Complete the proof of Theorem 4.4.8.

Exercise 4.16 Consider the problem of defining restricted versions of the SPC and SPJR
algebras that are equivalent to the rule-based conjunctive queries without equality. Find natural
restricted versions, or explain why they do not exist.

Exercise 4.17 Let q be a tableau query and q ′ the SPC query corresponding to it via the trans-
lation sketched in Theorem 4.4.8. If q has r rows and q ′ has j joins of database (nonconstant)
relations, show that j = r − 1.
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♠Exercise 4.18

(a) Develop an inductive algorithm that translates a satisfiable SPC query q into a tableau
query by associating a tableau query to each subquery of q.

(b) Do the same for SPJR queries.

(c) Show that if q is a satisfiable SPC (SPRJ) query with n joins (not counting joins
involving constant relations), then the tableau of the corresponding tableau query
has n+ 1 rows.

♠Exercise 4.19 [ASU79b] This exercise examines the connection between typed tableaux and
a subset of the SPJ algebra. A typed restricted SPJ algebra expression over R is an SPJR algebra
expression that uses only [R] as base expressions and only constant-based selection (i.e., having
the form σA=a for constant a), projection, and (natural) join as operators.

(a) Describe a natural algorithm that maps typed restricted SPJ queries q over R into
equivalent typed tableau queries q ′ = (T , u) over R, where |T | = (the number of
join operations in q) + 1.

(b) Show that q = ({〈x, y1〉, 〈x1, y1〉, 〈x1, y〉}, 〈x, y〉) is not the image of any typed re-
stricted SPJ query under the algorithm of part (a).

J (c) [ASSU81] Prove that the tableau query q of part (b) is not equivalent to any typed
restricted SPJ algebra expression.

Exercise 4.20 [ASU79b] A typed tableau query q = (T , u) with T over relation R is repeat
restricted if

1. If A ∈ sort(u), then no variable in πA(T )− {u(A)} occurs more than once in T .

2. If A �∈ sort(u), then at most one variable in πA(T ) occurs more than once in T .

Prove that if q = (T , u) is a typed repeat-restricted tableau query over R, then there is a typed
restricted SPJ query q ′ such that the image of q ′ under the algorithm of Exercise 4.19 part (a) is
q.

Exercise 4.21 Extend Proposition 4.2.2 to include disjunction (i.e., union).

Exercise 4.22 The following query is used in this exercise:

(4.15) Produce a binary relation that includes all tuples 〈t , “excellent”〉 where t is a movie
directed by Allen, and all tuples 〈t , “superb”〉 where t is a movie directed by Hitch-
cock.

(a) Show that none of queries (4.10–4.15) can be expressed using the SPC or SPJR
algebras.

A positive selection formula for the SPC and SPJR algebras is a selection formula as before,
except that disjunction can be used in addition to conjunction. Define the S+PC algebra to be
the SPC algebra extended to permit arbitrary positive selection operators; and define the S+PJR
algebra analogously.

(b) Determine which of queries (4.10–4.15) can be expressed using the S+PJR algebra.

Define the SPC-1* algebra to be the SPC algebra, except that nonsingleton unary constant
relations can be used as base queries; and define the SPC-n* algebra to be the SPC algebra,
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except that nonsingleton constant relations of arbitrary arity can be used as base queries. Define
the SPJR-1∗ and SPJR-n∗ algebras analogously.

(c) Determine which of queries (4.10–4.15) can be expressed using the SPJR-1∗ and
SPJR-n∗ algebras.

(d) Determine the relative expressive powers of the S+PC, SPC-1∗, SPC-n∗, and SPCU
algebras.

Exercise 4.23 Give precise definitions for normal forms for the SPCU and SPJRU algebras,
and prove that all expressions from these algebras have an equivalent in normal form.

Exercise 4.24 An nr-datalog program P is in normal form if all relation names in rule heads
are identical. Prove that each nonrecursive datalog query with single relation target has an
equivalent in normal form.

Exercise 4.25 Prove Theorem 4.5.2.

JExercise 4.26 Recall the discussion in Section 4.5 about disjunction in the conjunctive
calculus.

(a) Consider the query q = {x|ϕ(x)}, where

ϕ(x)≡ R(x) ∧ ∃y, z(S(y, x) ∨ S(x, z)).

Let I be an instance over {R, S}. Using the natural extension of the notion of satisfies
to disjunction, show for each subformula of ϕ with form ∃ωψ , and each valuation ν

over free(∃ωψ) with range contained in adom(I) that: there exists c ∈ dom such that
I |= ψ[ν ∪ {w/c}] iff there exists c ∈ adom(I) such that I |= ψ[ν ∪ {w/c}]. Conclude
that this query can be evaluated by considering only valuations whose range is
contained in adom(I).

(b) The positive existential (relational) calculus is the relational calculus query language
in which query formulas are constructed using∧,∨, ∃. Define a condition on positive
existential calculus queries that guarantees that the answer involves only constants
from adom(q, I) and such that the answer can be obtained by considering only
valuations whose range is contained in adom(q, I). Extend the restriction for the case
when equality is allowed in the calculus.

(c) Prove that the family of restricted positive existential calculus queries defined in the
previous part has expressive power equivalent to the rule-based conjunctive queries
with union and that this result still holds if equality is added to both families of
queries.

Exercise 4.27

(a) Consider as an additional algebraic operation, the difference. The semantics of
q − q ′ is given by [q − q ′](I) = q(I) − q ′(I). Show that the difference cannot be
simulated in the SPCU or SPJRU algebras. (Hint: Use the monotonicity property of
these algebras.)

(b) Negation can be added to (generalized) selection formulas in the natural way—that
is, if γ is a selection formula, then so is (¬γ ). Give a precise definition for the
syntax and semantics of selection with negation. Prove that the SPCU algebra cannot
simulate selections of the form σ¬1=2(R) or σ¬1=a(R).
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Exercise 4.28 Show that intersection can be expressed in the SPC algebra.

JExercise 4.29

(a) Prove that there is no redundant operation in the set χ = {σ, π,×,∪} of unnamed
algebra operators (i.e., for each operator α in the set, exhibit a schema and an
algebraic query q over that schema such that q cannot be expressed with χ − {α}).

(b) Prove the analogous result for the set of named operators {σ, π, '(, δ,∪}.
Exercise 4.30 An inequality atom is an expression of the form x �= y or x �= a, where x, y

are variables and a is a constant. Assuming that the underlying domain has a total order, a
comparison atom is an expression of the form xθy, xθa, or aθx, where θ ranges over <, ≤, >,
and ≥.

(a) Show that the family of rule-based conjunctive queries with equality and inequality
strictly dominates the family of rule-based conjunctive queries with equality.

(b) Assuming that the underlying domain has a total order, describe the relationships
between the expressive powers of the family of rule-based conjunctive queries with
equality; the family of rule-based conjunctive queries with equality and inequality;
the family of rule-based conjunctive queries with equality and comparison atoms;
and the family of rule-based conjunctive queries with equality, inequality, and com-
parison atoms.

(c) Develop analogous extensions and results for tableau queries, the conjunctive calcu-
lus, and SPC and SPJR algebras.

JExercise 4.31 For some films, we may not want to store any actor name. Add to the domain a
constant ⊥ meaning unknown information. Propose an extension of the SPJR queries to handle
unknown information (see Chapter 19).
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