The Relational Model

Alice: What is a relation?
Vittorio: You studied that in math a long time ago.
Sergio: It is just a table.
Riccardo: But we have several ways of viewing it.

database model provides the means for specifying particular data structures, for con-

straining the data sets associated with these structures, and for manipulating the data.
The specification of structure and constraints is done using a data definition language
(DDL), and the specification of manipulation is done using a data manipulation language
(DML). The most prominent structures that have been used for databases to date are graphs
in the network, semantic, and object-oriented models; trees in the hierarchical model; and
relations in the relational model.

DMLs provide two fundamental capabilities: guerying to support the extraction of data
from the current database; and updating to support the modification of the database state.
There is a rich theory on the topic of querying relational databases that includes several
languages based on widely different paradigms. This theory is the focus of Parts B, D,
and E, and portions of Part F of this book. The theory of database updates has received
considerably less attention and is touched on in Part F.

The term relational model is actually rather vague. As introduced in Codd’s seminal
article, this term refers to a specific data model with relations as data structures, an al-
gebra for specifying queries, and no mechanisms for expressing updates or constraints.
Subsequent articles by Codd introduced a second query language based on the predicate
calculus of first-order logic, showed this to be equivalent to the algebra, and introduced the
first integrity constraints for the relational model—namely, functional dependencies. Soon
thereafter, researchers in database systems implemented languages based on the algebra
and calculus, extended to include update operators and to include practically motivated
features such as arithmetic operators, aggregate operators, and sorting capabilities. Re-
searchers in database theory developed a number of variations on the algebra and calculus
with varying expressive power and adapted the paradigm of logic programming to provide
a third approach to querying relational databases. The story of integrity constraints for the
relational model is similar: A rich theory of constraints has emerged, and two distinct but
equivalent perspectives have been developed that encompass almost all of the constraints
that have been investigated formally. The term relational model has thus come to refer to
the broad class of database models that have relations as the data structure and that incor-
porate some or all of the query capabilities, update capabilities, and integrity constraints

28

3.1 The Structure of the Relational Model 29

mentioned earlier. In this book we are concerned primarily with the relational model in
this broad sense.

Relations are simple data structures. As a result, it is easy to understand the concep-
tual underpinnings of the relational model, thus making relational databases accessible to
a broad audience of end users. A second advantage of this simplicity is that clean yet pow-
erful declarative languages can be used to manipulate relations. By declarative, we mean
that a query/program is specified in a high-level manner and that an efficient execution of
the program does not have to follow exactly its specification. Thus the important practical
issues of compilation and optimization of queries had to be overcome to make relational
databases a reality.

Because of its simplicity, the relational model has provided an excellent framework
for the first generation of theoretical research into the properties of databases. Fundamental
aspects of data manipulation and integrity constraints have been exposed and studied in a
context in which the peculiarities of the data model itself have relatively little impact. This
research provides a strong foundation for the study of other database models, first because
many theoretical issues pertinent to other models can be addressed effectively within the
relational model, and second because it provides a variety of tools, techniques, and research
directions that can be used to understand the other models more deeply.

In this short chapter, we present formal definitions for the data structure of the rela-
tional model. Theoretical research on the model has grown out of three different perspec-
tives, one corresponding most closely to the natural usage of relations in databases, another
stemming from mathematical logic, and the third stemming from logic programming. Be-
cause each of these provides important intuitive and notational benefits, we introduce no-
tation that encompasses the different but equivalent formulations reflecting each of them.

3.1 The Structure of the Relational Model

An example of a relational database is shown in Fig. 3.1'. Intuitively, the data is represented
in tables in which each row gives data about a specific object or set of objects, and rows
with uniform structure and intended meaning are grouped into tables. Updates consist
of transformations of the tables by addition, removal, or modification of rows. Queries
allow the extraction of information from the tables. A fundamental feature of virtually all
relational query languages is that the result of a query is also a table or collection of tables.

We introduce now some informal terminology to provide the intuition behind the
formal definitions that follow. Each table is called a relation and it has a name (e.g.,
Movies). The columns also have names, called attributes (e.g, Title). Each line in a table is
a tuple (or record). The entries of tuples are taken from sets of constants, called domains,
that include, for example, the sets of integers, strings, and Boolean values. Finally we
distinguish between the database schema, which specifies the structure of the database;
and the database instance, which specifies its actual content. This is analogous to the
standard distinction between type and value found in programming languages (e.g., an

! Pariscope is a weekly publication that lists the cultural events occurring in Paris and environs.

30 The Relational Model

Movies | Title Director Actor
The Trouble with Harry ~ Hitchcock Gwenn
The Trouble with Harry ~ Hitchcock Forsythe
The Trouble with Harry ~ Hitchcock MacLaine
The Trouble with Harry ~ Hitchcock Hitchcock
Cries and Whispers Bergman Andersson
Cries and Whispers Bergman Sylwan
Cries and Whispers Bergman Thulin
Cries and Whispers Bergman Ullman

Location | Theater Address Phone Number
Gaumont Opéra 31 bd. des Italiens 4742 6033
Saint André des Arts 30 rue Saint André des Arts 43 26 48 18
Le Champo 51 rue des Ecoles 435451 60
Georges V 144 av. des Champs-Elysées 45 62 41 46
Les 7 Montparnassiens 98 bd. du Montparnasse 43203220
Pariscope | Theater Title Schedule

Gaumont Opéra Cries and Whispers 20:30
Saint André des Arts The Trouble with Harry 20:15
Georges V Cries and Whispers 22:15
Les 7 Montparnassiens ~ Cries and Whispers 20:45

Figure 3.1: The CINEMA database

identifier X might have type record A : int, B : bool endrecord and value record A : 5,

B : true endrecord).

We now embark on the formal definitions. We assume that a countably infinite set att
of attributes is fixed. For a technical reason that shall become apparent shortly, we assume
that there is a total order <, on att. When a set U of attributes is listed, it is assumed that

the elements of U are written according to < unless otherwise specified.

For most of the theoretical development, it suffices to use the same domain of values
for all of the attributes. Thus we now fix a countably infinite set dom (disjoint from att),
called the underlying domain. A constant is an element of dom. When different attributes
should have distinct domains, we assume a mapping Dom on att, where Dom(A) is a set

called the domain of A.

3.2 Named versus Unnamed Perspectives 31

We assume a countably infinite set relname of relation names disjoint from the pre-
vious sets. In practice, the structure of a table is given by a relation name and a set of
attributes. To simplify the notation in the theoretical treatment, we now associate a sort
(i.e., finite set of attributes) to each relation name. (An analogous approach is usually taken
in logic.) In particular, we assume that there is a function sort from relname to Phin(att)
(the finitary powerset of att; i.e., the family of finite subsets of att). It is assumed that sort
has the property that for each (possibly empty) finite set U of attributes, sort~'(U) is infi-
nite. This allows us to use as many relation names of a given sort as desired. The sort of a
relation name is simply sort(R). The arity of a relation name R is arity(R) = |sort(R)]|.

A relation schema is now simply a relation name R. We sometimes write this as R[U]
to indicate that sort(R) = U, or R[n], to indicate that arity(R) = n. A database schema is a
nonempty finite set R of relation names. This might be written R = {R[U1], ..., R,[U,]}
to indicate the relation schemas in R.

For example, the database schema CINEMA for the database shown in Fig. 3.1 is
defined by

CINEMA = {Movies, Location, Pariscope}

where relation names Movies, Location, and Pariscope have the following sorts:

sort(Movies) = {Title, Director, Actor}
sort(Location) = {Theater, Address, Phone Number}
sort(Pariscope) = {Theater, Title, Schedule}.

We often omit commas and set brackets in sets of attributes. For example, we may write
sort(Pariscope) = Theater Title Schedule.

The formalism that has emerged for the relational model is somewhat eclectic, be-
cause it is intimately connected with several other areas that have their own terminology,
such as logic and logic programming. Because the slightly different formalisms are well
entrenched, we do not attempt to replace them with a single, unified notation. Instead we
will allow the coexistence of the different notations; the reader should have no difficulty
dealing with the minor variations.

Thus there will be two forks in the road that lead to different but largely equivalent
formulations of the relational model. The first fork in the road to defining the relational
model is of a philosophical nature. Are the attribute names associated with different relation
columns important?

3.2 Named versus Unnamed Perspectives

Under the named perspective, these attributes are viewed as an explicit part of a database
schema and may be used (e.g., by query languages and dependencies). Under the unnamed

32 The Relational Model

perspective, the specific attributes in the sort of a relation name are ignored, and only the
arity of a relation schema is available (e.g., to query languages).

In the named perspective, it is natural to view tuples as functions. More precisely, a
tuple over a (possibly empty) finite set U of attributes (or over a relation schema R[U])
is a total mapping u from U to dom. In this case, the sort of u is U, and it has arity |U|.
Tuples may be written in a linear syntax using angle brackets—for example, (A : 5, B : 3).
(In general, the order used in the linear syntax will correspond to <u¢, although that is not
necessary.) The unique tuple over ¥ is denoted ().

Suppose that u is a tuple over U. As usual in mathematics, the value of # on an attribute
A in U is denoted u(A). This is extended so that for V C U, u[V] denotes the tuple v over
V such that v(A) = u(A) for each A € V (i.e., u[V] = u|y, the restriction of the function
utoV).

With the unnamed perspective, it is more natural to view a tuple as an element of a
Cartesian product. More precisely, a tuple is an ordered n-tuple (n > 0) of constants (i.e.,
an element of the Cartesian product dom”). The arity of a tuple is the number of coordinates
that it has. Tuples in this context are also written with angle brackets (e.g., (5, 3)). The i
coordinate of a tuple u is denoted u (7). If relation name R has arity n, then a tuple over R
is a tuple with arity arity(R).

Because of the total order <g, there is a natural correspondence between the named
and unnamed perspectives. A tuple (A : aj, Az : az) (defined as a function) can be viewed
(assuming A| <u¢ A7) as an ordered tuple with (A1 : a) as a first component and (A : a2)
as a second one. Ignoring the names, this tuple may simply be viewed as the ordered tuple
(a1, az). Conversely, the ordered tuple t = (aj, a2) may be interpreted as a function over
the set {1, 2} of integers with ¢ (i) = a; for each i. This correspondence will allow us to blur
the distinction between the two perspectives and move freely from one to the other when
convenient.

3.3 Conventional versus Logic Programming Perspectives

We now come to the second fork in the road to defining the relational model. This fork
concerns how relation and database instances are viewed, and it is essentially independent
of the perspective taken on tuples. Under the conventional perspective, a relation or relation
instance of (or over) a relation schema R[U] (or over a finite set U of attributes) is a
(possibly empty) finite set / of tuples with sort U. In this case, I has sort U and arity
|U|. Note that there are two instances over the empty set of attributes: {} and {()}.

Continuing with the conventional perspective, a database instance of database schema
R is a mapping I with domain R, such that I(R) is a relation over R for each R € R.

The other perspective for defining instances stems from logic programming. This
perspective is used primarily with the ordered-tuple perspective on tuples, and so we focus
on that here. Let R be a relation with arity n. A fact over R is an expression of the form
R(ay, ..., a,), where a; e dom for i € [1,n]. If u ={(ay, ..., a,), we sometimes write
R(u) for R(ay, ..., ay). Under the logic-programming perspective, a relation (instance)
over R is a finite set of facts over R. For a database schema R, a database instance is a
finite set I that is the union of relation instances over R, for R € R. This perspective on

3.3 Conventional versus Logic Programming Perspectives 33

instances is convenient when working with languages stemming from logic programming,
and it permits us to write database instances in a convenient linear form.

The two perspectives provide alternative ways of describing essentially the same data.
For instance, assuming that sort(R) = AB and sort(S) = A, we have the following four
representations of the same database:

Named and Conventional
I(R) ={f1, f2, f3}
fitAy=a fi(B)=D
H(A)=c fa(B)=D
fA)y=a [f3(A)=a
1(S) = {g}
g(A)=d

Unnamed and Conventional
I(R) = {{a, b), (c, b), {a, a)}
1(S) = {{d)}

Named and Logic Programming
{R(A:a,B:b), R(A:c,B:b), R(A:a,B:a), S(A:d)}

Unnamed and Logic Programming
{R(a, D), R(c,b), R(a,a), S(d)}.

Because relations can be viewed as sets, it is natural to consider, given relations of the
same sort, the standard set operations union (U), intersection (N), and difference (—) and
the standard set comparators C, €, =, and #. With the logic-programming perspective on
instances, we may also use these operations and comparators on database instances.

Essentially all topics in the theory of relational database can be studied using a fixed
choice for the two forks. However, there are some cases in which one perspective is much
more natural than the other or is technically much more convenient. For example, in a
context in which there is more than one relation, the named perspective permits easy and
natural specification of correspondences between columns of different relations whereas
the unnamed perspective does not. As will be seen in Chapter 4, this leads to different but
equivalent sets of natural primitive algebra operators for the two perspectives. A related
example concerns those topics that involve the association of distinct domains to different
relation columns; again the named perspective is more convenient. In addition, although
relational dependency theory can be developed for the unnamed perspective, the motivation
is much more natural when presented in the named perspective. Thus during the course
of this book the choice of perspective during a particular discussion will be motivated
primarily by the intuitive or technical convenience offered by one or the other.

In this book, we will need an infinite set var of variables that will be used to range
over elements of dom. We generalize the notion of tuple to permit variables in coordinate
positions: a free tuple over U or R[U] is (under the named perspective) a function u from
U to var U dom. An atom over R is an expression R(ey, ..., e,), where n = arity(R) and

34 The Relational Model

e; is term (i.e., e; € var U dom for each i € [1, n]). Following the terminology of logic
and logic programming, we sometimes refer to a fact as a ground atom.

3.4 Notation

We generally use the following symbols, possibly with subscripts:

Constants a,b,c

Variables X,y

Sets of variables X, Y

Terms e

Attributes A, B, C

Sets of attributes u,v,w

Relation names (schemas) R, S; R[U], S[V]
Database schemas R, S

Tuples t,s

Free tuples U, v, w

Facts R(ai,...,a,), R(t)
Atoms R(ey,...,en), R(u)
Relation instances 1,J

Database instances L]

Bibliographic Notes

The relational model is founded on mathematical logic (in particular, predicate calcu-
lus). It is one of the rare cases in which substantial theoretical development preceded the
implementation of systems. The first proposal to use predicate calculus as a query lan-
guage can be traced back to Kuhns [Kuh67]. The relational model itself was introduced by
Codd [Cod70]. There are numerous commercial database systems based on the relational
model. They include IBM’s DBZ, [AT76], INGRES [SWKH?76], and ORACLE [Ora89],
Informix, and Sybase.

Other data models have been proposed and implemented besides the relational model.
The most prominent ones preceding the relational model are the hierarchical and network
models. These and other models are described in the books [Nij76, TL82]. More recently,
various models extending the relational model have been proposed. They include seman-
tic models (see the survey [HK87]) and object-oriented models (see the position paper
[ABD™89]). In this book we focus primarily on the relational model in a broad sense. Some
formal aspects of other models are considered in Part F.

	The Structure of the Relational Model
	Named versus Unnamed Perspectives
	Conventional versus Logic Programming Perspectives
	Notation
	Bibliographic Notes

