
22 Dynamic Aspects

Alice: How come we’ve waited so long to talk about something so important?
Riccardo: Talking about change is hard.

Sergio: We’re only starting to get a grip on it.
Vittorio: And still have a long way to go.

At a fundamental level, updating a database is essentially imperative programming.
However, the persistence, size, and long life cycle of a database lead to perspec-

tives somewhat different from those found in programming languages. In this chapter, we
briefly examine some of these differences and sketch some of the directions that have been
explored in this area. Although it is central to databases, this area has received far less at-
tention from the theoretical research community than other topics addressed in this book.
The discussion in this chapter is intended primarily to give an overview of the important is-
sues raised concerning the dynamic aspects of databases. It therefore emphasizes examples
and intuitions much more than results and proofs.

This chapter begins by examining database update languages, including a simple
language that corresponds to the update capabilities of practical languages such as SQL,
and more complex ones expressed within a logic-based framework. Next optimization and
semantic properties of transactions built from simple update commands are considered,
including a discussion of the interaction of transactions and static integrity constraints.

The impact of updates in richer contexts is then considered. In connection with views,
we examine the issue of how to propagate updates incrementally from base data to views
and the much more challenging issue of propagating an update on a view back to the
base data. Next updates for incomplete information databases are considered. This includes
both the conditional tables studied in Chapter 19 and more general frameworks in which
databases are represented using logical theories.

The emerging field of active databases is then briefly presented. These incorporate
mechanisms for automatically responding to changes in the environment or the database,
and they often use a rule-based paradigm of specifying the responses.

This chapter concludes with a brief discussion of temporal databases, which support
the explicit representation of the time dimension and thus historical information.

A broad area related to dynamic aspects of databases (namely, concurrency control)
will not be addressed. This important area concerns mechanisms to increase the throughput
of a database system by interleaving multiple transactions while guaranteeing that the
semantics of the individual transactions is not lost.
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22.1 Update Languages

Before embarking on a brief excursion into update languages, we should answer the fol-
lowing natural question: Why are update languages necessary? Could we not use query
languages to specify updates?

The difference between query and update languages is subtle but important. To specify
an update, we could indeed define the new database as the answer to a query posed against
the old database. However, this misses an essential characteristic of updates: Most often,
they involve small changes to the current database. Query languages are not naturally suited
to speak explicitly about change. In contrast, update languages use as building blocks
simple statements expressing change, such as insertions, deletions, and modifications of
tuples in the database.

In this section, we outline several formal update languages and point to some theoret-
ical issues that arise in this context.

Insert-Delete-Modify Transactions

We begin with a simple procedural language to specify insertions, deletions, and modifica-
tions. Most commercial relational systems provide at least these update capabilities.

To simplify the presentation, we suppose that the database consists of a single relation
schema R. Everything can be extended to the multirelational case. An insertion is an
expression ins(t), where t is a tuple over att(R). This inserts the tuple t into R. [We
assume set-based semantics, under which ins(t) has no effect if t is already present in
R.] A deletion removes from R all tuples satisfying some stated set of conditions. More
precisely, a condition is an (in)equality of the form A= c or A "= c, where A ∈ att(R) and
c is a constant. A deletion is an expression del(C), where C is a finite set of conditions.
This removes from R all tuples satisfying each condition in C. Finally, a modification is
an expression mod(C→ C′), where C,C′ are sets of conditions, with C′ containing only
equalities A = c. This selects all tuples in R satisfying C and then, for each such tuple
and each A= c in C′, sets the value of A to c. An update over R is an insertion, deletion,
or modification over R. An IDM transaction (for insert, delete, modify) over R is a finite
sequence of updates over R. This is illustrated next.

Example 22.1.1 Consider the relation schema Employee with attributes N (Name), D
(Department), R (Rank). The following IDM transaction fires the manager of the parts
department, transfers the manager of the sales department to the parts department, and
hires Moe as the new manager for the sales department:

del({D = parts, R = manager});
mod({D = sales, R = manager} → {D = parts});
ins(Moe, sales,manager)

The same update can be expressed in SQL as follows:

delete from Employee
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where D = “parts” and R = “manager”;
update Employee

set D = “parts”
where D = “sales” and R = “manager”;

insert into Employee values 〈 “Moe”,“sales”,“manager”〉

As for queries, a question of central interest to update languages is optimization. To
see how IDM transactions can be optimized, it is useful to understand when two such
transactions are equivalent. It turns out that equivalence of IDM transactions has a sound
and complete axiomatization. Following are some simple axioms:

mod(C→ C′); del(C′) ≡ del(C); del(C′)
ins(t);mod(C→ C′) ≡ mod(C→ C′); ins(t ′)
where t satisfies C and {t ′} = mod(C→ C′)({t})

and a slightly more complex one:

del(C3);mod(C1 → C3);mod(C2 → C1);mod(C3 → C2)

≡ del(C3);mod(C2 → C3);mod(C1 → C2);mod(C3 → C1),

where C1, C2, C3 are mutually exclusive sets of conditions.
We can define criteria for the optimization of IDM transactions along two main lines:

Syntactic: We can take into account the length of the transaction as well as the kind of
operations involved (for example, it may be reasonable to assume that insertions are
simpler than modifications).

Semantic: This can be based on the number of tuple operations actually performed when
the transaction is applied.

Various definitions are possible based on the preceeding criteria. It can be shown that
there exists a polynomial-time algorithm that optimizes IDM transactions, with respect
to a reasonable definition based on syntactic and semantic criteria. The syntactic criteria
involve the number of insertions, deletions, and modifications. The semantic criteria are
based on the number of tuples touched at runtime by the transaction. We omit the details
here.

Example 22.1.2 Consider the IDM transaction over a relational schema R of sort AB:

mod({A "= 0, B = 1} → {B = 2}); ins(0, 1); ins(3, 2);
mod({A= 0, B = 1} → {B = 2});mod({A "= 0, B = 0} → {B = 1});
mod({A= 0, B = 0} → {B = 1});mod({A "= 0, B = 2} → {B = 0});
mod({A= 0, B = 2} → {B = 0}); del({A "= 0, B = 0}).

Assuming that insertions are less expensive than deletions, which are less expensive than
modifications, an optimal IDM transaction equivalent to the foregoing is
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del({A "= 0, B = 1}); del({A "= 0, B = 2});
mod({A= 0, B = 1} → {B = 2});
mod({B = 0} → {B = 1});
mod({A= 0, B = 2} → {B = 0});
ins(0, 0).

Thus the six modifications, one deletion, and two insertions of the original transaction were
replaced by three modifications, two deletions, and one insertion.

Another approach to optimization is to turn some of the axioms of equivalence into
simplification rules, as in

mod(C→ C′); del(C′)⇒ del(C); del(C′).

It can be shown that such a set of simplification rules can be used to optimize a restricted
set of IDM transactions that satisfy a syntactic acyclicity condition. For the other transac-
tions, applications of the simplification rules yield a simpler, but not necessarily optimal,
transaction. The simplification rules have the advantage that they are local and can be eas-
ily applied even online, whereas the complete optimization algorithm is global and has to
know the entire transaction in advance.

Rule-Based Update Languages

The IDM transactions provide a simple update language of limited power. This can be
extended in many ways. One possibility is to build another procedural language based
on tuple insertions, deletions, and modifications, which includes relation variables and
an iterative construct. Another, which we illustrate next, is to use a rule-based approach.
For example, consider the language datalog¬¬ described in Chapter 17, with its fixpoint
semantics. Recall that rules allow for both positive and negative atoms in heads of rules;
consistently with the fixpoint semantics, the positive atoms can be viewed as insertions
of facts and the negative atoms as deletions of facts. For example, the following program
removes all cycles of length one or two from the graph G:

¬G(x, y)←G(x, y),G(y, x).

In the usual fixpoint semantics, rules are fired in parallel with all possible instantiations
for the variables. This yields a deterministic semantics. Some practical rule-based update
languages take an alternative approach, which yields a nondeterministic semantics: The
rules are fired one instantiation at a time. With this semantics, the preceeding program
provides some orientation of the graph G. Note that generally there is no way to obtain an
orientation of a graph deterministically, because a nondeterministic choice of edges to be
removed may be needed.

A deterministic language expressing all updates can be obtained by extending
datalog¬¬ with the ability to invent new values, in the spirit of the language whilenew
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in Chapter 18. This can be done in the manner described in Exercise 18.22. The same
language with nondeterministic semantics can be shown to express all nondeterministic
updates.

The aforementioned languages yield a bottom-up evaluation procedure. The body of
the rule is first checked, and then the actions in the head are executed. Another possibility
is to adopt a top-down approach, in the spirit of the assert in Prolog. Here the actions
to be taken are specified in rule bodies. A good example of this approach is provided
by Dynamic Logic Programming (DLP). Interestingly, this language allows us to test
hypothetical conditions of the form “Would ϕ hold if t was inserted?” This, and the
connection of DLP with Prolog, is illustrated next.

Example 22.1.3 Consider a database schema with relations ES of sort Emp,Sal (em-
ployees and their salaries), ED of sort Emp,Dep (employees and their departments), and
DA of sort Dep,Avg (average salary in each department).

Suppose that an update is intended to hire John in the toys department with a salary of
200K , under the condition that the average salary of the department stays below 50K . In
the language DLP, this update is expressed by

〈hire(emp1, sal1, dep1)〉 ←
〈+ES(emp1, sal1)〉(〈+ED(emp1, dep1)〉(DA(dep1, avg1) & avg1< 50k)).

(Other rules are, of course, needed to define DA.) A call hire(John,200K,Toys) hires John in
the toys department only if, after hiring him, the average salary of the department remains
below 50K . The+ symbol indicates an insertion. Here the conditions in parentheses should
hold after the two insertions have been performed; if not, then the update is not realized.
Testing a condition under the assumption of an update is a form of hypothetical reasoning.

It is interesting to contrast the semantics of DLP with that of Prolog. Consider the
following Prolog program:

:− assert(ES(john, 200)), assert(ED(john, toys)),

DA(toys,Avg1),Avg1< 50.

In this program, the insertions into ES and ED will be performed even if the conditions are
not satisfied afterward. (The reader familiar with Prolog is encouraged to write a program
that has the desired semantics.)

A similar top-down approach to updates is adopted in Logical Data Language (LDL).
Updates concern not only instances of a fixed schema. Sometimes the schema itself

needs to be changed (e.g., by adding an attribute). Some practical update languages include
constructs for schema change. The main problem to be resolved is how the existing data
can be fit to the new schema.

In deductive databases, some relations are defined using rules. Occasionally these
definitions may have to be changed, leading to updates of the “rule base.” There are
languages that can be used to specify such updates.
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22.2 Transactional Schemas

Typically, database systems restrict the kinds of updates that users can perform. There are
three main ways of doing this:

(a) Specify constraints (say, fd’s) that the database must satisfy and reject any update
that leads to a violation of the constraints.

(b) Restrict the updates themselves by only allowing the use of a set of prespecified,
valid updates.

(c) Permit users to request essentially arbitrary updates, but provide an automatic
mechanism for detecting and repairing constraint violations.

Object-oriented databases essentially embrace option (b); updates are performed only
by methods specified at the schema level, and it is assumed that these will not violate the
constraints (see Chapter 21). Both options (a) and (b) are present in the relational model.
Several commercial systems can recognize and abort on violation of simple constraints
(typically key and simple inclusion dependencies). However, maintenance of more com-
plex constraints is left to the application software. Option (c) is supported by the emerging
field of active databases, which is discussed in the following section.

We now briefly explore some issues related to approach (b) in connection with the
relational model. To illustrate the issues, we use simple procedures based on IDM transac-
tions. The procedures we use are parameterized IDM transactions, obtained by allowing
variables in addition to constants in conditions of IDM transactions. The variables are used
as parameters. A database schema R together with a finite set of parameterized IDM trans-
actions over R is called an IDM transactional schema.

Example 22.2.1 Consider a database schema R with two relations, TA (Teaching Assis-
tant) of sort Name,Course, and PHD (Ph.D. student) of sort Name, Address. The following
IDM-parameterized transactions allow the hiring and firing of TAs (subscripts indicate the
relation to which each update applies):

hire(x, y, z)= delTA(Name= x); insTA(x, y)

delPHD(Name= x); insPHD(x, z)

fire(x) = delTA(Name= x)

The pair T= 〈R, {hire, fire}〉 is an IDM transactional schema. Note in this simple example
that once a name n is incorporated into the PHD relation, it can never be removed.

Clearly, we could similarly define transactional schemas in conjunction with any up-
date language.

Suppose T is an IDM transactional schema. To apply the parameterized transactions,
values must be supplied to the variables. A transaction obtained by replacing the variables
of a parameterized transaction t in T by constants is a call to t . The only updates allowed
by an IDM transactional schema are performed by calls to its parameterized transactions.
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The set of instances that can be generated by such calls (starting from the empty instance)
is denoted Gen(T).

Transactional schemas offer an approach for constraint enforcement, essentially by
preventing updates that violate them. So it is important to understand to what extent they
can do so. First we need to clarify the issue. Suppose T is an IDM transactional schema
and � is a set of constraints over a database schema R; Sat(�) denotes all instances over
R satisfying �. If T is to replace �, we would expect the following properties to hold:

• soundness of T with respect to �: Gen(T)⊆ Sat(�); and

• completeness of T with respect to �: Gen(T)⊇ Sat(�).

Thus T is sound and complete with respect to � iff it generates precisely the instances
satisfying �.

Example 22.2.2 Consider again the IDM transactional schema T in Example 22.2.1. Let
� be the following constraints:

TA : Name → Course
PHD : Name→ Address
TA[Name] ⊆ PHD[Name]

It is easily seen that T in Example 22.2.1 is sound and complete with respect to �. That is,
Gen(T)= Sat(�) (Exercise 22.7).

This example also highlights a limitation in the notion of completeness: It can be seen
that there are pairs I and J of instances in Sat(�) where I cannot be transformed into J
using T. In other words, there are valid database states I and J such that when in state I,
J is never reachable. Such forbidden transitions are also a means of enriching the model,
because we can view them as temporal constraints on the database evolution. We will return
to temporal constraints later in this chapter.

Of course, the ability of transaction schemas to replace constraints depends on the
update language used. For IDM transactional schemas, we can show the following (Exer-
cise 22.8):

Theorem 22.2.3 For each database schema R and set� of fd’s and acyclic inclusion de-
pendencies over R, there exists an IDM transactional schema T that is sound and complete
with respect to �.

Thus IDM transactional schemas are capable of replacing a significant set of con-
straints. The kind of difficulty that arises with more general constraints is illustrated next.

Example 22.2.4 Consider a relation R of sort ABC and the following set � of
constraints:
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• the embedded join dependency

∀xyzx′y′z′(R(xyz) ∧ R(x′y′z′)⇒∃z′′R(xy′z′)),

• the functional dependency AB→ C,

• the inclusion dependency R[A] ⊆ R[C],

• the inclusion dependency R[B] ⊆ R[A],

• the inclusion dependency R[A] ⊆ R[B].

It is easy to check that, for each relation satisfying the constraints, the number of con-
stants in the relation is a perfect square (n2, n ≥ 0). Thus there are unbounded gaps be-
tween instances in Sat(�). There is no IDM transactional schema T such that Sat(�)=
Gen(T), because the gaps cannot be crossed using calls to parameterized transactions with
a bounded number of parameters. Moreover, this problem is not specific to IDM trans-
actional schemas; it arises with any language in which procedures can only introduce a
bounded number of new constants into the database at each call.

Another natural question relating updates and constraints is, What about checking
soundness and/or completeness of IDM transactional schemas with respect to given con-
straints? Even in the case of IDM transactional schemas, such questions are generally unde-
cidable. There is one important exception: Soundness of IDM transactional schemas with
respect to fd’s is decidable. These questions are explored in Exercise 22.12.

22.3 Updating Views and Deductive Databases

We now turn to the impact of updates on views. Views are an important aspect of databases.
The interplay between views and updates is intricate. We can mention in particular two
important issues. One is the view maintenance problem: A view has been materialized and
the problem is to maintain it incrementally when the database is updated. An important
variation of this is in the context of deductive databases when the view consists of idb
relations. The other is known as the view update problem: Given a view and an update
against a view, the problem is to translate the update into a corresponding update against
the base data. This section considers these two issues in turn.

View Maintenance

Suppose that a base schema B and view schema V are given along with a (total) view map-
ping f : Inst(B)→ Inst(V). Suppose further that a materialized view is to be maintained
[i.e., whenever the base database holds an instance IB , then the view schema should be
holding f (IB)].

For this discussion, an update for a schema R is considered to be a mapping from
Inst(R) to Inst(R). If constraints are present, it is assumed that an update cannot map to
instances violating the constraints. The updates considered here might be based on IDM
transactions or might be more general. We shall often speak of “the” update µ that maps
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f f
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Figure 22.1: Relationship of views and updates

instance I to instance I′, and by this we shall mean the set of insertions and deletions that
need to be made to I to obtain I′.

Suppose that the base database B is holding IB and that update µ maps this to I′B (see
Fig. 22.1). A naive way to keep the view up to date is to simply compute f (I′B). However,
I′B is typically large relative to the difference between IV and I′V . It is thus natural to search
for more efficient ways to find the update ν that maps IV to I′V = f (µ(IB)). This is the
view maintenance problem.

There are generally two main components to solutions of the view maintenance prob-
lem. The first involves developing algorithms to test whether an update to the base data can
affect the view. Given such an algorithm, an update is said to be irrelevant if the algorithm
certifies that the update cannot affect the view, and it is said to be relevant otherwise.

Example 22.3.1 Let the base database schema be B= (R[AB], S[BC]), and consider
the following views:

V1 = (R �� σC>50S)

V2 = πAR
V3 = R �� S
V4 = πAC(R �� S).

Inserting 〈b, 20〉 into S cannot affect views V1 or V2. On the other hand, whether or not this
insertion affects V3 or V4 depends on the data already present in the database.

Various algorithms have been developed for determining relevance with varying de-
grees of precision. A useful technique involves maintaining auxiliary information, as illus-
trated next.

Example 22.3.2 Recall view V2 of Example 22.3.1, and suppose that R currently holds
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R A B

a 20

a 30

a′ 80

Deleting 〈a, 20〉 has no impact on the view, whereas deleting 〈a′, 80〉 has the effect of
deleting 〈a′〉 from the view. One way to monitor this is to maintain a count on the number
of distinct ways that a value can arise; if this count ever reaches 0, then the value should be
deleted from the view.

The other main component of solutions to the view maintenance problem concerns the
development of incremental evaluation algorithms. This is closely related to the seminaive
algorithm for evaluating datalog programs (see Chapter 13).

Example 22.3.3 Recall view V3 from Example 22.3.1, and let I+R and I+S denote sets
of tuples that are to be inserted into R and S, respectively. It is easily verified that

(R ∪I+R) �� (S ∪I+S )= (R �� S) ∪ (R ��I+S ) ∪ (I+R �� S) ∪ (I+R ��I+S ).

Thus the new join can be found by performing three (typically smaller) joins followed by
some unions.

It is relatively straightforward to develop incremental evaluation expressions, such as
in the preceeding example, for all of the relational algebra operators (see Exercise 22.13).
In some cases, these expressions can be refined by using information about constraints,
such as key and functional dependencies, on the base data.

Incremental Update of Deductive Views

The view maintenance problem has also been studied in connection with views constructed
with (stratified) datalog(¬). In general, the techniques used are analogous to those discussed
earlier but are generalized to incorporate recursion. In the context of stratified datalog¬,
various heuristics have been adapted from the field of belief revision for incrementally
maintaining supports (i.e., auxiliary information that holds the justifications for the pres-
ence of a fact in the materialized output of the program).

An interesting research direction that has recently emerged focuses on the ability of
first-order queries to express incremental updates on views defined using datalog. The
framework for these problems is as follows. The base schema B and view schema V are
as before, except that V contains only one relation and the view f is defined in terms of
a datalog program P . A basic question is, Given P , is there a first-order query ϕ such
that ϕ(IB, IV ,+R(t))= P(IB ∪ {R(t)}) for each choice of IB , IV = P(IB) and insertion
+R(t) where R ∈ B? If this holds, then P is said to be first-order incrementally definable
(FOID) (without auxiliary relations).
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Example 22.3.4 Consider a binary relationG[AB] and the usual datalog program P that
computes the transitive closure of G in T [AB]. Suppose that I is an instance of G, and J
is P(I). Suppose that tuple 〈a, b〉 is inserted into I . Then a tuple 〈a′, b′〉 will be inserted
into J iff one of the following occurs:

(a) a′ = a and b = b′;
(b) a′ = a and 〈b, b′〉 ∈ J ;

(c) 〈a′, a〉 ∈ J and b = b′; or

(d) 〈a′, a〉 ∈ J and 〈b, b′〉 ∈ J .

The preceeding conditions can clearly be specified by a first-order query. It easily follows
that P is FOID (see Exercise 22.21).

Several variations of FOIDs have been studied. These include FOIDs with auxiliary
relations (i.e., that permit the maintenance of derived relations not in the original data-
log program) and FOIDs that support incremental updates for sets of insertions and/or
deletions. FOIDs have been found for a number of restricted classes of datalog programs.
However, it remains open whether there is a datalog program that is not FOID with auxil-
iary relations.

Basic Issues in View Update

The view update problem is essentially the inverse of the view maintenance problem.
Referring again to Fig. 22.1, the problem now is, Given IB , IV , and update ν on IV , find an
update µ so that the diagram commutes.

The first obvious problem here is the potential for ambiguity.

Example 22.3.5 Recall the view V2 of Example 22.3.1. Suppose that the base value of
R is {〈a, b〉} (and the base value of S is ∅). Thus the view holds {〈a〉}. Now consider an
update ν to the view that inserts 〈a′〉. Some possible choices for µ include

(a) Insert 〈a′, b〉 into R.

(b) Insert 〈a′, b′〉 into R for some b′ ∈ dom.

(c) Insert {〈a′, b′〉 | b′ ∈X} into R, where X is a finite subset of dom.

(d) Insert 〈a′, b′〉 into R for some b′ ∈ dom, and replace 〈a, b〉 by 〈a, b′〉.
Possibility (d) seems undesirable, because it affects a tuple in a base relation that is,
intuitively speaking, independent of the view update. Possibilities (a) and (b) seem more
appealing than (c), but (c) cannot be ruled out. In any case, it is clear that there are a large
number of updates µ that correspond to ν.

The fundamental problem, then, is how to select one update µ to the base data given
that many possibilities may exist. One approach to resolving the ambiguity involves exam-
ining the intended semantics of the database and the view.
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Example 22.3.6 Consider a schema Employee[Name, Department, Team_position],
which records an employee’s department and the position he or she plays in the corpo-
rate baseball league. It is assumed that Name is a key. The value “no” indicates that the
employee does not play in the league. It is assumed that Name is a key. Consider the views
defined by

Sales = σDepartment=“Sales”(Employee)

Baseball = πEmployee,Team_position(σTeam_position "=“no”(Employee))

Typically, if tuple 〈“Joe”, “Sales”, “shortstop”〉 is deleted from the Sales view, then
this tuple should also be deleted from the underlying Employee relation. In contrast, if
tuple 〈“Joe”, “shortstop”〉 is deleted from the Baseball view, it is typically most natural to
replace the underlying tuple 〈“Joe”, d, “shortstop”〉 in Employee by 〈“Joe”, d, “no”〉 (i.e.,
to remove Joe from the baseball league rather than forcing him out of the company).

As just illustrated, the correct translation of a view update can easily depend on the
semantics associated with the view as well as the syntactic definition. Research in this
area has developed notions of update translations that perform a minimal change to the
underlying database. Algorithms that generate families of acceptable translations of views
have been developed, so that the database administrator may choose at view definition time
the most appropriate one.

Another issue in view update is that a requested update may not be permitted on the
view, essentially because of constraints implicit to the view definition and algorithm for
choosing translations of updates.

Example 22.3.7 Recall the view V4 of Example 22.3.1, and suppose that the base data
is

R A B S B C

a 20 20 c

a′ 20 20 c′

In this case the view contains {〈a, c〉, 〈a, c′〉, 〈a′, c〉, 〈a′, c′〉}.
Suppose that the user requests that 〈a, c〉 be deleted. Typically, this deletion is mapped

into one or more deletions against the base data. However, deleting R(a, 20) results in a
side-effect (namely, the deletion of 〈a, c′〉 from the view). Deletion of S(20, c) also yields
a side-effect.

Formal issues surrounding such side-effects of view updates are largely unexplored.
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Complements of Views

We now turn to a more abstract formulation of the view update problem. Although it is
relatively narrow, it provides an interesting perspective.

In this framework, a view over a base schema B is defined to be a (total) function f
from Inst(B) into some set. In practice this set is typically Inst(V) for some view schema V;
however, this is not required for this development. [The proof of Theorem 22.3.10, which
presents a completeness result, uses a view whose range is not Inst(V) for any schema V.]
A binary relation ≤ on views is defined so that f ≤ g if for all base instances I and I′,
g(I) = g(I′) implies f (I) = f (I′). Intuitively, f ≤ g if g can distinguish more instances
that f . For view f , let ≡f be the equivalence relation on Inst(B) defined by I ≡f I′ iff
f (I)= f (I′). It is clear that f ≤ g iff ≡g is a refinement of ≡f and thus ≤ can be viewed
as a partial order on the equivalence relations over Inst(B).

Two views f, g are equivalent, denoted f ≡ g, if f ≤ g and g ≤ f . This is an equiva-
lence relation on views. In the following, the focus is primarily on the equivalence classes
under ≡. Let . denote the view that is simply the identity, and let ⊥ denote a view that
maps every base instance to ∅. It is clear that (the equivalence classes represented by)
. and ⊥ are the maximal and minimal elements of the partial order ≤. We use cross-
product as a binary operator to create views: The product of views f and g is defined so
that (f × g)(I) = (f (I), g(I)). View g is a complement of view f if f × g ≡ .. Intu-
itively, this means that the base relations can be completely identified if both f and g are
available. Clearly, each view f has a trivial complement: ..

Example 22.3.8 (a) Let B= {R[ABC]} along with the fd R : A→ B, and consider the
view f = πABR. Let g = πACR. It follows from Proposition 8.2.2 that g is a complement
of f .

(b) Let B= {R[AB]} and f = πAR. As mentioned earlier, . is a complement of f .
It turns out that there are other complements of f , but they cannot be expressed using the
relational algebra (see Exercise 22.25).

(c) Let B = {Employee(Name, Salary, Bonus, Total_pay)}, with the constraints that
Name is a key and that for each tuple 〈n, s, b, t〉 in Employee we have s + b = t . Consider
the view f = πName,Salary(Employee). Consider the views

g1 = πName,Bonus(Employee)

g2 = πName,Total_pay(Employee).

Both g1 and g2 are complements of f .

Thus each view has at least one complement (namely,.) and may have more than one
minimal complement.

In some cases, complements can be used to resolve ambiguity in the view update
problem in the following way. Suppose that view f has complement g, and suppose
that IV = f (IB) and update ν on IV are given. An update µ is a g-translation of ν if
f (µ(IB)) = ν(f (IB)) and g(µ(IB)) = g(IB) (see Fig. 22.2). Intuitively, a g-translation
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( f(IB), g(IB)) (v( f(IB)), g(IB))

IB I′B

f × g ( f × g)–1

v

µ

Figure 22.2: Properties of a g-translation µ of view update ν on view f

accomplishes the update but leaves g(IB) fixed. By the properties of complements, for an
update ν there is at most one g-translation of ν.

Example 22.3.9 (a) Recall the base schema {R[ABC]}, view f , and complement g of
Example 22.3.8(a). Suppose that 〈a, b〉 is in the view, and consider the update ν on the
view that modifies 〈a, b〉 to 〈a, b′〉. The update µ defined to modify all tuples 〈a, b, c〉 of
R into 〈a, b′, c〉 is a g-translation of ν. On the other hand, given an insertion or deletion ν
to the view, there is no g-translation of ν.

(b) Recall the base schema, view f , and complementary views g1 and g2 of Exam-
ple 22.3.8(c). Suppose that 〈Joe, 200, 50, 250〉 is in Employee. Consider the update ν that
replaces 〈Joe, 200〉 by 〈Joe, 210〉 in the view. Consider the updates

µ1 = replace 〈Joe, 200, 50, 250〉 by 〈Joe, 210, 50, 260〉
µ2 = replace 〈Joe, 200, 50, 250〉 by 〈Joe, 210, 40, 250〉.

Then µ1 is the g1-translation of ν, and µ2 is the g2-translation of ν.

Finally, we state a result showing that a restricted class of view updates can be trans-
lated into base updates using complementary views. To this end, we focus on updates of a
schema R that are total functions from Inst(R) to Inst(R). A family U of updates on R is
said to be complete if

(a) it is closed under composition (i.e., if µ and µ′ are in U , then so is µ ◦ µ′);
(b) it is closed under inverse in the following sense: ∀I ∈ inst(R) ∀µ ∈ U ∃µ′ ∈ U

such that µ′(µ(I))= I.

Intuitively, condition (b) says that a user can always undo an update just made. It is certainly
natural to focus on complete sets of updates.

Let base schema B and view f be given, and let Uf be a family of updates on
the view. Let UB denote the family of all updates on the base schema. A translator for
Uf is a mapping t : Uf → UB such that for each base instance IB and update ν ∈ Uf ,
f (t (ν)(IB))= ν(f (IB)). Clearly, solving the view update problem consists of coming up
with a translator.
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If g is a complement for f , then a translator t is a g-translator if t (ν) is a g-translation
of ν for each ν ∈ Uf .

We can now state the following (see Exercise 22.26):

Theorem 22.3.10 Let base schema B and view f be given, and let Uf be a complete set
of updates on the view. Suppose that t is a translator for Uf . Then there is a complement g
of f such that t is a g-translator for Uf .

Thus to find a translator for a complete set of view updates, it is sufficient to specify an
appropriate complementary view g and take the corresponding g-translator. The theorem
says that one can find such g if a translator exists at all.

The preceeding framework provides an abstract, elegant perspective on the view up-
date problem. Forming bridges to the more concrete frameworks in which views are defined
by specific languages (e.g., relational algebra) remains largely unexplored.

22.4 Updating Incomplete Information

In a sense, an update to a view is an incompletely specified update whose completion must
be determined or selected. In this section, we consider more general settings for studying
updates and incomplete information.

First we return to the conditional tables of Chapter 19 and show a system for updating
such databases. We then introduce formulations of incomplete information that use theories
(i.e., sets of propositional or first-order sentences) to represent the (partial) knowledge
about the world. Among other benefits, this approach offers an interesting alternative to
resolving the view update problem. This section concludes by comparing these approaches
to belief revision.

Updating Conditional Tables

The problems posed by updating a c-table are similar to those raised by queries. A rep-
resentation T specifies a set of possible worlds rep(T ). Given an update u, the possible
outcomes of the update are

u(rep(T ))= {u(I) | I ∈ rep(T )}.

As for queries, it is desirable to represent the result in the same representation system. If
the representation system is always capable of representing the answer to any update in a
language L, it is a strong representation system with respect to L.

Let us consider c-tables and simple insertions, deletions, and modifications, as in
the language of IDM transactions. We know from Chapter 19 that c-tables form a strong
representation system for relational algebra; and it is easily seen that IDM transactions
can be expressed in the algebra (see Exercise 22.3). It follows that c-tables are a strong
representation system for IDM transactions. In other words, for each c-table T and IDM
transaction t , there exists a c-table t(T ) such that rep(t(T ))= t (rep(T )).
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Example 22.4.1 Consider the c-table in Example 19.3.1. Insertions ins(t) are straight-
forward: t is simply inserted in the table. Consider the deletion d = del({Student =
Sally,Course= Physics}). The c-table t(T ) representing the result of the deletion is

Student Course

Sally
Sally
Sally
Alice
Alice
Alice

(x ≠ Math) ∧ (x ≠ CS)

Math
CS
x
Biology
Math
Physics

(z = 0)
(z ≠ 0)
(x ≠ Physics)
(z = 0)
(x = Physics) ∧ (t = 0)
(x = Physics) ∧ (t ≠ 0)

Consider again the original c-table T in Example 19.3.1 and the modification

m= mod({Student = Sally,Course=Music} → {Course= Physics}).

The c-table m(T ) representing the result of the modification is

Student Course

Sally
Sally
Sally
Sally
Alice
Alice
Alice

(x ≠ Math) ∧ (x ≠ CS)

Math
CS
Physics
x
Biology
Math
Physics

(z = 0)
(z ≠ 0)
(x = Music)
(x ≠ Music)
(z = 0)
(x = Physics) ∧ (t = 0)
(x = Physics) ∧ (t ≠ 0)

In the context of incomplete information, it is natural to consider updates that them-
selves have partial information. For c-tables, it seems appropriate to define updates with
the same kind of incomplete information, using tuples with variables subject to conditions.
We can define extensions of insertions, deletions, and modifications in this manner. It can
be shown that c-tables remain a strong representation system for such updates.

Representing Databases Using Logical Theories

Conditional tables provide a stylized, restricted framework for representing incomplete
information and are closed under a certain class of updates. We now turn to more general
frameworks for representing and updating incomplete information. These are based on
representing databases as logical theories.

Given a logical theory T (i.e., set of sentences), the set of models of T is denoted
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by Mod(T). In our context, each model corresponds to a different possible instance. If
|Mod(T)|> 1, then T can be viewed as representing incomplete information.

In general, these approaches use the open world assumption (OWA). Recall from
Chapter 2 that under the closed world assumption (CWA), a fact is viewed as false unless it
can be proved from explicitly stated facts or sentences. In contrast, under the OWA if a fact
is not implied or contradicted by the underlying theory, then the fact may be true or false.
As a simple example, consider the theory T = {p} over a language with two propositional
constants p and q. Under the CWA, there is only one model of T (namely, {p}), but under
the OWA, there are two models (namely, {p} and {p, q}).

Model-Based Approaches to Updating Theories

One natural approach to updating a logical theory T is model based; it focuses on how
proposed updates affect the elements of Mod(T). Given an update u and instance I, let
u(I) denote the set of possible instances that could result from applying u to I. We use a set
for the result to accommodate the case in which u itself involves incomplete information.

Now let T be a theory and u an update. Under the model-based approach, the result
u(T) of applying u to T should be a theory T′ such that

Mod(T′)= ∪{u(I) | I ∈Mod(T)}.

Example 22.4.2

(a) Consider the theory T= {p ∧ q}, where p and q are propositional constants, and
the update [insert¬p]. There is only one model of T (namely, {p, q}). If we take
the meaning of insert¬p to be “make p false and leave other things unchanged,”
then updating this model yields the single model {q}. Thus the result of applying
[insert ¬p] to T yields the theory {q}.

(b) Consider T′ = {p ∨ q} and the update [insert ¬p]. The models of T′ and the
impact of the update are given by

{p} /−→ ∅
{q} /−→ {q}
{p, q} /−→ {q}.

Thus the result of applying the update to T′ is {¬p}.

The approach to updating c-tables presented earlier falls within the model-based par-
adigm (see Exercise 22.14). A family of richer model-based frameworks that supports null
values and disjunctive updates has also been developed. An interesting dimension of vari-
ation in this approach concerns how permissive or restrictive a given update semantics is.
This essentially amounts to considering how many models are associated with u(I) for
given update u and instance I. As a simple example, consider starting with an empty data-
base I∅ and the update [insert (p ∨ q)]. Under a restrictive semantics, only {p} and {q}
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are in u(I∅), but under a permissive semantics, {p, q} might also be included. The update
semantics for c-tables given earlier is very permissive: All possible models corresponding
to an update are included in the result.

Formula-Based Approaches to Updating Theories

Another approach to updating theories is to apply updates directly to the theories them-
selves. As we shall see, a disadvantage of this approach is that the same update may have
a different effect on equivalent but distinct theories. On the other hand, this approach does
allow us to assign priorities to different sentences (e.g., so that constraints are given higher
priority than atomic facts).

We consider two forms of update: [insert ϕ] and [delete ϕ], where ϕ is a sentence (i.e.,
no free variables). Given theory T, a theory T′ accomplishes the update [insert ϕ] for T if
ϕ ∈ T′, and it accomplishes [delete ϕ] for T if1 ϕ "∈ T′∗. Observe that there is a difference
between [insert ¬ϕ] and [delete ϕ]: In the former case ¬ϕ is true for all models of T′,
whereas in the latter case ϕ may hold in some model of T′.

In general, we are interested in accomplishing an update for T with minimal impact
on T. Given theory T, we define a partial order ≤T on theories with respect to the degree
of change from T. In particular, we define T′ ≤T T′′ if T− T′ ⊂ T− T′′, or if T− T′ =
T − T′′ and T′ − T ⊆ T′′ − T. Intuitively, T′ ≤T T′′ if T′ has fewer deletions (from T)
than T′′, or both T′ and T′′ have the same deletions but T′ has no more insertions than T′′.
(Exercise 22.16 considers the opposite ordering, where insertions are given priority over
deletions.)

Intuitively, we are interested in theories T′ that accomplish a given update u for T and
are minimal under ≤T. We say that such theories T′ accomplish u for T minimally. The
following characterizes such theories (see Exercise 22.15):

Proposition 22.4.3 Let T, T′ be theories and ϕ a sentence. Then

(a) T′ accomplishes [delete ϕ] for T minimally iff T′ is a maximal subset of T that
is consistent with ¬ϕ.

(b) T′ ∪ ϕ accomplishes [insert ϕ] for T minimally iff T′ is a maximal subset of T
that is consistent with ϕ.

Thus T′ accomplishes [delete ϕ] for T minimally iff T′ ∪ ¬ϕ accomplishes [insert ¬ϕ]
for T minimally.

The following example shows that equivalent but distinct theories can be affected
differently by updates.

Example 22.4.4 (a) Consider the theory T0 = {p, q} and the update [insert ¬p]. Then
{¬p, q} is the unique minimal theory that accomplishes this update.

1 For a theory S, the (logical) closure of S, denoted S∗, is the set of all sentences implied by S.
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(b) Let T1 = {p ∧ q} and consider [insert ¬p]. The unique minimal theory that ac-
complishes this update for T1 is {¬p} [i.e., (∅ ∪ {¬p})]. Note how this differs from the
model-based update in Example 22.4.2(a).

A problem at this point is that, in general, there are several theories that minimally
accomplish a given update. Thus an update to a theory may yield a set of theories, and so
the framework is not closed under updates. Given a set T1,T2, . . . , we would like to find a
theory T whose models are exactly the union of all models of the set of theories. In general,
it is not clear that there is a theory that has this property. However, if there is only a finite
number of theories that are possible answers, then we can use the disjunction operator

∨
defined by

∨
{Ti | i ∈ [1, n]} = {τ1 ∨ · · · ∨ τn | τi ∈ Ti for i ∈ [1, n]}.

It is easily verified that Mod(
∨{Ti | i ∈ [1, n]}) = ∪{Mod(Ti) | i ∈ [1, n]}. Of course,

there is a great likelihood of a combinatorial explosion if the disjunction operator is applied
repeatedly.

Assigning Priorities to Sentences

We now explore a mechanism for giving priority to some sentences in a theory over other
sentences. Let n ≥ 0 be fixed. A tagged sentence is a pair (i, ϕ), where i ∈ [0, n] and ϕ
is a sentence. A tagged theory is a set of tagged sentences. Given tagged theory T and
i ∈ [1, n], Ti denotes {ϕ | (i, ϕ) ∈ T}.

The partial order for comparing theories is extended in the following natural fashion.
Given tagged theories T, T′ and T′′, define T′ ≤T T′′ if for some i ∈ [1, n] we have

Tj − T′j = Tj − T′′j , for each j ∈ [1, i − 1]

and

Ti − T′i ⊂ Ti − T′′i

or we have

Tj − T′j = Tj − T′′j , for each j ∈ [1, n]

and

T′ − T⊂ T′′ − T.

Intuitively, T′ ≤T T′′ if the deletions of T′ and T′′ agree up to some level i and then T′
has fewer deletions at level i; or if the deletions match and T′ has fewer insertions. In this
manner, higher priority is given to the sentences having lower numbers.
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Example 22.4.5 Consider a relation R[ABC] that satisfies the functional dependency
A→ B, and consider the instance

R A B C

a b c

a b c′

a′ b′ c′′

a′′ b′ c′′′

We now construct a tagged theory T to represent this situation and show how changing a
B value of a tuple is accomplished.

We assume three tag values and describe the contents of T0, T1, and T2 in turn. T0

holds the functional dependency and the unique name axiom (see Chapter 2). That is,

{
(0,∀x, y, y′, z, z′(R(x, y, z) ∧ R(x, y′, z′)→ y = y′)),
(0, a "= a′), (0, a "= a′′), . . . , (0, a "= b), . . . , (0, c′′ "= c′′′)

}

T1 holds the following existential sentences:



(1, ∃x(R(a, x, c))),
(1, ∃x(R(a, x, c′))),
(1, ∃x(R(a′, x, c′′))),
(1, ∃x(R(a′′, x, c′′′)))




Finally, T2 holds



(2, R(a, b, c)),
(2, R(a, b, c′)),
(2, R(a′, b′, c′′)),
(2, R(a′′, b′, c′′′))




Consider now the update u = [insert ϕ], where ϕ = ∃yR(a, b′′, y). Intuitively, this
insertion should replace all 〈a, b〉 pairs occurring in πABR by 〈a, b′′〉. More formally, it is
easy to verify that the unique tagged theory (up to choice of i) that accomplishes u is (see
Exercise 22.17)

{(i, ϕ)} ∪ T0 ∪ T1 ∪



(2, R(a, b′′, c))
(2, R(a, b′′, c′))
(2, R(a′, b′, c′′))
(2, R(a′′, b′, c′′′))




Thus the choice of sentences and tags included in the theory can influence the result
of an update.
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The approach of tagged theories can also be used to develop a framework for accom-
plishing view updates. The underlying database and the view are represented using a tagged
theory, and highest priority is given to ensuring that the complement of the view remains
fixed. Exercise 22.18 explores a simple example of this approach.

In the approach described here, a set of theories is combined using the disjunction
operator. In this case, multiple deletions can lead to an exponential blowup in the size
of the underlying theory, and performing insertions is np-hard (see Exercise 22.19). This
provided one motivation for developing a generalization of the approach, in which families
of theories, called flocks, are used to represent a database with incomplete information.

Update versus Revision

The idea of representing knowledge using theories is not unique to the field of databases.
The field of belief revision takes this approach and considers the issue of revising a knowl-
edge base. Here we briefly compare the approaches to updating database theories described
earlier with those found in belief revision.

A starting point for belief revision theory is the set of rationality postulates of Al-
chourrón, Gärdenfors, and Makinson, often referred to as the AGM postulates. These
present a general family of guidelines for when a theory accomplishes a revision, and they
include postulates such as

(R1) If T′ accomplishes [insert ϕ] for T, then T′ |= ϕ.

(R2) If ϕ is consistent with T, then the result of [insert ϕ] on T should be equivalent to
T ∪ {ϕ}.

(R3) If T≡ T′ and ϕ ≡ ϕ′, then the result of [insert ϕ] on T is equivalent to the result of
[insert ϕ′] on T′.

(This is a partial listing of the eight AGM postulates.) Other postulates focus on maintain-
ing satisfiability, relationships between the effects of different updates, and capturing some
aspects of minimal change.

It is clear from postulate (R3) that the formula-based approaches to updating database
theories do not qualify as belief revision systems. The relationship of the formula-based
approaches and belief revision is largely unexplored.

A key difference between belief revision and the model-based approach to updating
database theories stems from different perspectives on what a theory T is intended to
represent. In the former context, T is viewed as a set of beliefs about the state of the world.
If a new fact ϕ is to be inserted, this is a modification (and, it is hoped, improvement) of
our knowledge about the state of the world, but the world itself is considered to remain
unchanged. In contrast, in the model-based approaches, the theory T is used to identify a
set of worlds that are possible given the limited information currently available. If a fact ϕ
is inserted, this is understood to mean that the world itself has been modified. Thus T is
modified to identify a different set of possible worlds.

Example 22.4.6 Suppose that the world of interest is a room with a table in it. There is
an abacus and a (hand-held, electronic) calculator in the room. Let proposition a mean that
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the abacus is on the table, and let proposition c mean that the calculator is on the table.
Finally, let T be (a ∧ ¬c) ∨ (¬a ∧ c).

From the perspective of belief revision, T indicates that according to our current
knowledge, either the abacus or the calculator is on the table, but not both. Suppose that
we are informed that the calculator is on the table (i.e., [insert c]). This is viewed as
additional knowledge about the unchanging world. Combining T with c, we obtain the new
theory T1 = ((a ∧¬c)∨ (¬a ∧ c))∧ c ≡ (¬a ∧ c). [Note that this outcome is required by
postulate (R2).]

From the model-based perspective, T indicates that either the world is {a} or it is {c}.
The request [insert c] is understood to mean that the world has been modified so that c has
become true. This can be envisioned in terms of having a robot enter the room and place the
calculator on the table (if it isn’t already there) without reporting on the status of anything
except that the robot has been successful. As a result, the world {a} is replaced by {a, c},
and the world {c} is replaced by itself. The resulting theory is T2 = c (which is interpreted
under the OWA).

A set of postulates for updates, analogous to the AGM postulates for revision, has been
developed. The postulate analogous to (R2) is

(U2) If T implies ϕ, then the result of [insert ϕ] on T should be equivalent to T.

This is strictly weaker than (R2). Other postulates enforce the intuition that the effect of
an update on a possible model is independent of the other possible models of a theory,
maintaining satisfiability and relationships between the effects of different updates.

22.5 Active Databases

As we have seen, object orientation provides one paradigm for incorporating behavioral
information into a database schema. This has the effect of separating a portion of the be-
havioral information from the application software and providing a more structured repre-
sentation and organization for that portion. In this section, we briefly consider a second,
essentially orthogonal, paradigm for separating a portion of the behavioral information
from the application software. This emerging paradigm, called activeness, stems from a
synthesis of techniques from databases, on the one hand, and expert systems and artificial
intelligence, on the other.

Active databases generally support the automatic triggering of updates in response to
internal or external events (e.g., a clock tick, a user-requested update, or a change in a
sensor reading). In a manner reminiscent of expert systems, forward chaining of rules is
generally used to accomplish the response. However, there are several differences between
classical expert systems and active databases. At the conceptual and logical level, the
differences are centered around the expressive power of rule conditions and the semantics
of rule application. (Some active database systems, such as POSTGRES, also support a
form of backward chaining or query rewriting; this is not considered here.)

Active databases have been shown to be useful in a variety of areas, including con-
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Suppliers Sname Address Prices Part Sname Price

The Depot 1210 Broadway nail The Depot .02

Builder’s Mart 100 Main bolt The Depot .05

bolt Builder’s Mart .04

nut Builder’s Mart .03

Figure 22.3: Sample instance for active database examples

straint maintenance, incremental update of materialized views, mapping view updates to
the base data, and supporting database interoperability.

Rules and Rule Application

There are three distinguishing components in an active database: (1) a subsystem for
monitoring events, (2) a set of rules, often called a rule base, and (3) a semantics for rule
application, typically called an execution model.

Rules typically have the following so-called ECA form:

on 〈event〉 if 〈condition〉 then 〈action〉.

Depending on the system and application, the event may range over external phenomena
and/or over internal events (such as a method call or inserting a tuple to a relation). Events
may be atomic or composite, where these are built up from atomic events using, say, regular
expressions or a process algebra. Events may be essentially Boolean or may return a tuple
of values that indicate what triggered the event.

Conditions typically involve parameters passed in by the events, and the contents of the
database. As will be described shortly, several systems permit conditions to look at more
than one version of the database state (e.g., corresponding to the state before the event and
the state after the event). In some systems, events are not explicitly specified; essentially
any change to the database makes the event true and leads to testing of all rule conditions.

In principle, the action may be a call to an arbitrary routine. In many cases in relational
systems, the action will involve a sequence of insertions, deletions, and modifications; and
in object-oriented systems it will involve one or more method calls. Note that this may in
turn trigger other rules.

The remainder of this discussion focuses on the relational model. A short example is
given, followed by a brief discussion of execution models.

Example 22.5.1 Suppose that the Inventory database includes the following relations:

Suppliers[Sname,Address]

Prices[Part, Sname,Price]
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Suppliers and the parts they supply are represented in Suppliers and Prices, respectively. It
is assumed that Sname is a key of Suppliers and Part, Sname is a key of Prices. An example
instance is shown in Fig. 22.3.

We now list some example rules. These rules are written in a pidgin language that
uses tuple variables. The variable T ranges over sets of tuples and is used to pass them
from the condition to the action. As detailed shortly, both (r1) considered in isolation and
the set (r2.a) . . . (r2.d) taken together can be used to enforce the inclusion dependency
Prices[Sname] ⊆ Suppliers[Sname].

(r1) on true
if Prices(p) and p.Sname �∈ πSname(Suppliers)
then Prices := Prices − {p}

(r2.a) on delete Sname(s)
if T := σSname=s.Sname(Prices) is not empty
then Prices := Prices − T

(r2.b) on modify Sname(s)
if old(s).Sname �= new(s).Sname

and T = σSname=old(s).Sname(Prices)
then set p.Sname = new(s).Sname

for each p in Prices
where p ∈ T

(r2.c) on insert Prices(p)
if 〈p.Sname〉 �∈ πSname(Suppliers)
then issue supplier_warning(p)

(r2.d) on modify Prices(p)
if 〈new(p).Sname〉 �∈ πSname(Suppliers)
then issue supplier_warning(new(p))

Consider rule (r1). If ever a state arises that violates the inclusion dependency, then the
rule deletes violating tuples from the Prices relation. The event of (r1) is always true; in
principle the database must check the condition whenever an update is made. It is easy to
see in this case that such checking need only be done if the relations Supplies or Prices are
updated, and so the event “on Supplies or Prices is updated” could be incorporated into
(r1). Although this does not change the effect of the rule, it provides a hint to the system
about how to implement it efficiently.

Rules (r2.a) . . . (r2.d) form an alternative mechanism for enforcing the inclusion
dependency. In this case, the cause of the dependency violation determines the reaction
of the system. Here a deletion from (r2.a) or modification (r2.b) to Suppliers will result
in deletions from or modifications to Prices. In (r2.b), variable s ranges over tuples that
have been modified, old(s) refers to the original value of the tuple, and new(s) refers to the
modified value. On the other hand, changes to Prices that cause a violation [rules (r2.c) and
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(r2.d)] call a procedure supplier_warning; this might abort the transaction and warn the
user or dba of the constraint violation, or it might attempt to use heuristics to modify the
offending Sname value.

Execution Models

Until now, we have considered rules essentially in isolation from each other. A fundamental
issue concerns the choice of an execution model, which specifies how and when rules will
be applied. As will be seen, a wide variety of execution models are possible. The true
semantics of a rule base stems both from the rules themselves and from the execution model
for applying them.

We assume for this discussion that there is only one user of the system, or that a
concurrency control protocol is enforced that hides the effect of other users.

Suppose that a user transaction t = c1; . . . ; cn is issued, where each of the ci’s is an
atomic command. In the absence of active database rules, application of t will yield a
sequence

I0, I1, . . . , In

of database states, starting with the original state I0 and where each state Ii+1 is the result
of applying ci+1 to state Ii. If rules are present, then a different sequence of states might
arise.

One dimension of variation between execution models concerns when rules are fired.
Under immediate firing, a rule is essentially fired as soon as its event and condition become
true; under deferred firing, rule application is delayed until after the state In is reached; and
under concurrent firing, a separate process is spawned for the rule action and is executed
concurrently with other processes. In the most general execution models, each rule is
assigned its own coupling mode (i.e., immediate, deferred, or concurrent), which may be
further refined by associating a coupling mode between event and condition testing and
between condition testing and action execution.

We now examine the semantics of immediate and deferred firing in more detail. We
assume for this discussion that the event of each rule is simply true.

To illustrate immediate firing, suppose that a rule r with action d1; . . . ; dm is triggered
(i.e., its condition has become true) in state I1 of the preceeding sequence of states. Then
the sequence of databases states might start with

I0, I1, I′
1, I

′
2, . . . , I

′
m, . . . ,

where I′
1 is the result of applying d1 to I1 and I′

j+1 is the result of applying dj+1 to I′
j .

After I′
m, the command c2 would be applied. The semantics of intermediate rule firing

is in fact more complex, for two reasons. First, another rule might be triggered during
the execution of the action of the first triggered rule. In general, this calls for a recursive
style of rule application, where the command sequences of each triggered rule are placed
onto a stack. Second, several rules might be triggered at the same time. One approach in
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this case is to assume that the rules are ordered and that rules triggered simultaneously
are considered in that order. Another approach is to fire simultaneously-triggered rules
concurrently; essentially this has the effect of firing them in a nondeterministic order.

In the case of deferred firing, the full user transaction is completed before any rules are
fired, and each rule action is executed in its entirety before another rule action is initiated.
This gives rise to a sequence of states having the form

Iorig, Iuser, I2, I3, . . . , Icurr,

where now Iorig is the original state, Iuser is the result of applying the user-requested
transaction, and the states I2, I3, . . . , Icurr are the results of applying the actions of fired
rules. The sequence shown here might be extended if additional rules are to be fired.

Several intricacies arise. As before, the order of rule firing must be considered if
multiple rules are triggered at a given state. Recall the (r2) rules of Example 22.5.1, whose
events where based on transitions between some former state and some latter state. What
states should be used? It is natural to use Icurr as the latter state. With regard to the former
state, some systems advocate using Iorig, whereas other systems support the use of one of
the intermediate states (where the choice may depend on a complex condition).

Suppose that two rules r and r ′ are triggered at some state Icurr = Ii and that r is fired
first to reach state Ii+1. The event and/or condition of r ′ may no longer be true. This raises
the question, Should r ′ be fired? A consensus has not emerged in the literature.

As should be clear from the preceeding discussion, there is a wide variety of choices
for execution models. A more subtle dimension of flexibility concerns the expressive power
of rule events and conditions: In addition to accessing the current state, should they be
able to access one or more previous ones? Several prototype active database systems have
been implemented; each uses a different execution model, and several permit access to
both current and previous states. It has been argued that different execution models may be
appropriate for different applications. This has given rise to systems that include a choice
of execution models and to languages that permit the specification of customized execution
models. An open problem at the time this book was written is to develop a natural syntax
that can be used to specify easily a broad range of execution models, including a substantial
subset of those described in the literature.

The while languages studied in Part E can serve as the kernel of an active database.
These languages do not use events; restrict rule actions to insertions, deletions, and value
creation; and examine only the current state in a rule firing sequence. If value creation is
supported, then these languages are complete for database mappings and so in some sense
can simulate all active databases. However, richer rules and execution models permit the
possibility of developing rule bases that enforce a desired set of policies in a more intuitive
fashion than a while program.

An Execution Model That Reaches a Unique Fixpoint

It should be clear that whatever execution model and form for rules is selected, most
questions about the behavior of an active database are undecidable. It is thus interesting
to consider more restricted execution models that behave in predictable ways. We now
present one such execution model, called the accumulating model; this forms a portion of
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the execution model of AP5, a main-memory active database system that has been used in
research for over a decade.

To describe the accumulating execution model, we first introduce the notion of a delta.
Let R = {R1, . . . , Rn} be a database schema. An atomic update over R is an expression of
the form +Ri(t) or −Ri(t), where i ∈ [1, n] and t is a tuple having the arity of Ri. A delta
over R is a finite set of atomic updates over R that does not contain both +R(t) and −R(t)
for any R and t or the special value fail. (Modifies could also be incorporated into deltas,
but we do not consider that here.) A delta not containing the value fail is consistent. For
delta �, we define

�+ = {R(t) | +R(t) ∈�}
�− = {R(t) | −R(t) ∈�}.

Given instance I and consistent delta � over R, the result of applying � to I is

apply(I,�)= (I ∪�+)−�− = (I −�−) ∪�+.

Finally, the merge of two consistent deltas �1,�2 is defined by

�1&�2 =
{
�1 ∪�2 if this is consistent
fail otherwise.

The accumulating execution model uses deferred rule firing. Each rule action is viewed
as producing a consistent delta. The user-requested transaction is also considered to be the
delta �0. Thus a sequence of states

Iorig = I0, Iuser = I1, I2, I3, . . . , Icurr

is produced, where Iuser = apply(Iorig,�0) and, more generally, Ii+1 = apply(Ii, �i) for
some �i produced by a rule firing.

At this point the accumulating model is quite generic. We now restrict the model
and develop some interesting theoretical properties. First we assume that rules have only
conditions and actions (i.e., that the event part is always true). Second, as noted before, we
assume that the action of each rule can be viewed as a delta. Furthermore, we assume that
these deltas use only constants from Iorig (i.e., there is no invention of constants). Third
we insist that for each i ≥ 0, �0& . . .&�i is consistent. More precisely, we modify the
execution model so that if for some i we have �0& . . .&�i = fail, then the execution is
aborted. For each i ≥ 0, let �′

i =�0& . . .&�i.
Suppose that we are now in state Icurr with delta�curr. We assume that rule conditions

can access only Iorig and �curr. (If the rule conditions have the power of, for example, the
relational calculus, this means they can in effect access Icurr.) Given rule r , state I, and
delta�, the effect of r on I and�, denoted effect(r, I,�), is the delta corresponding to the
firing of r on I and �, if the condition of r is satisfied, and is ∅ otherwise.

Execution proceeds as follows. The sequence �′
0,�

′
1, . . . is constructed sequentially.

At the ith step, if there is no rule whose condition is satisfied by Iorig and�′
i, then execution

terminates successfully. Otherwise a rule r with condition satisfied by Iorig and �′
i is
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selected nondeterministically. If �′
i&effect(r, Iorig,�′

i) is fail, then execution terminates
with an abort; otherwise set �′

i+1 =�′
i&effect(r, Iorig,�′

i) and continue.
A natural question at this point is, Will execution always terminate? It is easy to see

that it does, because constants are not invented and the sequence of deltas being constructed
is monotonically increasing under set containment.

It is also natural to ask, Does the order of rule firing affect the outcome? In general, the
answer is yes. We now develop a semantic condition on rules that ensures independence of
rule firing order. A rule r is monotonic if for each instance I and pair �1 ⊆�2 of deltas,
effect(r, I,�1)⊆ effect(r, I,�2). The following can now be shown (see Exercise 22.23):

Theorem 22.5.2 If each rule in a rule base is monotonic, then the outcome of the
accumulating execution model on this rule base is independent of rule firing order.

Monitoring Events and Conditions

In Example 22.5.1, the events that triggered rules were primitive, in the sense that each
one corresponded to an atomic occurrence of some phenomenon. There has been recent
interest in developing languages for specifying and recognizing composite events, which
might involve the occurrence of several primitive events. For example, composite event
specification is supported by the ODE system, a recently released prototype object-oriented
active database system. The ODE system supports a rich language for specifying composite
events, which has essentially the power of regular expressions (see also Section 22.6
for examples of composite events specified by regular expressions). An implementation
technique based on finite state automata has been developed for recognizing composite
events specified in this language.

Other formalisms can also be used for specifying composite events (e.g., using Petri
nets or temporal logics). There appears to be a trade-off between the expressiveness of trig-
gers in rules and conditions. For example, some Petri-net-based languages for composite
events can be simulated using additional relations and rules based on simple events. The
details of such trade-offs are largely unexplored.

22.6 Temporal Databases and Constraints

Classical databases model static aspects of data. Thus the information in the database
consists of data currently true in the world. However, in many applications, information
about the history of data is just as important as static information. When history is taken
into account, queries can ask about the evolution of data through time; and constraints may
restrict the way changes occur. We briefly discuss these two aspects.

Temporal Databases

Suppose we are interested in a database over some schema R. Thus we wish to model and
query information about the content of the database through time. Conceptually, we can
associate to each time t the state It of the database at time t . Thus the database appears as a
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sequence of states—snapshots—indexed by some time domain. Two basic questions come
up immediately:

• What is the meaning of It? Primarily two possible answers have been proposed. The
first is that It represents the data that was true in the world at time t ; this view of time
is referred to as valid time. The second possibility is that time represents the moment
when the information was recorded in the database; this is called transaction time.

Clearly, using valid time requires including time as a first-class citizen in the
data model. In many applications transaction time might be hidden and dealt with
by the system; however, in time-critical applications, such as air-traffic control or
monitoring a power plant, transaction time may be important and made explicit. A
particular database may use valid time, transaction time, or both. In our discussion,
we will consider valid time only.

• What is the time domain? This can be discrete (isomorphic to the integers), contin-
uous (isomorphic to the reals), or dense and countable (isomorphic to the rationals).
In databases, time is usually taken to be discrete, with some fixed granularity for
the time unit. However, several distinct time domains with different granularities
are often used (e.g., years, months, days, hours, etc.). The time domain is usually
equipped with a total order and sometimes with arithmetic operations. A temporal
variable now may be used to refer to the present time.

To query a temporal database, relational languages must be extended to take into
account the time coordinate. To say that a tuple u is in relation R at time t , we could simply
extend R with one temporal coordinate and write R(u, t). Then we could use CALC or
ALG on the extended relations. This is illustrated next.

Example 22.6.1 Consider the CINEMA database, indexed by a time domain consisting
of dates of the form month/day/year. The query

“What were the movies shown at La Pagode in May, 1968?”

is expressed in CALC by

{m | ∃s, t (Pariscope(La Pagode,m, s, t) ∧ 5/1/68 ≤ t ≤ 5/31/68)}.

The query

“Since when has La Pagode been showing the current movie?”

is expressed by

{t | ∃m[∃s(Pariscope(“La Pagode”,m, s,now))∧
since(t, m) ∧ ∀t ′′(since(t ′′,m)→ t ≤ t ′′)]},

where
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since(t, m)= ∀t ′[t ≤ t ′ ≤ now → ∃s′(Pariscope(“La Pagode”,m, s′, t ′))].

Classical logics augmented with a temporal coordinate have been studied extensively,
mostly geared toward specification and verification of concurrent programs. Such logics
are usually referred to as temporal logics. There is a wealth of mathematical machinery
developed around temporal logics; unfortunately, little of it seems to apply directly to
databases.

Although the view of a temporal database as a sequence of instances is conceptually
clean, it is extremely inefficient to represent a temporal database in this manner. In prac-
tice, this information is summarized in a single database in which data is timestamped to
indicate the time of validity. The timestamps can be placed at the tuple level or at the at-
tribute level. Typically, timestamps are unions of intervals of the temporal domain. Such
representations naturally lead to nested structures, as in the nested relation, semantic, and
object-oriented data models.

Example 22.6.2 Figure 22.4 is a representation of temporal information about Pari-
scope using attribute timestamps with nested relations. It would also be natural to represent
this using a semantic or object-oriented model.

The same information can be represented by timestamping at the tuple level, as
follows:

Pariscope Theater Title Schedule

La Pagode Sleeper 19:00 [5/1/68–5/31/68]

La Pagode Sleeper 19:00 [7/15/74–7/31/74]

La Pagode Sleeper 19:00 [12/1/93–now]

La Pagode Sleeper 22:00 [8/1/74–8/14/75]

La Pagode Sleeper 22:00 [10/1/93–11/30/93]

La Pagode Psycho 19:00 [8/1/93–11/30/93]

La Pagode Psycho 22:00 [2/15/78–10/14/78]

La Pagode Psycho 22:00 [12/1/93–now]

Kinopanorama Sleeper 19:30 [4/1/90–10/31/90]

Kinopanorama Sleeper 19:30 [2/1/92–8/31/92]

In this representation, the time intervals are more fragmented. This may have some draw-
backs. For example, retrieving the information about when “Sleeper” was playing at La
Pagode (using a selection and projection) yields time intervals that are more fragmented
than needed. To obtain a more concise representation of the answer, we must merge some
of these intervals.

Note also the difference between the timestamps and the attribute Schedule, which
also conveys some temporal information. The value of Schedule is user defined, and the
database may not know that this is temporal information. Thus from the point of view of
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Theater

[5/1/68–5/31/68]
[7/15/74–8/14/75]
[10/1/93–now]

La Pagode

Sleeper

[2/15/78–10/14/78]
[8/1/93–now]

Psycho

Kinopanorama

Pariscope Title

[5/1/68–5/31/68]
[7/15/74–7/31/74]
[12/1/93–now]

19:00

Schedule

[8/1/74–8/14/75]
[10/1/93–11/30/93]22:00

[8/1/93–11/30/93]19:00

[2/15/78–10/14/78]
[12/1/93–now]22:00

[4/1/90–10/31/90]
[2/1/92–8/31/92]Sleeper

[4/1/90–10/31/90]
[2/1/92–8/31/92]19:30

Figure 22.4: A representation of temporal information using attribute timestamps with
nested relations

the temporal database, the value of Schedule is treated just like any other nontemporal value
in the database.

Much of the research in temporal databases has been devoted to finding extensions of
SQL and other relational languages suitable for temporal queries. Most proposals assume
some representation based on tuple timestamping by intervals and introduce intuitive lin-
guistic constructs to compare and manipulate these temporal intervals. Sometimes this is
done without explicit reference to time, in the spirit of modal operators in temporal logic.
One such operator is illustrated next.

Example 22.6.3 Several temporal extensions of SQL use a when clause to express a
temporal condition. For example, consider the query on the CINEMA database:

“Find the pairs of theaters that have shown some movie at the same date and hour.”

This can be expressed using the when clause as follows:
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select t1.theater, t2.theater
from Pariscope t1 t2
where t1.title = t2.title and t1.schedule = t2.schedule
when t1.interval overlaps t2.interval

The when clause is true for tuples t1, t2 iff the intervals indicating their validity have
nonempty intersection. Other Boolean tests on intervals include before, after, during, fol-
lows, precedes, etc., with the obvious semantics. The expressive power of such constructs
is not always well elucidated in the literature, beyond the fact that they can clearly be ex-
pressed in CALC. A review of the many constructs proposed in the literature on temporal
databases is beyond the scope of this book. For the time being, it appears that a single
well-accepted temporal language is far from emerging, although there are several major
prototypes.

Temporal Deductive Databases

An interesting recent development involves the use of deductive databases in the temporal
framework, yielding temporal extensions of datalog. This can be used in two main ways.

• As a specification mechanism: Datalog-like rules allow the specification of some
temporal databases in a concise fashion. In particular, this allows us to specify
infinite temporal databases, with both past and future information.

• As a query mechanism: Rules can be used to express recursive temporal queries.

Example 22.6.4 We first illustrate the use of rules in the specification of an infinite tem-
poral database. The database holds information on a professor’s schedule—more precisely,
the times she meets her two Ph.D. students. The facts

meets-first(Emma, 0), follows(Emma, John), follows(John,Emma)

say that the professor’s first meeting is with Emma, and then John and Emma take turns.
Consider the rules

meets(x, t) ← meets-first(x, t)

meets(y, t + 1)← meets(x, t), follows(x, y)

The rules define the following infinite sequence of facts providing the professor’s schedule:

meets(Emma, 0)

meets(John, 1)

meets(Emma, 2)

meets(John, 3)

...



22.6 Temporal Databases and Constraints 611

Another way to use temporal rules is for querying. Consider the query

“Find the times t such that La Pagode showed ‘Sleeper’ on date t and continued
to show it at least until the Kinopanorama started showing it.”

The answer (given in the unary relation until) is defined by the following stratified program:

date(x, y, t)← Pariscope(x, y, s, t)

until(t) ← date(“Kinopanorama”, “Sleeper”, t + 1),

¬ date(“Kinopanorama”, “Sleeper”, t),

date(“La Pagode”, “Sleeper”, t)

until(t) ← date(“La Pagode”, “Sleeper”, t), until(t + 1)

The expressiveness of several datalog-like temporal languages and the complexity of
query evaluation using such languages are active areas of research.

Temporal Constraints

Classical constraints in relational databases are static: They speak about properties of the
data seen at some moment in time. This does not allow modeling the behavior of data.
Temporal (or dynamic) constraints place restrictions on how the data changes in time. They
can arise in the context of classical databases as well as in temporal databases. In temporal
databases, we can specify restrictions on the sequence of time-indexed instances using
temporal logics (extensions of CALC, or modal logics). These are essentially Boolean
(yes/no) temporal queries. For example, we might require that “La Pagode” not be a first-
run theater (i.e., every movie shown there must have been shown in some other theater at
some earlier time). An important question is how to enforce such constraints efficiently. A
step in this direction is suggested by the following example.

Example 22.6.5 Suppose that Pariscope is extended with a time domain ranging over
days, as in Example 22.6.1. The constraint that “La Pagode” is not a first-run theater can
be expressed in CALC as

∀m, s, t (Pariscope(“La Pagode”,m, s, t)

→ ∃x, s′, t ′(Pariscope(x,m, s′, t ′) ∧ x �= “La Pagode” ∧ t ′ < t))
A naive way to enforce this constraint involves maintaining the full history of the

relation Pariscope; this would require unbounded storage. A more efficient way involves
storing only the current value of Pariscope and maintaining a unary relation Shown_
Before[Title], which holds all movie titles that have been shown in the past at a theater
other than “La Pagode.” Note that the size of Shown_Before is bounded by the number of
titles that have occurred through the history of the database but is independent of how long
the database has been in existence. (Of course, if a new title is introduced each day, then
Shown_Before will have size comparable to the full history.)
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A systematic approach has been developed to maintain temporal constraints in this
fashion.

For classical databases, in which no history is kept, temporal constraints can only
involve transitions from the current instance to the next; this gives rise to a subset of
temporal constraints, called transition constraints

For instance, a transition constraint can state that “salaries do not decrease” or that
“the new salary of an employee is determined by the old salary and the seniority.” Such
transition constraints are by far the most common kind of temporal constraint considered
for databases. We discuss some ways to specify transition constraints. Clearly, these can
be stated using a temporal version of CALC that can refer to the previous and next state. A
notion of identity similar to object identity is useful here; otherwise we may have difficulty
speaking about the old and new versions of some tuple or entity. Such identity may be
provided by a key, assuming that it does not change in time.

Besides CALC, transition constraints may be stated in various other ways, including

• pre- and postconditions associated with transitions;

• extensions of classical static constraints, such as dynamic fd’s;

• computational constraints on sequences of consecutive versions of tuples.

Restrictions on updates—say, by transactional schemas—also induce temporal con-
straints. For instance, consider again the transactional schema in Example 22.2.1. It can be
verified that all possible sequences of instances obtained by calls to the transactions of that
schema satisfy the temporal constraint:

“Nobody can be a PhD student without having been a TA at some point.”

The following less desirable temporal constraint is also satisfied:

“Once a PhD student, always a PhD student.”

Overall, the connection between canned updates and temporal constraints remains largely
unexplored.

A related means of specifying temporal constraints is to identify a set of update events
and impose restrictions on valid sequences of events. This can be done using regular
expressions. For example, suppose that the events concerning an employee are

hire, transfer, promote, raise, fire, retire

The valid sequences of events are all prefixes of sequences specified by the regular
expression

hire[(transfer)+ (promote + ε)(raise)]∗[(retire)+ (fire)]

Thus an employee is first hired, receives some number of promotions and raises, may be
transferred, and finally either retires or is fired. Everybody who is promoted must also
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receive a raise, but raises may be received even without promotion. Such constraints appear
to be particularly well suited to object-oriented databases, in which events can naturally be
associated with method invocations. Some active databases (Section 22.5) can also enforce
constraints on sequences of events.
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database programming language based on C and the relational model, thereby enabling the
specification, and thus implementation, of a wide variety of execution models. Execution
models that support immediate, deferred, and concurrent firing include [BM91, HLM88,
MD89].
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The accumulating execution model forms part of the semantics of the AP5 active
database model [Coh86, Coh89] (see also [HJ91a]). Theorem 22.5.2 is from [ZH90], which
goes on to present syntactic conditions on rules that ensure the Church-Rosser property for
rule bases that are not necessarily monotonic.

An early investigation of composite events in connection with active databases is
[DHL91]. Reference [GJS92c] describes the event specification language of the ODE
active database system [GJ91]. Reference [GJS92b] presents the equivalence of ODE’s
composite event specification language and regular expressions, and [GJS92a] develops an
implementation technique based on finite state automata for recognizing composite events
in the case where parameters are omitted. Reference [GD94] uses an alternative formalism
for composite events based on Petri nets and can support parameters.

A crucial issue with regard to efficient implementation of active databases is determin-
ing incrementally when a condition becomes true. Early work in this area is modeled after
the RETE algorithm from expert systems [For82]. Enhancements of this technique biased
toward active database applications include [WH92, Coh89]. Reference [CW90] describes
a mechanism for analyzing rule conditions to infer triggers for them.

There is a vast amount of literature on temporal databases. The volume [TCG+93]
provides a survey of current research in the area. In particular, several temporal exten-
sions of SQL can be found there. Bibliographies on temporal databases are provided in
[Sno90, Soo91]. A survey of temporal database research, emphasizing theoretical aspects,
is provided in [Cho94]. Deductive temporal databases are presented in [BCW93]. Exam-
ple 22.6.4 is from [BCW93].

Specification of transition constraints by pre- and postconditions is studied in [CCF82,
CF84]. Transition constraints based on a dynamic version of functional dependencies are
investigated in [Via87], where the interaction between static and dynamic fd’s is discussed.
Constraints of a computational flavor on sequences of objects (object histories) are con-
sidered in [Gin93]. Temporal constraints specified by regular languages of events (where
the events refer to object migration in object-oriented databases) are studied in [Su92].
References [Cho92a, LS87] develop the approach of “history-less” checking of temporal
constraints, as illustrated in Example 22.6.5. This technique is applied to testing real-time
temporal constraints in [Cho92b], providing one approach to monitoring complex events
in an active database system.

Temporal databases are intimately related to temporal logic. Informative overviews of
temporal logic can be found in [Eme91, Gal87].

A survey of dynamic aspects in databases is provided in [Abi88].

Exercises

Exercise 22.1 Show that there are updates expressible by IDM transactions that are not ex-
pressible by ID transactions (i.e., transactions with just insertions and deletions).

Exercise 22.2 Prove the soundness of the equivalence axioms
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mod(C → C ′)del(C ′)≡ del(C)del(C ′)

ins(t)mod(C → C ′) ≡ mod(C → C ′)ins(t ′)
where t satisfies C and {t ′} = mod(C → C ′)({t})

and

del(C3)mod(C1 → C3)mod(C2 → C1)mod(C3 → C2)

≡ del(C3)mod(C2 → C3)mod(C1 → C2)mod(C3 → C1),

where C1, C2, C3 are mutually exclusive sets of conditions.

Exercise 22.3 Show that, for each IDM transaction, there exists a CALC query defining
the same result but that the converse is false. Characterize the portion of CALC (or ALG)
expressible by IDM transactions.

Exercise 22.4 [AV88b] Show that for every IDM transaction there exists an equivalent IDM
transaction of the form td; tm; ti, where td is a sequence of deletions, tm is a sequence of
modifications, and ti is a sequence of insertions.

♠ Exercise 22.5 [VV92] Let t1, . . . tk be IDM transactions over the same relation R. A schedule
s for t1, . . . , tk is an interleaving of the updates in the ti’s, such that the updates of each ti occur
in s in the same order as in ti. The schedule s is serializable if it is equivalent to tσ (1) . . . tσ (k)
for some permutation σ of {1, . . . , k}.

(a) Prove that checking whether a schedule s for a set of IDM transactions t1, . . . , tk is
serializable is np-complete with respect to the size of s.

(b) Show that checking the serializability of a schedule can be done in polynomial time
if the transactions contain no modifications.

♠ Exercise 22.6 [KV90a] Supposem boxesB1, . . . , Bm are given. Initially, each boxBi is either
empty or contains some balls. Balls can be moved among boxes by any sequence of moves,
m(Bj, Bk), each of which consists of putting the entire contents of box Bj into box Bk. Suppose
that the balls must be redistributed among boxes according to a given mapping f from boxes
to boxes [f (Bj) = Bk means that the contents of box Bj must wind up in box Bk after the
redistribution].

(a) Show that redistribution according to a given mapping f cannot always be accom-
plished by a sequence of moves. If it can, the mapping f is called realizable. Char-
acterize realizable redistribution mappings.

(b) A parallel schedule of moves is a partially ordered set of moves (M ,≤) such that in-
comparable moves commute. (Thus incomparable moves are independent and can be
executed in parallel.) A parallel schedule takes time t if the depth of the partial order
is t . Show that the problem of testing if a parallel schedule of moves accomplishes
the redistribution in minimal time (according to a realizable redistribution mapping)
is np-complete with respect to m.

(c) Show that testing if a parallel schedule accomplishes the redistribution in time within
one unit from the minimal time can be done in time polynomial in m.

(d) What is the connection between moving balls and IDM transactions?

Exercise 22.7 Recall the transaction schema T of Example 22.2.1 and the set of constraints
in Example 22.2.2.
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(a) Prove that T is sound and complete with respect to  .

(b) Exhibit instances I and J in Sat( ), where I cannot be transformed into J using T.

(c) Write a transactional schema T′ that is sound and complete for , such that whenever
I, J are in Sat( ), there is a transformation from I to J using T′. (Do not use a T′
that completely empties the database to make a change involving only one student.)

Exercise 22.8 [AV89] Prove Theorem 22.2.3.

Exercise 22.9 Prove the statements in Example 22.2.4.

♠ Exercise 22.10 [AV89]

(a) Prove that it is undecidable whether I ∈ Gen(T) for given IDM transactional schema
T and instance I over a database schema. Hint: Reduce the question of whether
w ∈ L(M) for a word w and Turing machineM to the preceeding problem.

(b) Show that (a) becomes decidable if T is an ID transactional schema (no modifica-
tions). Hint: For I ∈ Gen(T), find a bound on the number of calls to transactions in
T needed to reach I and on the number of constants used in these calls.

(c) Prove that it is undecidable whether Gen(T)= Gen(T′) for given IDM transactional
schemas T and T′.

♠ Exercise 22.11 [AV89]

(a) Show that there is a relation schema R and a join dependency g over R such that
Sat({g}) �= Gen(T) for each IDM transactional schema T over R.

(b) Prove that there is a database schema R and a set  of inclusion dependencies over
R, such that Sat( ) �= Gen(T) for each IDM transactional schema T over R.

♠ Exercise 22.12 [AV89] Prove that it is undecidable whether Gen(T) equals all instances over
R for given IDM transaction schema T over R. What does this say about the decidability of
soundness and completeness of IDM transaction schemas with respect to sets of constraints?

Exercise 22.13 [QW91] Develop expressions for incremental evaluation of the relational alge-
bra operators, analogous to the expression for join in Example 22.3.3. Consider both insertions
and deletions from the base relations.

Exercise 22.14 Recast c-tables in terms of first-order theories. Observe that the approach to
updating c-tables is model based. Given a theory T corresponding to a c-table and an update,
describe how to change T in accordance with the update. Hint: To represent c-tables using a
theory, you will need to use variations of the equality, extension, unique name, and closure
axioms mentioned at the end of Chapter 2.

Exercise 22.15 Prove Proposition 22.4.3.

Exercise 22.16 [FUV83] Given theory T, define T′ �T T′′ if T′ − T ⊂ T′′ − T, or if T′ − T =
T′′ − T and T − T′ ⊆ T − T′′. Thus �T is like ≤T, except that insertions are given priority over
deletions.

Let T be a closed theory, ϕ a sentence not in T, and T′ a closed theory that accomplishes
[insert ϕ] for T. Show that {ϕ}∗ �T T′.

Exercise 22.17 [FUV83] Verify the claim of Example 22.4.5.

Exercise 22.18 [FUV83] Let R[ABC] be a relation schema with functional dependency A→
B, and let I be the instance of Example 22.4.5.
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Consider the view f over S[AB] defined by πAB(R). A complement of this view is
πAC(R). The idea of keeping this complement unchanged while updating the view is captured
by the sentences




∃x(R(a, x, c)),
∃x(R(a, x, c′))
∃x(R(a′, x, c′′))
∃x(R(a′′, x, c′′′))




Let T0 be that set of sentences. Let T1 include the functional dependency and the unique name
axioms. Finally, let T2 include the four atoms of I. Verify that there is a unique tagged theory
that accomplishes the view update [insert S(a, b′′)] with minimal change.

Exercise 22.19 [FUV83] Show that under the formula-based approach to updating theories
presented in Section 22.4,

(a) A sequence of deletions can lead to an exponential blowup in the size of the theory.

(b) Determining the result of an insertion is np-hard.

Exercise 22.20 [DT92, DS93] Give a formal definition of FOID and of FOID with auxiliary
relations. Include the cases in which sets of insertions and/or deletions are permitted.

♠ Exercise 22.21 [DT92]

(a) Verify the claim of Example 22.3.4, that the transitive closure query is FOID.

(b) Consider the datalog program

R(z)← R(x), S(x, y, z)

R(z)← R(y), S(x, y, z)

R(x)← T (x)

An intuitive interpretation of this is that the variables range over nodes in a graph,
and the predicate S(a, b, c) indicates that nodes a and b are connected by an or-gate
to node c. The relation R contains all nodes that have value true, assuming that the
nodes in the input relation T are initially set to true.

Prove that there is a FOID with auxiliary relations for R. Hint: Define a new
derived relationQ that holds paths of nodes with value true.

(c) Prove that there is no FOID without auxiliary relations for R.

, (d) A regular chain program consists of a finite set of chain rules of the form

R(x, z)← R1(x, y1), R2(y1, y2), . . . , Rn(yn−1, z),

where the only idb predicate occurring in the body (if any) is Rn. Show that each
regular chain program is FOID with auxiliary relations. In particular, describe an
algorithm that produces, for each regular chain program defining a predicate R, a
first-order query with auxiliary relations that incrementally evaluates the program.

Exercise 22.22 Specify in detail an active database execution model based on immediate rule
firing.

Exercise 22.23 [ZH90] Recall the accumulating execution model for active databases.
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(a) Exhibit a rule base for which the outcome of execution depends on the order of rule
firing.

(b) Prove Theorem 22.5.2.

,Exercise 22.24 [HJ91a] Recall that in the accumulating semantics, rule conditions can access
Iorig and �curr. Consider an alternative semantics that differs from the accumulating semantics
only in that the rule conditions can access only Iorig and Icurr. Suppose that rule conditions have
the expressive power of the relational calculus (and in the case of the accumulating semantics,
the ability to access the sets �+

R = {R(t) | +R(t) ∈�} and �−
R = {R(t) | −R(t) ∈�}). Show

that the accumulating semantics is more expressive than the alternative semantics. Hint: It is
possible that �curr may have “redundant” elements, e.g., an update +R(t), where R(t) ∈ Iorig.
Such redundant elements are not accessible to the alternative semantics.

Exercise 22.25 Consider a base schema B = {R[AB]} and a view f = πAR, as in Exam-
ple 22.3.8(b).

(a) Describe a complement g of f that is not equivalent to �.

(b) Show that each complement g of f expressible in the relational algebra is equivalent
to �.

Exercise 22.26 [BS81] Prove Theorem 22.3.10. Hint: Consider the equivalence relation on
Inst(B) defined by I ≡ I′ iff ∃ update ν ∈ Uf such that I′ = t (ν)(I). Now define the mapping
g : Inst(I)→ Inst(I)/≡ so that g(I) is the equivalence class of I under ≡.




