
21 Object Databases

Minkisi are complex objects clearly not the product of a momentary im-
pulse. . . . To do justice to objects, a theory of them must be as complex as
them.1

—Wyatt MacGaffey in Astonishment and Power

Alice: What is a Minkisi?
Sergio: It is an African word that translates somewhat like “things that do things.”

Vittorio: It is art, religion, and magic.
Riccardo: Oh, this sounds to me very object oriented!

In this chapter, we provide a brief introduction to object-oriented databases (OODBs). A
complete coverage of this new and exciting area is beyond the scope of this volume; we

emphasize the new modeling features of OODBs and some of the preliminary theoretical
research about them. On the one hand, we shall see that some of the most basic issues con-
cerning OODBs, such as the design of query languages or the analysis of their expressive
power, can be largely resolved using techniques already developed in connection with the
relational and complex value models. On the other hand, the presence of new features (such
as object identifiers) and methods brings about new questions and techniques.

As mentioned previously, the simplicity of the data structure in the relational model
often hampers its use in many database applications. A relational representation can ob-
scure the intention and intricate semantics of a complex data structure (e.g., for holding the
design of a VLSI chip or an airplane wing). As we shall see, OODBs remedy this situation
by borrowing a variety of data structuring constructs from the complex value model (Chap-
ter 20) and from semantic data models (considered in Chapter 11). At a more fundamental
level, the relational data model and all of the data models presented so far impose a sharp
distinction between data storage and data processing: The DBMS provides data storage,
but data processing is provided by a host programming language with a relatively simple
language such as SQL embedded in it. OODBs permit the incorporation of behavioral por-
tions of the overall data management application directly into the database schema, using
methods in the sense of object-oriented programming languages.

This chapter begins with an informal presentation of the underlying constructs of
OODBs. Next a formal definition for a particular OODB model is presented. Two direc-
tions of theoretical research into OODBs are then discussed. First a family of languages

1 Reprinted with permission. Smithsonian Institution Press ©1993.

542

21.1 Informal Presentation 543

for data access is presented, with an emphasis on how the languages interact with the novel
modeling constructs (of particular interest is the impact of generalizing the notion of com-
plete query language to accommodate the presence of object identifiers, OIDs). Next two
languages for methods are described. The first is an imperative language allowing us to
specify methods with side effects.2 The second language brings us to a functional perspec-
tive on methods and database languages and allows us to specify side-effect-free methods.
In both cases, we present some results on type safety and expressive power. Checking type
safety is generally undecidable; we identify a significant portion of the functional language,
monadic method schemas, for which type safety is decidable. With respect to expressive
power, the imperative language is complete in an extended sense formalized in this chapter.
The functional language expresses precisely qptime on ordered inputs and so turns out to
express the by-now-famous fixpoint queries. The chapter concludes with a brief survey of
additional research issues raised by OODBs.

21.1 Informal Presentation

Object-oriented database models stem from a synthesis of three worlds: the complex value
model, semantic database models, and object-oriented programming concepts. At the time
of writing, there is not widespread agreement on a specific OODB model, nor even on what
components are required to constitute an OODB model. In this section, we shall focus on
seven important ingredients of OODB models:

1. objects and object identifiers;

2. complex values and types;

3. classes;

4. methods;

5. ISA hierarchies;

6. inheritance and dynamic binding;

7. encapsulation.

In this section, we describe and illustrate these interrelated notions informally; a more
formal definition is presented in the following section. We will also briefly discuss alterna-
tives.

As a running example for this discussion, we shall use the OODB schema specified in
Fig. 21.1. This schema is closely related to the semantic data model schema of Fig. 11.1,
which in turn is closely related to the CINEMA example of Chapter 3.

As discussed in Chapter 11, a significant shortcoming of the relational model is that
it must use printable values, often called keys, to refer to entities or objects-in-the-world.
As a simple example, suppose that the first and last names of a person are used as a key
to identify that person. From a physical point of view, it is then cumbersome to refer to
a person, because the many bytes of his or her name must be used. A more fundamental

2 Methods are said to have side-effects if they cause updates to the database.

544 Object Databases

(* schema and base definitions *)

create schema PariscopeSchema ;
create base PariscopeBase;

(* class definitions *)

class Person
type tuple (name: string, citizenship: string, gender: string);

class Director inherit Person
type tuple (directs: set (Movie));

class Actor inherit Person
type tuple (acts_in: { Movie },

award: { tuple (prize: string, year: integer) });
class Actor_Director inherit Director, Actor
class Movie

type tuple (title: string, actors: set (Actor);
director: Director);

class Theater
type tuple (name: string, address: string, phone: string);

(* name definitions *)

name Pariscope: set (tuple (theater: Theater, time: string, price: integer,
movie: Movie));

name Persons_I_like: set (Person);
name Actors_I_like, Actors_you_like: set (Actor);
name My_favorite_director : Director

(* method definitions *)

method get_name in class Person : string
{ if (gender = “male”)

return “Mr.” + self.name;
else

return “Ms.” + self.name }

method get_name in class Director : string
{ return (“Director” + self.name) };

method get_name in class Actor_Director : string
{ return (“Director” + self.name) };

(* we assume here that ‘+’ denotes a string concatenation operator *)

Figure 21.1: An OODB Schema

21.1 Informal Presentation 545

problem arises if the person changes his or her name (e.g., as the result of marriage). When
performing this update, conceptually there is a break in the continuity in the representation
of the person. Furthermore, care must be taken to update all tuples (typically arising in a
number of different relations) that refer to this person, to reflect the change of name.

Following the spirit of semantic data models, OODB models permit the explicit rep-
resentation of physical and conceptual objects through the use of object identifiers (OIDs).
Conceptually, a unique OID is assigned to each object that is represented in the database,
and this association between OID and object remains fixed, even as attributes of the ob-
ject (such as name or age) change in value. The use of objects and OIDs permits OODBs
to share information gracefully; a given object o is easily shared by many other objects
simply by referencing the OID of o. This is especially important in the context of updates;
for example, the name of a person object o need be changed in only one place even if o is
shared by many parts of the database.

In an OODB, a complex value is associated with each object. This complex value may
involve printables and/or OIDs (i.e., references to the same or other objects). For example,
each object in the class Movie in Fig. 21.1 has an associated triple whose second coordinate
contains a set of OIDs corresponding to actors. In this section, we focus on complex values
constructed using the tuple and set construct. In practical OODB models, other constructs
are also supported (including, for example, bags and lists). Some commercial OODBs are
based on an extension of C++ that supports persistence; in these models essentially any
C++ structure can serve as the value associated with an object.

Objects that have complex values with the same type may be grouped into classes, as
happens in semantic data models. In the running example, these include Person, Director,
and Movie. Classes also serve as a natural focal point for associating some of the behavioral
(or procedural) components of a database application. This is accomplished by associating
with each class a family of methods for that class. Methods might be simple (e.g., produc-
ing the name of a person) or arbitrarily complex (e.g., displaying a representation of an
object to a graphical interface or performing a stress analysis of a proposed wing design).
A method has a name, a signature, and an implementation. The name and signature serve
as an external interface to the method. The implementation is typically written in a (pos-
sibly extended) programming language such as C or C++. The choice of implementation
language is largely irrelevant and is generally not considered to be part of the data model.

As with semantic models, OODB models permit the organization of classes into a
hierarchy based on what have been termed variously ISA, specialization, or class-subclass
relationships. The term hierarchy is used loosely here: In many cases any directed acyclic
graph (DAG) is permitted. In Fig. 21.1 the ISA hierarchy has Director and Actor as (im-
mediate) specializations of Person and Actor_Director as a specialization of both Director
and Actor. Following the tradition of object-oriented programming languages, a virtual
class any is included that serves as the unique root of the ISA hierarchy.

In OODB models, there are two important implications of the statement that class c′
is a subclass of c. First it is required that the complex value type associated with c′ be a
subtype (in the sense formally defined later) of the complex value type associated with c.
Second it is required that if there is a method with name m associated with c, then there is
also a method with name m associated with c′. In some cases, the implementation (i.e., the
actual code) of m for c′ is identical to that for c; in this case the code of m for c′ need not

546 Object Databases

be explicitly specified because it is inherited from c. In other cases, the implementation
of m for c′ is different from that for c; in which case we say that the implementation of
m for c′ overrides the implementation of m for c. (See the different implementations for
method get_name in Fig. 21.1.) The determination of what implementation is associated
with a given method name and class is called method resolution. A method is invoked with
respect to an object o, and the class to which o belongs determines which implementation
is to be used. This policy is called dynamic binding. As we shall see, the interaction of
method calls and dynamic binding in general makes type checking for OODB schemas
undecidable. (It is undecidable to check whether such a schema would lead to a runtime
type error; on the other hand, it is clearly possible to find decidable sufficient conditions
that will guarantee that no such error can arise.)

In the particular OODB model presented here, both values (in the style of complex
values) and objects are supported. For example, in Fig. 21.1 a persistent set of triples
called Pariscope is supported (see also Fig. 11.1). The introduction of values not directly
associated with OIDs is a departure from the tradition of object-oriented programming, and
not all OODBs in the literature support it. However, in databases the use of explicit values
often simplifies the design and use of a schema. Their presence also facilitates expressing
queries in a declarative manner.

The important principle of encapsulation in object orientation stems from the field
of abstract data types. Encapsulation is used to provide a sharp boundary between how
information about objects is accessed by database users and how that information is actu-
ally stored and provided. The principle of encapsulation is most easily understood if we
distinguish two categories of database use: dba mode, which refers to activities unique to
database administrators (including primarily creating and modifying the database schema),
and user mode, which refers to activities such as querying and updating the actual data in
the database. Of course, some users may operate in both of these modes on different occa-
sions. In general, application software is viewed as invoked from the user mode.

Encapsulation requires that when in user mode, a user can access or modify infor-
mation about a given object only by means of the methods defined for that object; he or
she cannot directly examine or modify the complex value or the methods associated with
the object. In particular, then, essentially all application software can access objects only
through their methods. This has two important implications. First, as long as the same set
of methods is supported, the underlying implementation of object methods, and even of the
complex value representation of objects, can be changed without having to modify any ap-
plication software. Second, the methods of an object often provide a focused and abstracted
interface to the object, thus making it simpler for programmers to work with the objects.

In object-oriented programming languages, it is typical to enforce encapsulation ex-
cept in the special case of rewriting method implementations. In some OODB models, there
is an important exception to this in connection with query languages. In particular, it is
generally convenient to permit a query language to examine explicitly the complex values
associated with objects.

The reader with no previous exposure to object-oriented languages may now be utterly
overwhelmed by the terminology. It might be helpful at this point to scan through a book
or manual about an object-oriented programming language such as C++, or an OODB such

21.2 Formal Definition of an OODB Model 547

as O2 or ObjectStore. This will provide numerous examples and the overall methodology
of object-oriented programming, which is beyond the scope of this book.

21.2 Formal Definition of an OODB Model

This section presents a formal definition of a particular OODB model, called the generic
OODB model. (This model is strongly influenced by the IQL and O2 models. Many fea-
tures are shared by most other OODB models. While presenting the model, we also discuss
different choices made in other models.) The presentation essentially follows the preced-
ing informal one, beginning with definitions for the types and class hierarchy and then
introducing methods. It concludes with definitions of OODB schema and instance.

Types and Class Hierarchy

The formal definitions of object, type, and class hierarchy are intertwined. An object
consists of a pair (identifier, value). The identifiers are taken from a specific sort containing
OIDs. The values are essentially standard complex values, except that OIDs may occur
within them. Although some of the definitions on complex values and types are almost
identical to those in Chapter 20, we include them here to make precise the differences from
the object-oriented context. As we shall see, the class hierarchy obeys a natural restriction
based on subtyping.

To start, we assume a number of atomic types and their pairwise disjoint corresponding
domains: integer, string, bool, float. The set dom of atomic values is the (disjoint) union
of these domains; as before, the elements of dom are called constants. We also assume an
infinite set obj= {o1, o2, . . .} of object identifiers (OIDs), a set class of class names, and a
set att of attribute names. A special constant nil represents the undefined (i.e., null) value.

Given a set O of OIDs, the family of values over O is defined so that

(a) nil, each element of dom, and each element of O are values over O; and

(b) if v1, . . . , vn are values over O, and A1, . . . , An distinct attributes names, the
tuple [A1 : v1, . . . , An : vn] and the set {v1, . . . , vn} are values over O.

The set of all values over O is denoted val(O). An object is a pair (o, v), where o is an
OID and v a value.

In general, object-oriented database models also include constructors other than tuple
and set, such as list and bag; we do not consider them here.

Example 21.2.1 Letting oid7, oid22, etc. denote OIDs, some examples of values are as
follows:

[theater : oid7, time : “16:45”, price : 45, movie : oid22]

{“H. Andersson”, “K. Sylwan”, “I. Thulin”, “L. Ullman”}
[title : “The Trouble with Harry”, director : oid77,

actors : {oid81, oid198, oid265, oid77}]

548 Object Databases

An example of an object is

(oid22 , [title :“The Trouble with Harry”, director : oid77,

actors : {oid81, oid198, oid265, oid77}])

As discussed earlier, objects are grouped in classes. All objects in a class have complex
values of the same type. The type corresponding to each class is specified by the OODB
schema.

Types are defined with respect to a given set C of class names. The family of types
over C is defined so that

1. integer, string, bool, float, are types;

2. the class names in C are types;

3. if τ is a type, then3 {τ } is a (set) type;

4. if τ1, . . . , τn are types and A1, . . . , An distinct attribute names,
then [A1 : τ1, . . . , An : τn] is a (tuple) type.

The set of types over C together with the special class name any are denoted types(C).
(The special name any is a type but may not occur inside another type.) Observe the close
resemblance with types used in the complex value model.

Example 21.2.2 An example of a type over the classes of the schema in Fig. 21.1 is

[name : string, citizenship : string, gender : string]

One may want to give a name to this type (e.g., Person_type). Other examples of types
(with names associated to them) include

Director_type = [name : string, citizenship : string, gender : string,

directs : {Movie}]
Theater_type = [name : string, address : string, phone : string]

Pariscope_type= [theater : Theater, time : string, price : integer, movie : Movie]

Movie_type = [title : string, actors : {Actor}, director : Director]

Award_type = [prize : string, year : integer]

In an OODB schema we associate with each class c a type σ(c), which dictates the
type of objects in this class. In particular, for each object (o, v) in class c, v must have the
exact structure described by σ(c).

3 In Fig. 21.1 we use keywords set and tuple as syntactic sugar when specifying the set and tuple
constructors.

21.2 Formal Definition of an OODB Model 549

Recall from the informal description that an OODB schema includes an ISA hierarchy
among the classes of the schema. The class hierarchy has three components: (1) a set
of classes, (2) the types associated with these classes, and (3) a specification of the ISA
relationships between the classes. Formally, a class hierarchy is a triple (C, σ,≺), where
C is a finite set of class names, σ a mapping from C to types(C), and ≺ a partial order
on C.

Informally, in a class hierarchy the type associated with a subclass should be a refine-
ment of the type associated with its superclass. For example, a class Student is expected to
refine the information on its superclass Person by providing additional attributes. To cap-
ture this notion, we use a subtyping relationship (≤) that specifies when one type refines
another.

Definition 21.2.3 Let (C, σ,≺) be a class hierarchy. The subtyping relationship on
types(C) is the smallest partial order ≤ over types(C) satisfying the following conditions:

(a) if c ≺ c′, then c ≤ c′;
(b) if τi ≤ τ ′i for each i ∈ [1, n] and n≤m, then

[A1 : τ1, . . . , An : τn, . . . , Am : τm]≤ [A1 : τ ′1, . . . , An : τ ′n];
(c) if τ ≤ τ ′, then {τ } ≤ {τ ′}; and

(d) for each τ , τ ≤ any (i.e., any is the top of the hierarchy).

A class hierarchy (C, σ,≺) is well formed if for each pair c, c′ of classes, c ≺ c′ implies
σ(c)≤ σ(c′).

By way of illustration, it is easily verified that

Director_type≤ Person_type Director_type "≤Movie_type.

Thus the schema obtained by adding the constraint Director ≺Movie would not be well
formed.

Henceforth we consider only well-formed class hierarchies.

Example 21.2.4 Consider the class hierarchy (C, σ,≺) of the schema of Fig. 21.1. The
set of classes is

C = {Person,Director, Actor, Actor_Director, Theater, Movie}

with Actor ≺ Person, Director ≺ Person, Actor_Director ≺ Director, Actor_Director ≺
Actor, and (referring to Example 21.2.2 for the definitions of Person_type, Theater_type,
etc.)

550 Object Databases

σ(Person) = Person_type,

σ (Theater) = Theater_type,

σ (Movie) =Movie_type,

σ (Director) = Director_type,

σ (Actor) = [name : string, citizenship : string,

gender : string, acts_in : {Movie},
award : {Award_type}]

σ(Actor_Director)= [name : string, citizenship : string,

gender : string, acts_in : {Movie},
award : {Award_type}, directs : {Movie}]

The use of type names here is purely syntactic. We would obtain the same schema if we
replaced, for instance, Person_type with the value of this type.

Observe that σ(Director)≤ σ(Person) and σ(Actor)≤ σ(Person), etc.

The Structural Semantics of a Class Hierarchy

We now describe how values can be associated with the classes and types of a class
hierarchy. Because the values in an OODB instance may include OIDs, the semantics of
classes and types must be defined simultaneously. The basis for these definitions is the
notion of OID assignment, which assigns a set of OIDs to each class.

Definition 21.2.5 Let (C, σ,≺) be a (well-formed) class hierarchy. An OID assignment
is a function π mapping each name in C to a disjoint finite set of OIDs. Given OID
assignment π , the disjoint extension of c is π(c), and the extension of c, denoted π∗(c),
is ∪{π(c′) | c′ ∈ C, c′ ≺ c}.

If π is an OID assignment, then π∗(c′) ⊆ π∗(c) whenever c′ ≺ c. This should be
understood as a formalization of the fact that an object of a subclass c′ may be viewed
also as an object of a superclass c of c′. From the perspective of typing, this suggests that
operations that are type correct for members of c are also type correct for members of c′.

Unlike the case for many semantic data models, the definition of OID assignment for
OODB schemas implies that extensions of classes of an ISA hierarchy without common
subclasses are necessarily disjoint. In particular, extensions of all leaf classes of the hierar-
chy are disjoint (see Exercise 21.2). This is a simplifying assumption that makes it easier to
associate objects to classes. There is a unique class to whose disjoint extension each object
belongs.

The semantics for types is now defined relative to a class hierarchy (C, σ,≺) and
an OID assignment π . Let O = ∪{π(c) | c ∈ C}, and define π(any) = O. The disjoint
interpretation of a type τ , denoted dom(τ), is given by

(a) for each atomic type τ , dom(τ) is the usual interpretation of that type;

(b) dom(any) is val(O);

21.2 Formal Definition of an OODB Model 551

(c) for each c ∈ C, dom(c)= π∗(c) ∪ {nil};
(d) dom({τ })= {{v1, . . . , vn} | n≥ 0, and vi ∈ dom(τ), i ∈ [1, n]}; and

(e) dom([A1 : τ1, . . . , Ak : τk])= {[A1 : v1, . . . , Ak : vk] | vi ∈ dom(τi), i ∈ [1, k]}.

Remark 21.2.6 In the preceding interpretation, the type determines precisely the struc-
ture of a value of that type. It is interesting to replace (e) by

(e′)
dom([A1 : τ1, . . . , Ak : τk])=
{[A1 : v1, . . . , Ak : vk, Ak+1 : vk+1, . . . Al : vl] |
vi ∈ dom(τi), i ∈ [1, k], vj ∈ val(O), j ∈ [k + 1, l]}.

Under this alternative interpretation, for each τ, τ ′ in types(C), if τ ′ ≤ τ then dom(τ ′)⊆
dom(τ). This is why this is sometimes called the domain-inclusion semantics. From a
data model viewpoint, this presents the disadvantage that in a correctly typed database
instance, a tuple may have a field that is not even mentioned in the database schema. For
this reason, we do not adopt the domain-inclusion semantics here. On the other hand, from
a linguistic viewpoint it may be useful to adopt this more liberal semantics in languages to
allow variables denoting tuples with more attributes than necessary.

Adding Behavior

The final ingredient of the generic OODB model is methods. A method has three compo-
nents:

(a) a name

(b) a signature

(c) an implementation (or body).

There is no problem in specifying the names and signatures of methods in an OODB
schema. To specify the implementation of methods, a language for methods is needed.
We do not consider specific languages in the generic OODB model. Therefore only names
and signatures of methods are specified at the schema level in this model. In Section 21.4,
we shall consider several languages for methods and shall therefore be able to add the
implementation of methods to the schema.

Without specifying the implementation of methods, the generic OODB model speci-
fies their semantics (i.e., the effect of each method in the context of a given instance). This
effect, which is a function over the domains of the types corresponding to the signature of
the method, is therefore specified at the instance level.

We assume the existence of an infinite set meth of method names. Let (C, σ,≺) be
a class hierarchy. For method name m, a signature of m is an expression of the form
m : c × τ1 × · · · × τn−1 → τn, where c is a class name in C and each τi is a type over
C. This signature is associated with the class c; we say that methodm applies to objects of
class c and to objects of classes that inherit m from c. It is common for the same method
name to have different signatures in connection with different classes. (Some restrictions
shall be specified later.) The notion of signature here generalizes the one typically found in

552 Object Databases

object-oriented programming languages, because we permit the τi’s to be types rather than
only classes.

It is easiest to describe the notions of overloading, method inheritance, and dynamic
binding in terms of an example. Consider the methods defined in the schema of Fig. 21.1.
All three share the name get_name. The signatures are given by

get_name : Person→ string

get_name : Director → string

get_name : Actor_Director → string

Note that get_name has different implementations for these classes; this is an example of
overloading of a method name.

Recall that Actor is a subclass of Person. According to the informal discussion, if
get_name applies to elements of Person, then it should also apply to members of Actor.
Indeed, in the object-oriented paradigm, if a method m is defined for a class c but not for
a subclass c′ of c (and it is not defined anywhere else along a path from c′ to c), then the
definition of m for c′ is inherited from c. In particular, the signature of m on c′ is identical
to the one of m for c, except that the first c is replaced by c′. The implementation of m
for c′ is identical to that for c. In the schema of Fig. 21.1, the signature of get_name for
Actor is

get_name : Actor → string

and the implementation is identical to the one for Person. The determination of the correct
method implementation to use for a given method name m and class c is called method
resolution; the selected implementation is called the resolution of m for c.

Suppose that π is an OID assignment, that oid25 is in the extension π∗(Person) of
Person, and that get_name is called on oid25. What implementation of get_name will
be used? In our OODB model we shall use dynamic binding (also called late binding,
or value-dependent binding). This means that the specific implementation chosen for
get_name on oid25 depends on the most specific class that oid25 belongs to, that is, the
class c such that oid25 ∈ π(c).

(An alternative to dynamic binding is static binding, or context-dependent binding.
Under this discipline, the implementation used for get_name depends on the type associ-
ated with the variable holding oid25 at the point in program where get_name is invoked.
This can be determined at compile time, and so static binding is generally much cheaper
than dynamic binding. In the language C++, the default is static binding, but dynamic bind-
ing can be obtained by using the keyword virtual when specifying the method.)

Consider a call m(o, v1, . . . , vn−1) to method m. This is often termed a message,
and o is termed the receiver. As described here, the implementation of m associated
with this message depends exclusively on the class of o. To emphasize the importance
of the receiver for finding the actual implementation, in some languages the message is
denoted o→ m[v1, . . . vn−1]. In some object-oriented programming languages, such as
CommonLoops (an object-oriented extension of LISP), the implementation depends on

21.2 Formal Definition of an OODB Model 553

mc′ c′′

c

c′′′

m

m

Figure 21.2: Unambiguous definition

all of the parameters of the call, not just the first. This is also the approach of the method
schemas introduced in Section 21.4.

The set of methods applicable to an object is called the interface of the object. As noted
in the informal description of OODB models, in most cases objects are accessed only via
their interface; this philosophy is called encapsulation.

As part of an OODB schema, a set M of method signatures is associated to a class
hierarchy (C, σ,≺). Note that a signature m : c × τ1 × · · · × τn−1 → τn can be viewed
as giving a particular meaning to m for class c, at least at a syntactic level. Because of
inheritance, a meaning for method m need not be given explicitly for each class of C nor
even for subclasses of a class for which m has been given a meaning. However, we make
two restrictions on the family of method signatures: The set M is well formed if it obeys
the following two rules:

Unambiguity: If c is a subclass of c′ and c′′ and there is a definition ofm for c′ and c′′, then
there is a definition ofm for a subclass of c′ and c′′ that is either c itself, or a superclass
of c. (See Fig. 21.2.)

Covariance4: If m : c × τ1 × · · · × τn→ τ and m : c′ × τ ′1 × · · · × τ ′m→ τ ′ are two defi-
nitions and c ≺ c′, then n=m for each i, τi ≤ τ ′i and τ ≤ τ ′.

The first rule prevents ambiguity resulting from the presence of two method implemen-
tations both applicable for the same object. A primary motivation for the second rule is
intuitive: We expect the argument and result types of a method on a subclass to be more
refined than those of the method on a superclass. This also simplifies the writing of type-
correct programs, although type checking leads to difficulties even in the presence of the
covariance assumption (see Section 21.4).

Database Schemas and Instances

We conclude this section by presenting the definitions of schemas and instances in the
generic OODB model. An important subtlety here will be the role of OIDs in instances

4 In type theory, contravariance is used instead. Contravariance is the proper notion when functions
are passed as arguments, which is not the case here.

554 Object Databases

as placeholders; as will be seen, the specific OIDs present in an instance are essentially
irrelevant.

As indicated earlier, a schema describes the structure of the data that is stored in
a database, including the types associated with classes and the ISA hierarchy and the
signature of methods (i.e., the interfaces provided for objects in each class).

In many practical OODBs, it has been found convenient to allow storage of complex
values that are not associated with any objects and that can be accessed directly using
some name. This also allows us to subsume gracefully the capabilities of value-based
models, such as relations and complex values. It also facilitates writing queries. To reflect
this feature, we allow a similar mechanism in schemas and instances. Thus schemas may
include a set of value names with associated types. Instances assign values of appropriate
type to the names. Method implementations, external programming languages, and query
languages may all use these names (to refer to their current values) or a class name (to
refer to the set of objects currently residing in that class). In this manner, named values and
class names are analogous to relation names in the relational model and to complex value
relation names in the complex value model.

In the schema of Fig. 21.1, examples of named values are Pariscope (holding a set
of triples); Persons_I_like, Actors_I_like, and Actors_you_like (referring to sets of person
objects and actor objects; and, finally, My_favorite_director (referring to an individual
object as opposed to a set). These names can be used explicitly in method implementations
and in external query and programming languages.

We now have the following:

Definition 21.2.7 A schema is a 5-tuple S= (C, σ,≺,M,G) where

• G is a set of names disjoint from C;

• σ is a mapping from C ∪G to types(C);

• (C, σ,≺) is a well-formed class hierarchy5; and

• M is a well-formed set of method signatures for (C, σ,≺).

An instance of an OODB schema populates the classes with OIDs, assigns values to
these OIDs, gives meaning to the other persistent names, and assigns semantics to method
signatures. The semantics of method signatures are mappings describing their effect. From
a practical viewpoint, the population of the classes, the values of objects, and the values of
names are kept extensionally; whereas the semantics of the methods are specified by pieces
of code (intensionally). However, we ignore the code of methods for the time being.

Definition 21.2.8 An instance of schema (C, σ,≺,M,G) is a 4-tuple I= (π, ν, γ, µ),
where

(a) π is an OID assignment (and let O = ∪{π(c) | c ∈ C});
(b) ν maps each OID in O to a value in val(O) of correct type [i.e., for each c and

o ∈ π(c), ν(o) ∈ dom(σ (c))];

5 By abuse of notation, we use here and later σ instead of σ |C.

21.2 Formal Definition of an OODB Model 555

(c) γ associates to each name in G of type τ a value in dom(τ);

(d) µ assigns semantics to method names in agreement with the method signatures
inM . More specifically, for each signature m : c × *α→ τ ,

µ(m : c × *α→ τ) : dom(c × *α)→ dom(τ);

that is, µ(m : c × *α→ τ) is a partial function from dom(c × *α) to dom(τ).

Recall that a method m can occur with different signatures in the same schema. The
mapping µ can assign different semantics to each signature of m. The function µ(m :
c × *α→ τ) is only relevant on objects associated with c and subclasses of c for which
m is not redefined.

In the preceding definitions, the assignment of semantics to method signatures is
included in the instance. As will be seen in Section 21.4, if method implementations
are included in the schema, they induce the semantics of methods at the instance level
(this is determined by the semantics of the particular programming language used in the
implementation).

Intuitively, it is generally assumed that elements of the atomic domains have univer-
sally understood meaning. In contrast, the actual OIDs used in an instance are not relevant.
They serve essentially as placeholders; it is only their relationship with other OIDs and
constants that matters. This arises in the practical perspective in two ways. First, in most
practical systems, OIDs cannot be explicitly created, examined, or manipulated. Second,
in some object-oriented systems, the actual OIDs used in a physical instance may change
over the course of time (e.g., as a result of garbage collection or reclustering of objects).

To capture this aspect of OIDs in the formal model, we introduce the notion of OID
isomorphism. Two instances I, J are OID isomorphic, denoted I ≡OID J, if there exists a
bijection on dom∪ obj that maps obj to obj, is the identity on dom, and transforms I into J.
To be precise, the term object-oriented instance should refer to an equivalence class under
OID isomorphism of instances as defined earlier. However, it is usually more convenient to
work with representatives of these equivalence classes, so we follow that convention here.

Remark 21.2.9 In the model just described, a class encompasses two aspects:

1. at the schema level, the class definition (its type and method signatures); and

2. at the instance level, the class extension (the set of objects currently in the class).

It has been argued that one should not associate explicit class extensions with classes. To
see the disadvantage of class extensions, consider object deletion. To be removed from
the database, an object has to be deleted explicitly from its class extension. This is not
convenient in some cases. For instance, suppose that the database contains a class Polygon
and polygons are used only in figures. When a polygon is no longer used in any figure of
the current database, it is no longer of interest and should be deleted. We would like this
deletion to be implicit. (Otherwise the user of the database would have to search all possible
places in which a reference to a polygon may occur to be able to delete a polygon.)

To capture this, some OODBs use an integrity constraint, which states that

556 Object Databases

every object should be accessible from some named value.

This integrity constraint is enforced by an automatic deletion of all objects that become
unreachable from the named values. In the polygon example, this approach would allow
defining the class Polygon, thus specifying the structure and methods proper to polygons.
However, the members of class Polygon would only be those polygons that are currently
relevant. Relevance is determined by membership in (or accessibility from) the named
values (e.g., My-Figures, Your-Figures) that refer to polygons. From a technical viewpoint,
this involves techniques such as garbage collection.

In these OODBs, the set of objects in a class is not directly accessible. For this
reason, the corresponding models are sometimes called models without class extension.
Of course, it is always possible, given a schema, to compute the class extensions or to
adapt object creation in a given class to maintain explicitly a named value containing that
class extension. In these OODBs, the named values are also said to be roots of persistence,
because the persistence of an object is dependent on its accessibility from these named
values.

21.3 Languages for OODB Queries

This section briefly introduces several languages for querying OODBs. These queries
are formulated against the database as a whole; unlike methods, they are not associated
with specific classes. In the next section, we will consider languages intended to provide
implementations for methods.

In describing the OODB query languages, we emphasize how OODB features are
incorporated into them. The first language is an extension of the calculus for complex
values, which incorporates such object-oriented components as OIDs, different notions
of equality, and method calls. The second is an extension of the while language, initially
introduced in Chapter 14. Of primary interest here is the introduction of techniques for
creating new OIDs as part of a query. At this point we examine the notion of completeness
for OODB access languages. We also briefly look at a language introducing a logic-based
approach to object creation. Finally, we mention a practical language, O2SQL. This is a
variant of SQL for OODBs that provides elegant object-oriented features.

Although the languages discussed in this section do provide the ability to call methods
and incorporate the results into the query processing and answer, we focus primarily
on access to the extensional structural portion of the OODB. The intensional portion,
provided by the methods, is considered in the following section. Also, we largely ignore the
important issue of typing for queries and programs written in these languages. The issue of
typing is considered, in the context of languages for methods, in the next section.

An Object-Oriented Calculus

The object-oriented calculus presented here is a straightforward generalization of the com-
plex value calculus of Chapter 20, extended to incorporate objects, different notions of
equality, and methods.

21.3 Languages for OODB Queries 557

Let (C, σ,≺,M,G) be an OODB schema, and let us ignore the object-oriented fea-
tures for a moment. Each name inG can be viewed as a complex value; it is straightforward
to generalize the complex value calculus to operate on the values referred to by G. (The
fact that in the complex value model all relations are sets whereas some names in G might
refer to nonset values requires only a minor modification of the language.)

Let us now consider objects. OIDs may be viewed as elements of a specific sort.
If viewed in isolation from their associated values, this suggests that the only primitive
available for comparing OIDs is equality. Recall from the schema of Fig. 21.1 the names
Actors_I_like and Actors_you_like. The query6

(21.1) ∃x, y(x ∈ Actors_I_like ∧ y ∈ Actors_you_like ∧ x = y)

asks whether there is an actor we both like. To obtain the names of such actors, we need
to introduce dereferencing, a mechanism to obtain the value of an object. Dereferencing is
denoted by ↑. The following query yields the names of actors we both like:

(21.2) {y | ∃x(x ∈ Actors_I_like ∧ x ∈ Actors_you_like ∧ x ↑ .name= y)}

In the previous query, x ↑ denotes the value of x, in this case, a tuple with four fields. The
dot notation (.) is used as before to obtain the value of specific fields.

In query (21.1), we tested two objects for equality, essentially testing whether they
had the same OID. Although it does not increase the expressive power of the language, it
is customary to introduce an alternative test for equality, called value equality. This tests
whether the values of two objects are equal regardless of whether their OIDs are distinct.
To illustrate, consider the three objects having Actor_type:

(oid50, [name : “Martin”, citizenship : “French”, gender : “male”,

award : { }, acts_in : {oid33}])
(oid51, [name : “Martin”, citizenship : “French”, gender : “male”,

award : { }, acts_in : {oid33}])
(oid52, [name : “Martin”, citizenship : “French”, gender : “male”,

award : { }, acts_in : {oid34}])
Then oid50 and oid51 are value equal, whereas oid50 and oid52 are not. Yet another
form of equality is deep equality. If oid33 and oid34 are value equal, then oid50 and
oid52 are deep equal. Intuitively, two objects are deep equal if the (possibly infinite) trees
obtained by recursively replacing each object by its value are equal. The infinite trees that
we obtain are called the expansions. They present some regularity; they are regular trees
(see Exercise 21.10).

The notion of deep equality highlights a major difference between value-based and
object-based models. In a value-based model (such as the relational or complex value

6 In this example, if name is a key for Actor, then one can easily obtain an equivalent query not using
object equality; this may not be possible if there is no key for Actor.

558 Object Databases

models), the database can be thought of as a collection of (finite) trees. The connections
between trees arise as a result of the contents of atomic fields. That is, they are implicit
(e.g., the same string may appear twice). In the object-oriented world, a database instance
can be thought of as graph. Paths in the database are more explicit. That is, one may
view an (oid, value) pair as a form of logical pointer and a path as a sequence of pointer
dereferencing.

This graph-based perspective leads naturally to a navigational form of data access
(e.g., using a sequence such as o ↑ .director ↑ .citizenship to find the citizenship of the
director of a given movie object o). This has led some to view object-oriented models as
less declarative than value-based models such as the relational model. This is inaccurate,
because declarativeness is more a property of access languages than models. Indeed, the
calculus for OODBs described here illustrates that a highly declarative language can be
developed for the OODB model.

We conclude the discussion of the object-oriented calculus by incorporating meth-
ods. For this discussion, it is irrelevant how the methods are specified or evaluated; this
evaluation is external to the query. The query simply uses the method invocations as or-
acles. Method resolution uses dynamic binding. The value of an expression of the form
m(t1, . . . , tn) under a given variable assignment ν is obtained by evaluating (externally)
the implementation of m for the class of ν(t1) on input ν(t1, . . . , tn). In this context, it
is assumed that m has no side-effects. Although not defined formally here, the following
illustrates the incorporation of methods into the calculus:

(21.3) {y | ∃x(x ∈ Persons_I_like ∧ y = get_name(x))}

If the set Persons_I_like contains Bergman and Liv Ullman, the answer would be

{“Ms. Ullman”, “Liv Ullman”}

The use of method names within the calculus raises a number of interesting typing and
safety issues that will not be addressed here.

Object Creation and Completeness

Relational queries take relational instances as input and produce relational instances as
output. The preceding calculus fails to provide the analogous capability because the output
of a calculus query is a set of values or objects. Two features are needed for a query
language to produce the full-fledged structural portion of an object-oriented instance: the
ability to create OIDs, and the ability to populate a family of named values (rather than
producing a single set).

We first introduce an extension of the while language of Chapter 14 that incorporates
both of these capabilities. This language leads naturally to a discussion of completeness of
OODB access languages. After this we mention a second approach to object creation that
stems from the perspective of logic programming.

The extension of while introduced here is denoted whileobj . It will create new OIDs in
a manner reminiscent of how the language whilenew of Chapter 18 invented new constants.

21.3 Languages for OODB Queries 559

The language whileobj incorporates object-oriented features such as dereferencing
and method calls, as in the calculus. To illustrate, we present a whileobj program that
collects all actors reachable from an actor I like—Liv Ullman. In this query, v_movies and
v_directors serve as variables, and reachable serves as a new name that will hold the output.

reachable := {x | x ∈ Actors_I_like ∧ x ↑ .name= “Liv Ullman”};
v_movies := { }; v_directors := { };
while change do

begin
reachable := reachable ∪ {x | ∃y(y ∈ v_movies ∧ x ∈ y ↑ .actors)};
v_directors := v_directors
∪ {x | ∃y(y ∈ v_movies ∧ x ∈ y ↑ .director)};

v_movies := v_movies
∪{x | ∃y(y ∈ reachable ∧ x ∈ y ↑ .acts_in)}
∪{x | ∃y(y ∈ v_directors ∧ x ∈ y ↑ .directs)};

end;

We now introduce object creation. The operator new works as follows. It takes as input
a set of values (or objects) and produces one new OID for each value in the set. As a simple
example, suppose that we want to objectify the quadruples in the named value Pariscope
of the schema of Fig. 21.1. This may be accomplished with the commands

add_class Pariscope_obj
type tuple (theater : Theater, time : string, price : integer,movie : Movie);

Pariscope_obj := new(Pariscope)

Of course, the new operator can be used in conjunction with arbitrary expressions that yield
a set of values, not just a named value.

The new operator used here is closely related to the new operator of the language
whilenew of Chapter 18. Given that whileobj has iteration and the ability to create new
OIDs, it is natural to ask about the expressive power of this language. To set the stage,
we introduce the following analogue of the notion of (computable) query, which mimics
the one of Chapter 18. The definition focuses on the structural portion of the OODB model;
methods are excluded from consideration.

Definition 21.3.1 Let R and S be two OODB schemas with no method signatures. A
determinate query is a relationQ from inst(R) to inst(S) such that

(a) Q is computable;

(b) (Genericity) if 〈I, J〉 ∈Q and ρ is a one-to-one mapping on constants, then
〈ρ(I), ρ(J)〉 ∈Q;

(c) (Functionality) if 〈I, J〉 ∈Q, and 〈I, J′〉 ∈Q, then J and J′ are OID isomorphic;
and

(d) (Well defined) if 〈I, J〉 ∈Q and 〈I′, J′〉 is OID isomorphic to 〈I, J〉, then 〈I′, J′〉 ∈
Q.

A language is determinate complete (for OODBs) if it expresses exactly the determinate
queries.

560 Object Databases

The essential difference between the preceding definition and the definition of deter-
minate query in Chapter 18 is that here only OIDs can be created, not constants. Parts (c)
and (d) of the definition ensure that a determinate query Q can be viewed as a function
from OID equivalence classes of instances over R to OID equivalence classes of instances
over S. So OIDs serve two purposes here: (1) They are used to compute in the same way
that invented values were used to break the polynomial space barrier; and (2) they are now
essential components of the data structure and in particular of the result. With respect to
(2), an important aspect is that we are not concerned with the actual value of the OIDs,
which motivates the use of the equivalence relation. (Two results are viewed as identical if
they are the same up to the renaming of the OIDs.)

Like whilenew, whileobj is not determinate complete. There is an elegant characteriza-
tion of the determinate queries expressible in whileobj. This result, which we state next,
uses a local characterization of input-output pairs of whileobj programs. That characteriza-
tion is in the spirit of the notion of bp-completeness, relating input-output pairs of relational
calculus queries (see Exercise 16.11). For each input-output pair 〈I, J 〉, the characteriza-
tion of whileobj queries requires a simple connection between the automorphism group of
I and that of J . For an instance K , let Aut(K) denote the set of automorphisms of K . For
a pair of instances K,K ′, Aut(〈K,K ′〉) denotes the bijections on adom(K ∪K ′) that are
automorphisms of both K and K ′.

Theorem 21.3.2 A determinate query q is expressible in whileobj iff for each input-
output pair 〈I, J 〉 in q there exists a mapping h from Aut(I) to Aut(〈I, J 〉) such that for
each τ, µ ∈ Aut(I),

(i) τ and h(τ) coincide on I ;

(ii) h(τ ◦ µ)= h(τ) ◦ h(µ); and

(iii) h(idI)= id〈I,J 〉.

The “only if” part of the theorem is proven by an extension of the trace technique
developed in the proof of Theorem 18.2.5 (Exercise 21.14). The “if” part is considerably
more complex and is based on a group-theoretic argument.

A mapping h just shown is called an extension homomorphism from Aut(I) to
Aut(〈I, J 〉). To see an example of the usefulness of this characterization, consider the
query q in Fig. 21.3. Recall that q was shown as not expressible in the language whilenew

by Theorem 18.2.5. The language whileobj is more powerful than whilenew, so in principle
it may be able to express that query. However, we show that this is not the case, so whileobj

is not determinate complete.

Proposition 21.3.3 Query q (of Fig. 21.3) is not expressible in whileobj.

Proof Let 〈I, J 〉 be the input-output pair of Fig. 21.3. The proof is by contradiction.
Suppose there is a whileobj query that produces J on input I . By Theorem 21.3.2, there
is an extension homomorphism h from Aut(I) to Aut(〈I, J 〉). Let µ be the automorphism
of I exchanging a and b. Note that µ−1 = µ, so µ ◦ µ= idI . Consider h(µ)(ψ0). Clearly,
h(µ)(ψ0) ∈ {ψ1, ψ3}. Suppose h(µ)(ψ0) = ψ1 (the other case is similar). Then clearly,

21.3 Languages for OODB Queries 561

ψ3

ψ0 ψ2

ψ1

b a{a, b} ⇒

Figure 21.3: A query not expressible in whileobj

h(µ)(ψ1)= ψ2. Consider now h(µ ◦ µ)(ψ0). We have, on one hand,

h(µ ◦ µ)(ψ0)= (h(µ) ◦ h(µ))(ψ0)

= h(µ)(ψ1)

= ψ2

and on the other hand

h(µ ◦ µ)(ψ0)= h(idI)(ψ0)

= id〈I,J 〉(ψ0)

= ψ0,

which is a contradiction because ψ0 "= ψ2. So q is not expressible in whileobj.

It is possible to obtain a language expressing all determinate queries by adding to
whileobj a choose operator that allows the selection (nondeterministically but in a determi-
nate manner) of one object out of a set of objects that are isomorphic (see Exercise 18.14).
However, this is a highly complex construct because it requires the ability to check for
isomorphism of graphs. The search for simpler, local constructs that yield a determinate-
complete language is an active area of research.

A Logic-Based Approach to Object Creation

We now briefly introduce an alternative approach for creating OIDs that stems from the
perspective of datalog and logic programming. Suppose that a new OID is to be created for
each pair 〈t, m〉, where movie m is playing at theater t according to the current value of
Pariscope. Consider the following dataloglike rule:

1. create_tm_object(x, t,m)← Pariscope(t, s,m)

Note that x occurs in the rule head but not in the body, so the rule is not safe. Intuitively,
we would like to attach semantics to this rule so that a new OID is associated to x for each

562 Object Databases

distinct pair of (t, m) values. Using the symbol ∃! to mean “exists a unique,” the following
versions of (1) intuitively captures the semantics.

2. ∀t∀m∃!x∀s[create_tm_object(x, t,m)← Pariscope(t, s,m)]

3. ∀t∀m∃!x[create_tm_object(x, t,m)←∃s(Pariscope(t, s,m))]

This suggests that Skolem functions might be used. Specifically, let ftm be a function
symbol associated with the predicate create_tm_object. We rewrite (2) as

∀t∀m∀s[create_tm_object(ftm(t,m), t,m)← Pariscope(t, s,m)]

or, leaving off the universal quantifiers as traditional in datalog,

4. create_tm_object(ftm(t,m), t,m)← Pariscope(t, s,m)

Under this approach, the Skolem terms resulting from rule (4) are to be interpreted
as new, distinct OIDs. Under some formulations of the approach, syntactic objects such
as ftm(oid7, oid22) (where oid7 is the OID of some theater and oid22 the OID of some
movie) serve explicitly as OIDs. Under other formulations, such syntactic objects are
viewed as placeholders during an intermediate stage of query evaluation and are (nonde-
terministically) replaced by distinct new OIDs in the final stage of query evaluation (see
Exercise 21.13).

The latter approach to OID creation, incorporated into complex value datalog ex-
tended to include also OID dereferencing, yields a language equivalent to whileobj . As
with whileobj , this language is not determinate complete.

A Practical Language for OODBs

We briefly illustrate some object-oriented features of the language O2SQL, which was
introduced in Section 20.8. Several examples are presented there, that show how O2SQL
can be used to access and construct deeply nested complex values. We now indicate how
the use of objects and methods is incorporated into the language. It is interesting to note that
methods and nested complex values are elegantly combined in this language, which has the
appearance of SQL but is essentially based on the functional programming paradigm.

For this example, we again assume the complex value Films of Fig. 20.2, but we
assume that Age is a method defined for the class Person (and thus for Director).

select tuple (f.Director, f.Director.Age)
from f in Films
where f.Director not in flatten select m.Actors

from g in Films,
m in g.Movies

where g.Director = “Hitchcock”

(Recall that here the inner select-from-where clause returns a set of sets of actors. The
keyword flatten has the effect of forming the union of these sets to yield a set of actors.)

21.4 Languages for Methods 563

21.4 Languages for Methods

So far, we have used an abstraction of methods (their signature) and ignored their imple-
mentations. In this section, we present two abstract programming languages for specifying
method implementations. Method implementations will be included in the specification
of methods in OODB schemas. In studying these languages, we emphasize two impor-
tant issues: type safety and expressive power. This focus largely motivates our choice of
languages and the particular abstractions considered.

The first language is an imperative programming language. The second, method
schemas, is representative of a functional style of database access. In the first language,
we will gather a number of features present in practical object-oriented database languages
(e.g., side-effect, iteration, conditionals). We will see that with these features, we get (as
could be expected) completeness, and we pay the obvious price for it: the undecidability
of many questions, such as type safety. With method schemas, we focus on the essence
of inheritance and methods. We voluntarily consider a limited language. We see that the
undecidability of type safety is a consequence of recursion in method calls. (We obtain
decidability in the restricted case of monadic methods.) With respect to expressiveness,
we present a surprising characterization of qptime in terms of a simple language with
methods.

For both languages, we study type safety and expressive power. We begin by dis-
cussing briefly the meaning of these notions in our context, and then we present the two
languages and the results.

An OODB schema S (with method implementations assigned to signatures) is type
safe if for each instance I of S and each syntactically correct method call on I, the execution
of this method does not result in a runtime type error (an illegal method call). When
the imperative programming language is used in method implementations, type safety is
undecidable. (It is possible, however, to obtain decidable sufficient conditions for type
safety.) For method schemas, type safety remains undecidable. Surprisingly, type safety
is decidable for monadic method schemas.

To evaluate the expressive power of OODB schemas using a particular language for
method implementation, a common approach is to simulate relational queries and then
ask what family of relational queries can be simulated. If OID creation is permitted, then
all computable relational queries can be simulated using the imperative language. The
expressive power of imperative methods without OID creation depends on the complex
types permitted in OODB schemas. We also present a result for the expressive power of
method schemas, showing that the family of method schemas using an ordered domain of
atomic elements expresses exactly qptime.

A Model with Imperative Methods

To consider the issue of type safety in a general context, we present the imperative (OODB)
model, which incorporates imperative method implementations. This model simplifies the
OODB model presented earlier by assuming that the type of each class is a tuple of values
and OIDs. However, a schema in this model will include an assignment of implementations
to method signatures.

564 Object Databases

The syntax for method implementations is

par: u1, . . . , un;
var: x1, . . . , xl;
body: s1; . . . ; sq;
return x1

where the ui’s are parameters (n ≥ 1), the xj ’s are internal variables (l ≥ 1), and for each
p ∈ [1, q], sp is a statement of one of the following forms (where w, y, z range over
parameters and internal variables):

Basic operations

(i) w := self.

(ii) w := self.a for some field name a.

(iii) w := y.

(iv) w := m(y, . . . , z), for some method name m.

(v) self.a := w, for some field name a.

Class operations

(vi) w := new(c), where c is a class.

(vii) delete(c, w), where c is a class.

(viii) for eachw in c do s′1; . . . ; s′t end, where c is a class and s′1, . . . , s
′
t are statements

having forms from this list.

Conditional

(ix) if yθz then s, where θ is = or "= and s is a statement having a form in this list
except for the conditional.

It is assumed that all internal variables are initialized before used to some default value
depending on their type. The intended semantics for the forms other than (viii) should
be clear. (Here clear does not mean “easy to implement.” In particular, object deletion
is complex because all references to this object have to be deleted.) The looping construct
executes for each element of the extension (not disjoint extension) of class c. The execution
of the loop is viewed as nondeterministic, in the sense that the particular ordering used for
the elements of c is not guaranteed by the implementation. In general, we focus on OODB
schemas in which different orders of execution of the loops yield OID-equivalent results
(note, however, that this property is undecidable, so it must be ensured by the programmer).

An imperative schema is a 6-tuple S= (C, σ,≺,M,G,µ), where (C, σ,≺,M,G) is
a schema as before; where the range of σ is tuples of atomic and class types; and where µ
is an assignment of implementations to signatures. The notion of instance for this model is
defined in the natural fashion.

It is straightforward to develop operational semantics for this model, where the execu-
tion of a given method call might be successful, nonterminating, or aborted (as the result
of a runtime type error) (Exercise 21.15a).

21.4 Languages for Methods 565

Type Safety in the Imperative Model There are two ways that a runtime type error can
arise: (1) if the type of the result of an execution of method m does not lie within the type
specified by the relevant method signature of m; or (2) if a method is called on a tuple
of parameters that does not satisfy the domain part of the appropriate signature of m. We
assume that the range of all method signatures is any, and thus we focus on case (2).

A schema S is type safe if for each instance over S and each m(o, v1, . . . , vn) method
call that satisfies the signature of m associated with the class of o, execution of this call is
either successful or nonterminating.

Given a Turing machine M , it is easy to develop a schema S in this model that can
simulate the operation ofM on a suitable encoding of an input tape (Exercise 21.15c). This
shows that such schemas are computationally powerful and implies the usual undecidabil-
ity results. With regard to type safety, it is easy to verify the following (Exercise 21.16):

Proposition 21.4.1 It is undecidable, given an imperative schema S, whether S is type
safe. This remains true, even if in method implementations conditional statements and the
new operator are prohibited and all methods are monadic (i.e., have only one argument).

A similar argument can be used to show that it is undecidable whether a given method
terminates on all inputs. Finally, a method m′ on class c′ is reachable from method m on
class c in OODB schema S if there is some instance I of S and some tuple o, v1, . . . with
o in c such that the execution of m(o, v1, . . .) leads to a call of m′ on some object in c′.
Reachability is also undecidable for imperative schemas.

Expressive Power of the Imperative Model

As discussed earlier, we measure the expressive power of OODB schemas in terms of the
relational queries they can simulate. A relational schema R = {R1, . . . , Rn} is simulated
by an OODB schema S of this model if there are leaf classes c1, . . . , cn in S, where the
number of attributes of ci is the arity of Ri for i ∈ [1, n] and where the type of each of
these attributes is atomic. We focus on instances in which no null values appear for such
attributes. Let R be a relational schema and S be an OODB schema that simulates R. An
instance I of R is simulated by instance J of S if for each tuple *v ∈ I(Ri) there is exactly
one object o in the extension of ci such that the value associated with o is *v and all other
classes of S are empty. Following this spirit, it is straightforward to define what it means
for a method call in schema S to simulate a relational query from R to relation schema R.

We consider only schema S for which different orders of evaluation of the looping
construct yield the same final result (i.e., generic mappings). We now have the following
(see Exercise 21.20):

Theorem 21.4.2 The family of generic queries corresponding to imperative schemas
coincides with the family of all relational queries.

The preceding result relies on the presence of the new operator. It is natural to ask
about the expressive power of imperative schemas that do not support new. As discussed in
Exercise 21.21, the expressive power depends on the complex types permitted for objects.

566 Object Databases

Note also that imperative schemas can express all determinate queries. This uses the
nondeterminism of the for each construct. Naturally, nondeterministic queries that are not
determinate can also be expressed.

Method Schemas

We now present an abstract model for side-effect-free methods, called method schemas.
In this model, we focus almost exclusively on methods and their implementations. Two
kinds of methods are distinguished: base and composite. The base methods do not have
implementations: Their semantics is specified explicitly at the instance level. The imple-
mentations of composite methods consist of a composition of other methods.

We now introduce method schemas. In the next definition, we make the simplifying
assumption that there are no named values (only class names) in database schemas. In
fact, data is only stored in base methods. In the following, σ[] denotes the type assign-
ment σ[](c)= [] for every class c. Because the type assignment provides no information
in method schemas (it is always σ[]), this assignment is not explicitly specified in the
schemas.

Definition 21.4.3 A method schema is a 5-tuple S = (C,≺,Mbase,Mcomp, µ), where
(C, σ[],≺) is a well-formed class hierarchy,Mbase ∪Mcomp is a well-formed set of method
signatures for (C, σ[],≺), and

• no method name occurs in bothMbase andMcomp;

• each method signature inMcomp is of the formm : c1, . . . , cn→ any (method signa-
tures forMbase are unrestricted, i.e., can have any class as range);

• µ is an assignment of implementations to the method signatures of Mcomp, as fol-
lows: For a signature m : c1, . . . , cn→ any inMcomp, µ(m : c1, . . . , cn→ any) is a
term obtained by composing methods inMbase andMcomp.

An example of an implementation for a method m : c1, c2 → any is

m(x, y)≡m1(m2(x),m1(x, y)).

The semantics of methods is defined in the obvious way. For instance, to computem(o, o′),
one computes first o1 =m2(o) and then o2 =m1(o, o

′); the result is m1(o1, o2). The range
of composite methods is left unspecified (it is any) because it is determined by the do-
main and the method implementation as a composition of methods. Because the range of
composite methods is always any, we will sometimes only specify their domain.

Let S = (C,≺,Mbase,Mcomp, µ) be a method schema. An instance of S is a pair
I = (π, ν), where π is an OID assignment for (C,≺) and where ν assigns a semantics
to the base methods. Note the difference from the imperative schemas of the previous
section, where π together with the method implementations was sufficient to determine
the semantics of methods. In contrast, the semantics of the base methods must be specified
in instances of method schemas.

21.4 Languages for Methods 567

Inheritance of method implementations for method schemas is defined slightly differ-
ently from that for the OODB model given earlier. Specifically, given an n-ary method m
and invocationm(o1, . . . , on), where oi is in disjoint class ci for i ∈ [1, n], the implementa-
tion form is inherited from the implementation of signaturem : c′1, . . . , c

′
n→ c′, where this

is the unique signature that is pointwise least above c1, . . . , cn. [Otherwise m is undefined
on input (o1, . . . , on).]

An important special case is when methods take just one argument. Method schemas
using only such methods are called monadic. To emphasize the difference, unrestricted
method schemas are sometimes called polyadic.

Example 21.4.4 Consider the following monadic method schema. The classes in the
schema are

class c

class c′ ≺ c
The base method signatures are

method m1 : c→ c′

method m2 : c→ c

method m2 : c′ → c′

method m3 : c′ → c

The composite method definitions are

method m : c =m2(m2(m1(x)))

method m′ : c =m3(m
′(m2(x)))

method m′ : c′ =m1(x)

Note that m′ is recursive and that calls to m′ on elements in c′ break the recursion.

Type Safety for Method Schemas As before, a method schema S is type safe if for each
instance I of S no method call on I leads to a runtime type error.

The following example demonstrates that the schema of Example 21.4.4 is not type
safe. Note how the interpretation ν for base methods can be viewed as an assignment of
values for objects.

Example 21.4.5 Recall the method schema of Example 21.4.4. An instance of this is
I= (π, ν), where7

π(c)= {p, q}
π(c′)= {r}

7 We write ν(m1)(p) rather than ν(m1, c)(p) to simplify the presentation.

568 Object Databases

and

ν(m1)(p)= r ν(m2)(p)= q
ν(m1)(q)l =⊥ ν(m2)(q)= r ν(m3)(r)= p.
ν(m1)(r)= r ν(m2)(r)= r

Consider the execution of m(p). This calls for the computation of m2(m2(m1(p)))=
m2(m2(r)) = r . Thus the execution is successful. On the other hand, m′(p) leads to
a runtime type error: m′(p) = m3(m

′(m2(p))) = m3(m
′(q)) = m3(m3(m

′(m2(q)))) =
m3(m3(m

′(r))) = m3(m3(m1(r))) = m3(m3(r)) = m3(p), which is undefined and raises
a runtime type error. Thus the schema is not type safe.

It turns out that type safety of method schemas permitting polyadic methods is un-
decidable (Exercise 21.19). Interestingly, type safety is decidable for monadic method
schemas. We now sketch the proof of this result.

Theorem 21.4.6 It is decidable in polynomial time whether a monadic method schema
is type safe.

Crux Let S = (C,≺,Mbase,Mcomp, µ) be a monadic method schema. We construct a
context-free grammar (see Chapter 2) that captures possible executions of a method call
over all instances of S. The grammar is GS = (Vn, Vt, A, P), where the set Vt of terminals
is the set of base method names (denotedNbase) along with the symbols {〈error〉, 〈ignore〉},
and the set Vn of nonterminals includes start symbol A and

{[c,m, c′] | c, c′ are classes, and m is a method name}

The set P of production rules includes

(i) A→ [c,m, c′], if m is a composite method name and it is defined at c or a
superclass of c.

(ii) [c,m, c′]→ 〈error〉, if m is not defined at c or a superclass of c.

(iii) [c,m, c′]→m, ifm is a base method name, the resolution ofm for c ism : c1 →
c2, and c′ ≺ c2. (Note that c′ = c2 is just a particular case.)

(iv) [c,m, c]→ ε, if m is a composite method name and the resolution of m for c is
the identity mapping.

(v) [c,m, cn]→ [c,m1, c1][c1,m2, c2] . . . [cn−1,mn, cn], if m is a composite met-
hod, m on c resolves to a method with implementation mn(mn−1(. . . (m2

(m1(x))) . . .)), and c1, . . . , cn are arbitrary classes.

(vi) [c,m, c′]→ 〈ignore〉, for all classes c, c′ and method names m.

Given a successful execution of a method callm(o), it is easy to construct a word in L(GS)

of the form m1 . . . mn, where the mi’s list the sequence of base methods called during the
execution. On the other hand, if the execution ofm(o) leads to a runtime error, a word of the
formm1 . . . mi〈error〉 . . . can be formed. The terminal 〈ignore〉 can be used in cases where

21.4 Languages for Methods 569

a nonterminal [c,m, c′] arises, such that m is a base method name and c′ is outside the
range of m for c. The productions of type (vi) are permitted for all nonterminals [c,m, c′],
although they are needed only for some of them.

It can be shown that S is type safe iff

L(GS) ∩N∗base〈error〉V ∗t = ∅.

Because it can be tested if the intersection of a context-free language with a regular lan-
guage is empty, the preceding provides an algorithm for checking type safety. However, a
modification of the grammar GS is needed to obtain the polynomial time test (see Exer-
cise 21.18).

Expressive Power of Method Schemas We now argue that method schemas (with or-
der) simulate precisely the relational queries in qptime. The object-oriented features are
not central here: The same result can be shown for functional data models without such
features.

As for imperative schemas, we show that method schemas can simulate relational
queries. The encoding of these queries assumes an ordered domain, as is traditional in the
world of functional programming.

A relational database is encoded as follows:

(a) a class elem contains objects representing the elements of the domain, and it has
zero as a subclass containing a unique element, say 0;

(b) a function pred, which is included as a base method,8 provides the predecessor
function over elem ∪ zero [pred(0) is, for instance, 0]; a base method 0 returns
the least element and another base method N the largest object in elem;

(c) to have the Booleans, we think of 0 as the value false and all objects in elem as
representations of true;

(d) an n-ary relation R is represented by an n-ary base method mR of signature
mR : elem, . . . , elem→ elem, the characteristic function of R. [For a tuple t ,
mR(t) is true iff t is in R.]

Next we represent queries by composite methods. A query q is computed by method
mq if mq(t) is true (not in zero) iff t is in the answer to query q.

The following illustrates how to compute with this simple language.

Example 21.4.7 Consider relation R with R = {R(1, 1), R(1, 2)}. The class zero is
populated with the object 0 and the class elem with 1, 2. The base method pred is defined
by pred(2) = 1, pred(0) = pred(1) = 0. The base method mR is defined by mR(1, 1) =
mR(1, 2)= 1 and mR(x, y)= 0 otherwise.

8 The function pred is a functional analog of the relation succ, which we have assumed is available
in every ordered database (a successor function could also have been used).

570 Object Databases

Recall that each object in class elem is viewed as true and object 0 as false. We can
code the Boolean function and as follows:

for x, y in zero, zero and(x, y)≡ 0

for x, y in elem, zero and(x, y)≡ 0

for x, y in zero, elem and(x, y)≡ 0

for x, y in elem, elem and(x, y)≡N.
The other standard Boolean functions can be coded similarly. We can code the intersection
between two binary relations R and S with and(mR(x, y),mS(x, y)). As a last example,
the projection of a binary relation R over the first coordinate can be coded by a method
πR,1 defined by

πR,1 ≡m(x,N),

where m is given by

for x, y in elem, zero m(x, y)≡mR(x, y)
for x, y in elem, elem m(x, y)≡ or(mR(x, y),m(x, pred(y))).

We now state the following:

Theorem 21.4.8 Method schemas over ordered databases express exactly qptime.

Crux As indicated in the preceding example, we can construct composite methods for the
Boolean operations and , or , and not . For each k, we can also construct k k-ary functions
predik for i ∈ [1, k] that compute for each k tuple u the k components of the predecessor (in
lexicographical ordering) of u. Indeed, we can simulate an arbitrary relational operation
and more generally an arbitrary inflationary fixpoint. To see this, consider the transitive
closure query. It is computed with a method tc defined (informally) as follows. Intuitively,
a method tc(x, y) asks, “Is 〈x, y〉 in the transitive closure?” Execution of tc(x, y) first calls
a methodm1(x, y,N), whose intuitive meaning is “Is there a path of lengthN from x to y?”
This will be computed by asking whether there is a path of lengthN − 1 (a recursive call to
m1), etc. This can be generalized to a construction that simulates an arbitrary inflationary
fixpoint query. Because the underlying domain is ordered, we have captured all qptime
queries. The converse follows from the fact that there are only polynomially many possible
method calls in the context of a given instance, and each method call in this model can
be answered in qptime. Moreover, loops in method calls can be detected in polynomial
time; calls giving rise to loops are assumed to output some designated special value. (See
Exercise 21.25.)

We have presented an object-oriented approach in the applicative programming style.
There exists another important family of functional languages based on typed λ calculi.
It is possible to consider database languages in this family as well. These calculi present

21.5 Further Issues for OODBs 571

additional advantages, such as being able to treat functions as objects and to use higher-
order functions (i.e., functions whose arguments are functions).

21.5 Further Issues for OODBs

As mentioned at the beginning of this chapter, the area of OODB is relatively young and
active. Much research is needed to understand OODBs as well as we understand relational
databases. A difficulty (and richness) is that there is still no well-accepted model. We
conclude this chapter with a brief look at some current research issues for OODBs. These
fall into two broad categories: advanced modeling features and dynamic aspects.

Advanced Modeling Features

This is not an exhaustive list of new features but a sample of some that are being studied:

Views: Views are intended to increase the flexibility of database systems, and it is natu-
ral to extend the notion of relational view to the OODB framework. However, unlike
relational views, OODB views might redefine the behavior of objects in addition to
restructuring their associated types. There are also significant issues raised by the pres-
ence of OIDs. For example, to maintain incrementally a materialized view with created
OIDs, the linkage between the base data and the created OIDs must be maintained.
Furthermore, if the view is virtual, then how should virtual OIDs be specified and
manipulated?

Object roles: The same entity may be involved in several roles. For instance, a director
may also be an actor. It is costly, if not infeasible, to forecast all cases in which this
may happen. Although not as important in object-oriented programming, in OODBs it
would be useful to permit the same object to live in several classes (a departure from
the disjoint OID assignment from which we started) and at least conceptually maintain
distinct repositories, one for each role. This feature is present in some semantic data
models; in the object-oriented context, it raises a number of interesting typing issues.

Schema design: Schema design techniques (e.g., based on dependencies and normal forms)
have emerged for the relational model (see Chapter 11). Although the richer model in
the OODB provides greater flexibility in selecting a schema, there is a concomitant
need for richer tools to facilitate schema design. The scope of schema design is en-
larged in the OODB context because of the interaction of methods within a schema
and application software for the schema.

Querying the schema: In many cases, information may be hidden in an OODB schema.
Suppose, for example, that movies were assigned categories such as “drama,” “west-
ern,” “suspense,” etc. In the relational model, this information would typically be rep-
resented using a new column in the Movies relation. A query such as “list all categories
of movie that Bergman directed” is easily answered. In an OODB, the category infor-
mation might be represented using different subclasses of the Movie class. Answering
this query now requires the ability of the query language to return class names, a fea-
ture not present in most current systems.

572 Object Databases

Classification: A related problem concerns how, given an OODB schema, to classify
new data for this schema. This may arise when constructing a view, when merging
two databases, or when transforming a relational database into an OODB one by
objectifying tuples. The issue of classification, also called taxonomic reasoning, has
a long history in the field of knowledge representation in artificial intelligence, and
some research in this direction has been performed for semantic and object-oriented
databases.

Incorporating deductive capabilities: The logic-programming paradigm has offered a
tremendous enhancement of the relational model by providing an elegant and (in
many cases) intuitively appealing framework for expressing a broad family of queries.
For the past several years, researchers have been developing hybrids of the logic-
programming and object-oriented paradigms. Although it is very different in some
ways (because the OO paradigm has fundamentally imperative aspects), the perspec-
tive of logic programming provides alternative approaches to data access and object
creation.

Abstract data types: As mentioned earlier, OODB systems come equipped with several
constructors, such as set, list, or bag. It is also interesting to be able to extend the
language and the system with application-specific data types. This involves language
and typing issues, such as how to gracefully incorporate access mechanisms for the
new types into an existing language. It also involves system issues, such as how to
introduce appropriate indexing techniques for the new type.

Dynamic Issues

The semantics of updates in relational systems is simple: Perform the update if the result
complies with the dependencies of the schema. In an OODB, the issue is somewhat trickier.
For instance, can we allow the deletion of an object if this object is referred to somewhere in
the database (the dangling reference problem)? This is prohibited in some systems, whereas
other systems will accept the deletion and just mark the object as dead. Semantically, this
results in viewing all references to this object as nil.

Another issue is object migration. It is easy to modify the value of an object. But
changing the status of an object is more complicated. For example, a person in the database
may act in a movie and overnight be turned into an actor. In object-oriented programming
languages, objects are often not allowed to change classes. Although such limitations also
exist in most present OODBs, object migration is an important feature that is needed in
many database applications. One approach, followed by some semantic data models, is
to permit objects to be associated with multiple classes or roles and also permit them to
migrate to different classes over time. This raises fundamental issues with regard to typing.
For example, how do we treat a reference to the manager of a department (that should be of
type Employee) when he or she leaves the company and is turned into a “normal” person?

Finally, as with the relational model, we need to consider evolution of the schema
itself. The OODB context is much richer than the relational, because there are many more
kinds of changes to consider: the class hierarchy, the type of a class, additions or deletions
of methods, etc.

Bibliographic Notes 573

Bibliographic Notes

Collections of papers on object-oriented databases can be found in [BDK92, KL89, ZM90].
The main characteristics of object-oriented database systems are described in [ABD+89].
An influential discussion of some foundational issues around the OODB paradigm is
[Bee90]. An important survey of subtyping and inheritance from the perspective of pro-
gramming languages, including the notion of domain-inclusion semantics, is [CW85].

Object-oriented databases are, of course, closely related to object-oriented program-
ming languages. The first of these is Smalltalk [GR83], and C++ [Str91] is fast becoming
the most widely used object-oriented programming language. Several commercial OODBs
are essentially persistent versions of C++. Several object-oriented extensions of Lisp have
been proposed; the article [B+86] introduces a rich extension called CommonLoops and
surveys several others.

There have been a number of approaches to provide a formal foundation [AK89,
Bee90, HTY89, KLW93] for OODBs. We can also cite as precursors attempts to formalize
semantic data models [AH87] and object-based models [KV84, HY84]. Recent graph-
oriented models, although they do not stress object orientation, are similar in spirit (e.g.,
[GPG90]).

The generic OODB model used here is directly inspired from the IQL model [AK89]
and that of O2 [BDK92, LRV88]. The model and results on imperative method implementa-
tions are inspired by [HTY89, HS89a]. A similar model of imperative method implementa-
tion, which avoids nondeterminism and introduces a parallel execution model, is developed
in [DV91]. Method schemas and Theorem 21.4.6 are from [AKRW92]; the functional per-
spective and Theorem 21.4.8 are from [HKR93].

OIDs have been part of many data models. For example, they are called surrogates in
[Cod79], l-values in [KV93a], or object identifiers in [AH87]. The notion of object and the
various forms of equalities among objects form the topic of [KC86]. Type inheritance and
multiple inheritance are studied in [CW85, Car88].

Since [KV84], various languages for models with objects have been proposed in the
various paradigms: calculus, algebra, rule based, or functional. Besides standard features
found in database languages without objects, the new primitives are centered around object
creation. Language-theoretic issues related to object creation were first considered in the
context of IQL [AK89]. Object creation is an essential component of IQL and is the main
reason for the completeness of the language. The need for a primitive in the style of copy
elimination to obtain determinate completeness was first noticed in [AK89]. The IQL
language is rule based with an inflationary fixpoint semantics in the style of datalog¬ of
Chapter 14.

The logic-based perspective on object creation based on Skolem was first informally
discussed in [Mai86] and refined variously in [CW89a, HY90, KLW93, KW89]. In partic-
ular, F-logic [KLW93] considers a different approach to inheritance. In our framework, the
classification of objects is explicit; in particular, when an object is created, it is within an
explicit class. In [KLW93], data organization is also specified by rules and thus may de-
pend on the properties of the objects involved. For instance, reasoning about the hierarchy
becomes part of the program.

Algebraic and imperative approaches to object creation are developed in [Day89].

574 Object Databases

Since then, object creation has been the center of much interesting research (e.g., [DV93,
HS89b, HY92, VandBG92, VandBGAG92, VandB93]). The characterization of queries ex-
pressible in whileobj (Theorem 21.3.2) is from [VandBG92]; this extends a previous result
from [AP92]. The proof of Proposition 21.3.3 is also from [VandBGAG92]. In [Vand-
BGAG92, VandB93], it is argued that the notion of determinate query may not be the
most appropriate one for the object-based context, and alternative notions, such as semide-
terministic queries, are discussed. A tractable construct yielding a determinate-complete
language is exhibited in [DV93]. However, the construct proposed there is global in nature
and is involved. The search for simpler and more natural local constructs continues.

As mentioned earlier, the OODB calculus and algebra presented here are mostly
variations of languages for non object-based models and, in particular, of the languages
for complex values of Chapter 20. There have been several proposals of SQL extensions.
In particular, as indicated in Section 21.3, O2SQL [BCD89] retains the flavor of SQL but
incorporates object orientation by adopting an elegant functional programming style. This
approach has been advanced as a standard in [Cat94].

Functional approaches to databases have been considered rather early but attracted
only modest interest in the past [BFN82, Shi81]. The functional approach has become more
popular recently, both because of the success of object-oriented databases and due to re-
cent results of complex objects and types emphasizing the functional models [BTBN92,
BTBW92]. The use of a typed functional language similar to λ calculus as a formalism to
express queries is adapted from [HKM93]. Characterizations of qptime in functional terms
are from [HKM93, LM93]. The work in [AKRW92, HKM93, HKR93] provides interest-
ing bridges between (object-oriented) databases and well-developed themes in computer
science: applicative program schemas [Cou90, Gre75] and typed λ calculi [Chu41, Bar84,
Bar63].

This chapter presented both imperative and functional perspectives on OODB meth-
ods. A different approach (based on rules and datalog with negation) has been used in
[ALUW93] to provide semantics to a number of variations of schemas with methods. The
connection between methods and rule-based languages is also considered in [DV91].

Views for OODBs are considered in [AB91, Day89, HY90, KKS92, KLW93]. The
merging of OODBs is considered in [WHW90]. Incremental maintenance of materialized
object-oriented views is considered in [Cha94]. The notion of object roles, or sharing ob-
jects between classes, is found in some semantic data models [AH87, HK87] and in recent
research on OODBs [ABGO93, RS91]. A query language that incorporates access to an
OODB schema is presented in [KKS92]. Classification has been central to the field of
knowledge representation in artificial intelligence, based on the central notion of taxo-
nomic reasoning (e.g., see [BGL85, MB92], which stem from the KL-ONE framework of
[BS85]); this approach has been carried to the context of OODBs in, for example, [BB92,
BS93, BBMR89, DD89]. Deductive object-oriented database is the topic of a conference
(namely, the Intl. Conf. on Deductive and Object-Oriented Databases). Properties of object
migration between classes in a hierarchy are studied in [DS91, SZ89, Su92].

Exercises 575

Exercises

Exercise 21.1 Construct an instance for the schema of Fig. 21.1 that corresponds to the
CINEMA instance of Chapter 3.

Exercise 21.2 Suppose that the class Actor_Director were removed from the schema of
Fig. 21.1. Verify that in this case there is no OID assignment for the schema such that there
is an actor who is also a director.

Exercise 21.3 Design an OODB schema for a bibliography database with articles, book
chapters, etc. Use inheritance where possible.

Exercise 21.4 Exhibit a class hierarchy that is not well formed.

Exercise 21.5 Add methods to the schema of Fig. 21.1 so that the resulting family of methods
violates rules unambiguous and covariance.

Exercise 21.6 Show that testing whether I ≡OID J is in np and at least at hard as the graph
isomorphism problem (i.e., testing whether two graphs are isomorphic).

Exercise 21.7 Give an algorithm for testing value equality. What is the data complexity of
your algorithm?

Exercise 21.8 In this exercise, we consider various forms of equality. Value equality as dis-
cussed in the text is denoted =1. Two objects o, o′ are 2-value equal, denoted o=2 o

′, if replac-
ing each object in ν(o) and ν(o′) by its value yields values that are equal. The relations =i for
each i are defined similarly. Show that for each i, =i+1 refines =i. Let n be a positive integer.
Give a schema and an instance over this schema such that for each i in [1, n], =i and =i+1 are
different.

Exercise 21.9 Design a database schema to represent information about persons, including
males and females with names and husbands and wives. Exhibit a cyclic instance of the schema
and an object o that has an infinite expansion. Describe the infinite tree representing the expan-
sion of o.

�Exercise 21.10 Consider a database instance I over a schema S. For each o in I, let expand(o)
be the (possibly infinite) tree obtained by replacing each object by its value recursively. Show
that expand(o) is a regular tree (i.e., that it has a finite number of distinct subtrees). Derive from
this observation an algorithm for testing deep equality of objects.

Exercise 21.11 In this exercise, we consider the schema S with a single class c that has type
σ(c)= [A : c, B : string]. Exhibit an instance I over S and two distinct objects in I that have the
same expansion. Exhibit two distinct instances over S with the same set of object expansions.

Exercise 21.12 Sketch an extension of the complex value algebra to provide an algebraic
simulation of the calculus of Section 21.3. Give algebraic versions of the queries of that section.

♠Exercise 21.13 Recall the approach to creating OIDs by extending datalog to use Skolem
function symbols. Consider the following programs:

T (f1(x, y), x)← S(x, y) T (f3(x, y), x)← S(x, y)

T (f2(x, y), x)← S(x, y) T (f3(y, x), x)← S(x, y)

T (f1(x, y), y)← S(x, y), S(y, x) T (f4(x, y), x)← S(x, y), S(y, x)

P Q

576 Object Databases

(a) Two programs P1, P2 involving Skolem terms such as the foregoing are exposed
equivalent, denoted P1 ∼exp P2, if for each input instance I having no OIDs, P1(I)=
P2(J). Show that P ∼exp Q does not hold.

(b) Following the ILOG languages [HY92], given an instance J possibly with Skolem
terms, an obscured version of J is an instance J′ obtained from J by replacing each
distinct nonatomic Skolem term with a new OID, where multiple occurrences of a
given Skolem term are replaced by the same OID. (Intuitively, this corresponds to
hiding the history of how each OID was created.) Two programs P1, P2 are obscured
equivalent, denoted P1 ∼obs P2, if for each input instance I having no OIDs, if J1 is
an obscured version of P1(I) and J2 is an obscured version of P2(I), then J1 ≡OID J2.
Show that P ∼obs Q.

(c) Let P and Q be two nonrecursive datalog programs, possibly with Skolem terms in
rule heads. Prove that it is decidable whether P ∼exp Q. Hint: Use the technique for
testing containment of unions of conjunctive queries (see Chapter 4).

� (d) A nonrecursive datalog program with Skolem terms in rule heads has isolated OID
invention if in each target relation at most one column can include nonatomic Skolem
terms (OID). Give a decision procedure for testing whether two such programs are
obscured equivalent. (Decidability of obscured equivalence of arbitrary nonrecursive
datalog programs with Skolem terms in rule heads remains open.)

♠Exercise 21.14 [VandBGAG92] Prove the “only if” part of Theorem 21.3.2. Hint: Associate
traces to new object id’s, similar to the proof of Theorem 18.2.5. The extension homomorphism
is obtained via the natural extension to traces of automorphisms of the input.

Exercise 21.15 [HTY89]

(a) Define an operational semantics for the imperative model introduced in Section 21.4.

(b) Describe how a method in this model can simulate a whileloop of arbitrary length.
Hint: Use a class c with associated type tuple(a : c, . . .), and let c′ ≺ c. Construct
the implementation of method m on c so that on input o if the loop is to continue,
then it creates a new object o′ in c, sets o.a = o′, and calls m on o′. To terminate the
loop, create o′ in c′, and define m on c′ appropriately.

(c) Show how the computation of a Turing machine can be simulated by this model.

Exercise 21.16 Prove Proposition 21.4.1. Hint: Use a reduction from the PCP problem, sim-
ilar in spirit to the one used in the proof of Theorem 6.3.1. The effect of conditionals can be
simulated by putting objects in different classes and using dynamic binding.

Exercise 21.17 Describe how monadic method schemas can be simulated in the imperative
model.

Exercise 21.18 [AKRW92]

(a) Verify that the grammar GS described in the proof of Theorem 21.4.6 has the stated
property.

(b) How big is GS in terms of S?

(c) Find a variation of GS that has size polynomial in the size of S. Hint: Break produc-
tion rules having form (v) into several rules, thereby reducing the overall size of the
grammar.

Exercises 577

(d) Complete the proof of the theorem.

Exercise 21.19 [AKRW92]

� (a) Show that it is undecidable whether a polyadic method schema is type safe. Hint: You
might use undecidability results for program schemas (see Bibliographic Notes), or
you might use a reduction from the PCP.

� (b) A schema is recursion free if there are no two methods m,m′ such that m occurs in
some code for m′ and conversely. Show that type safety is decidable for recursion-
free method schemas.

Exercise 21.20

(a) Complete the formal definition of an imperative schema simulating a relational
query.

(b) Prove Theorem 21.4.2.

♠Exercise 21.21

(a) Suppose that the imperative model were extended to include types for classes that
have one level of the set construct (so tuple of set of tuple of atomic of class types is
permitted) and that the looping construct is extended to the sets occurring in these
types. Assume that the new command is not permitted. Prove that the family of
relational queries that this model can simulate is qpspace. Hint: Intuitively, because
the looping operates object at a time, it permits the construction of a nondeterministic
ordering of the database.

(b) Suppose that n levels of set nesting are permitted in the types of classes. Show that
this simulates qexpn−1space.

Exercise 21.22

(a) Describe how the form of method inheritance used for polyadic method schemas can
be simulated using the originally presented form of method inheritance, which is
based only on the class of the first argument.

(b) Suppose that a base method mR in an instance of a polyadic method schema is used
to simulate an n-ary relation R. In a simulation of this situation by an instance of a
conventional OODB schema, how many OIDs are present in the class on which mR
is simulated?

Exercise 21.23 Show how to encode or , not , and equal using method schemas.

Exercise 21.24 Show how to encode predik and the join operation using method schemas.

♠Exercise 21.25 [HKR93] Prove Theorem 21.4.8. Hint: Show first that method schemas can
simulate relational algebra and then inflationary fixpoint. For the fixpoint, you might want to
use predk. For the other direction, you might want to simulate method schemas over ordered
databases by inflationary fixpoint.

