
20 Complex Values

Alice: Complex values?
Riccardo: We could have used a different title: nested relations, complex objects,

structured objects . . .
Vittorio: . . . N1NF, NFNF, NF2, NF2, V-relation . . . I have seen all these names

and others as well.
Sergio: In a nutshell, relations are nested within relations; something like

Matriochka relations.
Alice: Oh, yes. I love Matriochkas.

Although we praised the simplicity of the data structure in the relational model, this
simplicity becomes a severe limitation when designing many practical database ap-

plications. To overcome this problem, the complex value model has been proposed as a
significant extension of the relational one. This extension is the topic of this chapter.

Intuitively, complex values are relations in which the entries are not required to be
atomic (as in the relational model) but are allowed to be themselves relations. The data
structure in the relational model (the relation) can be viewed as the result of applying to
atomic values two constructors: a tuple constructor to make tuples and a set constructor
to make sets of tuples (relations). Complex values allow the application of the tuple and
set constructor recursively. Thus they can be viewed as finite trees whose internal nodes
indicate the use of the tuple and finite set constructors. Clearly, a relation is a special kind
of complex value: a set of tuples of atomic values.

At the schema level, we will specify a set of complex sorts (or types). These indicate
the structure of the data. At the instance level, sets of complex values corresponding to
these sorts are provided. For example, we have the following:

Sort Complex Value

dom a

{dom} {a, b, c}
〈A : dom, B : dom〉 〈A : a, B : b〉
{〈A : dom, B : dom〉} {〈A : a, B : b〉, 〈A : b, B : a〉}
{{dom}} {{a, b}, {a}, { }}

An example of a more involved complex value sort and of a value of that sort is shown
in Fig. 20.1(a). The tuple constructor is denoted by × and the set constructor by ∗. An
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Figure 20.1: Complex value

alternative representation more in the spirit of our representations of relations is shown in
Fig. 20.1(b). Another complex value (for a CINEMA database) is shown in Fig. 20.2.

We will see that, whereas it is simple to add the tuple constructor to the traditional
relational data model, the set constructor requires a number of interesting new ideas. There
are similarities between this set construct and the set constructs used in general-purpose
programming languages such as Setl.

In this chapter, we introduce complex values and present a many-sorted algebra and
an equivalent calculus for complex values. The focus is on the use of the two constructors
of complex values: tuples and (finite) sets. (Additional constructors, such as list, bags, and
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Figure 20.2: The CINEMA database revisited (with additional data shown)

union, have also been incorporated into complex values but are not studied here.) After in-
troducing the algebra and calculus, we present examples of these interesting languages. We
then comment on the issues of expressive power and complexity and describe equivalent
languages with fixpoint operators, as well as languages in the deductive paradigm. Finally
we briefly examine a subset of the commercial query language O2SQL that provides an
elegant SQL-style syntax for querying complex values.

The theory described in this chapter serves as a starting point for object-oriented data-
bases, which are considered in Chapter 21. However, key features of the object-oriented
paradigm, such as objects and inheritance, are still missing in the complex value frame-
work and are left for Chapter 21.
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20.1 Complex Value Databases

Like the relational model, we will use relation names in relname, attributes in att, and
constants in dom. The sorts are more complex than for the relational model. Their abstract
syntax is given by

τ = dom | 〈B1 : τ, . . . , Bk : τ 〉 | {τ },

where k ≥ 0 and B1, . . . , Bk are distinct attributes. Intuitively, an element of dom is a
constant; an element of 〈B1 : τ1, . . . , Bk : τk〉 is a k-tuple with an element of sort τi in entry
Bi for each i; and an element of sort {τ } is a finite set of elements of sort τ .

Formally, the set of values of sort τ (i.e., the interpretation of τ ), denoted [[τ]], is defined
by

1. [[dom]]= dom,

2. [[{τ }]]= {{v1, . . . , vj} | j ≥ 0, vi ∈ [[τ]], i ∈ [1, j ]}, and

3. [[〈B1 : τ1, . . . , Bk : τk〉]]= {〈B1 : v1, . . . , Bk : vk〉 | vj ∈ [[τj]], j ∈ [1, k]}.
An element of a sort is called a complex value. A complex value of the form
〈B1 : a1, . . . , Bk : ak〉 is said to be a tuple, whereas a complex value of the form
{a1, . . . , aj} is a set.

Remark 20.1.1 For instance, consider the sort

{〈A : dom, B : dom, C : {〈A : dom, E : {dom}〉}〉}

and the value

{ 〈A : a, B : b, C : { 〈A : c, E : {}〉,
〈A : d,E : {}〉}〉,

〈A : e, B : f,C : { }〉 }
of that sort. This is yet again the value of Fig. 20.1. It is customary to omit dom and for
instance write this sort {〈A,B,C : {〈A,E : {}〉}〉}.

As mentioned earlier, each complex value and each sort can be viewed as a finite
tree. Observe the tree representation. Outgoing edges from tuple vertexes are labeled; set
vertexes have a single child in a sort and an arbitrary (but finite) number of children in a
value.

Finally note that (because of the empty set) a complex value may belong to more than
one sort. For instance, the value of Fig. 20.1 is also of sort

{〈A : dom, B : dom, C : {〈A : dom, E : {{dom}}〉}〉}.

Relational algebra deals with sets of tuples. Similarly, complex value algebra deals
with sets of complex values. This motivates the following definition of sorted relation (this
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definition is frequently a source of confusion):

A (complex value) relation of sort τ is a finite set of values of sort τ .

We use the term relation for complex value relation. When we consider the classical
relational model, we sometimes use the phrase flat relation to distinguish it from complex
value relation. It should be clear that the flat relations that we have studied are special cases
of complex value relations.

We must be careful in distinguishing the sort of a complex value relation and the sort
of the relation viewed as one complex value. For example, a complex value relation of sort
〈A,B,C〉 is a set of tuples over attributes ABC. At the same time, the entire relation can be
viewed as one complex value of sort {〈A,B,C〉}. There is no contradiction between these
two ways of viewing a relation.

We now assume that the function sort (of Chapter 3) is from relname to the set of
sorts. We also assume that for each sort, there is an infinite number of relations having that
sort.

Note that the sort of a relation is not necessarily a tuple sort (it can be a set sort). Thus
relations do not always have attributes at the top level. Such relations whose sort is a set
are essentially unary relations without attribute names.

A (complex value) schema is a relation name; and a (complex value) database schema
is a finite set of relation names. A (complex value) relation over relation name R is a
finite set of values of sort sort(R)—that is, a finite subset of [[sort (R)]]. A (complex value
database) instance I of a schema R is a function from R such that for each R in R, I(R) is
a relation over R.

Example 20.1.2 To illustrate this definition, an instance J of {R1, R2, R3} where

sort(R1)= sort(R3)= 〈A : dom, B : {〈A1 : dom, A2 : dom〉}〉 and

sort(R2)= 〈A : dom, A1 : dom, A2 : dom〉

is shown in Fig. 20.3.

Variations

To conclude this section, we briefly mention some variations of the complex value model.
The principal one that has been considered is the nested relation model. For nested rela-
tions, set and tuple constructors are required to alternate (i.e., set of sets and tuple with a
tuple component are prohibited). For instance,

τ1 = 〈A,B,C : {〈D,E : {〈F,G〉}〉}〉 and

τ2 = 〈A,B,C : {〈E : {〈F,G〉}〉}〉

are nested relation sorts whereas
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Figure 20.3: A database instance

τ3 = 〈A,B,C : 〈D,E : {〈F,G〉}〉〉 and

τ4 = 〈A,B,C : {{〈F,G〉}}〉

are not. (For τ3, observe two adjacent tuple constructors; there are two set constructors
for τ4.)

The restriction imposed on the structure of nested relations is mostly cosmetic. A more
fundamental constraint is imposed in so-called Verso-relations (V-relations).

As with nested relations, set and tuple constructors in V-relations are required to
alternate. A relation is defined recursively to be a set of tuples, such that each component
may itself be a relation but at least one of them must be atomic. The foregoing sort τ1 would
be acceptable for a V-relation whereas sort τ2 would not because of the sort of tuples in the
C component.

A further (more radical) assumption for V-relations is that for each set of tuples, the
atomic attributes form a key. Observe that as a consequence, the cardinality of each set in
a V-relation is bounded by a polynomial in the number of atomic elements occurring in the
V-relation. This bound certainly does not apply for a relation of sort {dom} (a set of sets)
or for a nested relation of sort

〈A : {〈B : dom〉}〉,

which is also essentially a set of sets. The V-relations are therefore much more limited data
structures. (See Exercise 20.1.) They can be viewed essentially as flat relational instances.
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20.2 The Algebra

We now define a many-sorted algebra, denoted ALGcv (for complex values). Like relational
algebra, ALGcv is a functional language based on a small set of operations. This section first
presents a family of core operators of the algebra and then an extended family of operators
that can be simulated by them. At the end of the section we introduce an important subset
of ALGcv, denoted ALGcv−.

The Core of ALGcv

Let I, I1, I2, . . . be relations of sort τ, τ1, τ2, . . . respectively. It is important to keep in mind
that a relation of sort τ is a set of values of sort τ .

Basic set operations: If τ1 = τ2, then I1 ∩ I2, I1 ∪ I2, I1 − I2, are relations of sort τ1, and
their values are defined in the obvious manner.

Tuple operations: If I is a relation of sort τ = 〈B1 : τ1, . . . , Bk : τk〉, then

• σγ (I ) is a relation of sort τ .
The selection condition γ is (with obvious restrictions on sorts) of the form Bi = d,
Bi = Bj , Bi ∈ Bj or Bi = Bj.C, where d is a constant, and it is required in the last
case that τj be a tuple sort with a C field. Then

σγ (I )= {v | v ∈ I, v |= γ },

where |= is defined by

〈. . . , Bi : vi, . . .〉 |= Bi = d if vi = d,
〈. . . , Bi : vi, . . . , Bj : vj, . . .〉 |= Bi = Bj if vi = vj, and

〈. . . , Bi : vi, . . . , Bj : vj, . . .〉 |= Bi ∈ Bj if vi ∈ vj .
〈. . . , Bi : vi, . . . , Bj : 〈. . . , C : vj, . . .〉, . . .〉 |= Bi = Bj.C if vi = vj .

• πB1,...,Bl(I ), l ≤ k is a relation of sort 〈B1 : τ1, . . . , Bl : τl〉 with

πB1,...,Bl(I )= { 〈B1 : v1, . . . , Bl : vl〉 |
∃vl+1, . . . , vk(〈B1 : v1, . . . , Bk : vk〉 ∈ I )}.

Constructive operations

• powerset(I ) is a relation of sort {τ } and

powerset(I )= {v | v ⊆ I }.

• If A1, . . . , An are distinct attributes, tup_createA1...An(I1, . . . , In) is of sort 〈A1 :
τ1, . . . , An : τn〉, and

tup_createA1,...,An(I1, . . . , In)= {〈A1 : v1, . . . , An : vn〉 | ∀i (vi ∈ Ii)}.
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• set_create(I ) is of sort {τ }, and set_create(I )= {I }.
Destructive operations

• If τ = {τ ′}, then set_destroy(I ) is a relation of sort τ ′ and

set_destroy(I )= ∪I = {w | ∃v ∈ I, w ∈ v}.

• If I is of sort 〈A : τ ′〉, tup_destroy(I ) is a relation of sort τ ′, and

tup_destroy(I )= {v | 〈A : v〉 ∈ I }.

We are now prepared to define the (core of the) language ALGcv. Let R be a database
schema. A query returns a set of values of the same sort. By analogy with relations, a query
of sort τ returns a set of values of sort τ . ALGcv queries and their answers are defined as
follows. There are two base cases:

Base values: For each relation name R in R, R is an algebraic query of sort sort(R). The
answer to query R is I(R).

Constant values: For each element a, {a} is a (constant) algebraic query of sort dom. The
answer to query {a} is simply {a}.

Other queries of ALGcv are obtained as follows. If q1, q2, . . . are queries, γ is a selection
condition, and A1, . . . are attributes,

q1 ∩ q2, q1 ∪ q2, q1 − q2,
σγ (q1), πA1,...,Ak(q1), tup_createA1,...,Ak(q1, . . . , qk),
powerset(q1), tup_destroy(q1), set_destroy(q1),
set_create(q1)

are queries if the appropriate restrictions on the sorts apply. (Note that because of the
sorting constraints, tup_destroy and set_destroy cannot both be applicable to a given q1.)
The sort of a query and its answer are defined in a straightforward manner.

To illustrate these definitions, we present two examples. We then consider other alge-
braic operators that are expressible in the algebra. In Section 20.4 we provide several more
examples of algebraic queries.

Example 20.2.1 Consider the instance J of Fig. 20.3. Then one can find in Fig. 20.4

J1 = [σA=d2(R1)](J), J2 = πB(J1),

J3 = tup_destroy(J2), J4 = set_destroy(J3),

J5 = powerset(J4), J6 = tup_createC(J4).

Also observe that

J5 = [powerset(set_destroy(tup_destroy(πB(σA=d2(R1))))](J).
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Figure 20.4: Algebraic operations

Example 20.2.2 In this example, we illustrate the destruction and construction of a
complex value. Consider the relation

I = {〈A : a, B : {b, c}, C : 〈A : d, B : {e, f }〉〉}.

Then

[(πA ◦ tup_destroy)

∪ (πB ◦ tup_destroy ◦ set_destroy)

∪ (πC ◦ tup_destroy ◦ πA ◦ tup_destroy)

∪ (πC ◦ tup_destroy ◦ πB ◦ tup_destroy ◦ set_destroy)](I )

= {a, b, c, d, e, f }.
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We next reconstruct I from singleton sets:

I = tup_createA,B,C({a}, set_create({b} ∪ {c}),
tup_createA,B({d}, set_create({e} ∪ {f }))).

Additional Algebraic Operations

There are infinite possibilities in the choice of algebraic operations for complex values.
We chose to incorporate in the core algebra only a few basic operations to simplify the
formal presentation and the proof of the equivalence between the algebra and calculus.
However, making the core too reduced would complicate that proof. (For example, the
operator set_create can be expressed using the other operations but is convenient in the
proof.) We now present several additional algebraic operations. It is important to note that
all these operations can be expressed in complex value algebra. (In that sense, they can
be viewed as macro operations.) Furthermore, all but the nest operator can be expressed
without using the powerset operator.

We first generalize constant queries.

Complex constants: It is easy to see that the technique of Example 20.2.2 can be gener-
alized. So instead of simply {a} for a atomic, we use as constant queries arbitrary
complex value sets.

We also generalize relational operations.

Renaming: Renaming can be computed using the other operations, as illustrated in Sec-
tion 20.4 (which presents examples of queries).

Cross-product: For i in [1,2], let Ii be a relation of sort

τi = 〈Bi1 : τ i1, . . . , B
i
ji

: τ iji〉

and let the attribute sets in τ1, τ2 be disjoint. Then I1 × I2 is the relation defined by

sort(I1 × I2)= 〈B1
1 : τ 1

1 , . . . , B
1
j1

: τ 1
j1
, B2

1 : τ 2
1 , . . . , B

2
j2

: τ 2
j2
〉

and

I1 × I2 = { 〈B1
1 : x1

1, . . . , B
1
j1

: x1
j1
, B2

1 : x2
1, . . . , B

2
j2

: x2
j2
〉 |

〈Bi1 : xi1, . . . , B
i
ji

: xiji〉 ∈ Ii for i ∈ [1, 2] }.

It is easy to simulate cross-product using the operations of the algebra. This is also
illustrated in Section 20.4.

Join: This can be defined in the natural manner and can be simulated using cross-product,
renaming, and selection.

It should now be clear that complex value algebra subsumes relational algebra when
applied to flat relations. We also have new set-oriented operations.
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N-ary set_create: We introduced tup_create as an n-ary operation. We also allow n-ary
set_create with the meaning that

set_create(I1, . . . , In)≡ set_create(I1) ∪ · · · ∪ set_create(In).

Singleton: This operator transforms a set of values {a1, . . . , an} into a set {{a1}, . . . , {an}}
of singletons.

Nest, unnest: Less primitive interesting operations such as nest, unnest can be considered.
For example, for J of Fig. 20.3 we have

unnestB(J(R1))= J(R2) and

nestB=(A1A2)(J(R2))= J(R3).

More formally, suppose that we have R and S with sorts

sort(R)= 〈A1 : τ1, . . . , Ak : τk, B : {〈Ak+1 : τk+1, . . . , An : τn〉}〉
sort(S)= 〈A1 : τ1, . . . , Ak : τk, Ak+1 : τk+1, . . . , An : τn〉.

Then for instances I of R and J of S, we have

unnestB(I)= {〈A1 : x1, . . . , An : xn〉 | ∃y
〈A1 : x1, . . . , Ak : xk, B : y〉 ∈ I and 〈Ak+1 : xk+1, . . . , An : xn〉 ∈ y}

nestB=(Ak+1,...,An)(J )= {〈A1 : x1, . . . , Ak : xk, B : y〉 |
∅ "= y = {〈Ak+1 : xk+1, . . . , An : xn〉 | 〈A1 : x1, . . . , An : xn〉 ∈ J }}.

Observe that

unnestB(nestB=(A1A2)(J(R2)))= J(R2).

nestB=(A1A2)(unnestB(J(R1))) "= J(R1).

This is indeed not an isolated phenomenon. Unnest is in general the right inverse of
nest (nestB=α ◦ unnestB is the identity), whereas unnest is in general not information
preserving (one-to-one) and so has no right inverse (see Exercise 20.8).

Relational projection and selection were filtering operations in the sense that intu-
itively they scan a set and keep only certain elements, possibly modifying them in a uniform
way. The filters in complex value algebra are more general. Of course, we shall allow
Boolean expressions in selection conditions. More interestingly, we also allow set com-
parators in addition to ∈, such as #,⊂,⊆,⊃,⊇ and negations of these comparators (e.g.,
"∈). The inclusion comparator ⊆ plays a special role in the calculus. We will see in Sec-
tion 20.4 how to simulate selection with ⊆.

Selection is a predicative filter in the sense that a predicate allows us to select some
elements, leaving them unchanged. Other filters, such as projection, are map filters. They
transform the elements. Clearly, one can combine both aspects and furthermore allow more
complicated selection conditions or restructuring specifications. For instance, suppose I is
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a set of tuples of sort

〈A : dom, B : 〈C : 〈E : {dom}, E′ : dom〉, C′ : {dom}〉〉.

We could use an operation that first filters all the values matching the pattern

〈A : x, B : 〈C : 〈E : y,E′ : z〉, C′ : {x}〉〉;

and then transforms them into

〈A : (y ∪ {x}), B : y, C : z〉.

This style of operations is standard in functional languages (e.g., apply-to-all in fp).

Remark 20.2.3 As mentioned earlier, all of the operations just introduced are express-
ible in ALGcv. We might also consider an operation to iterate over the elements of a set
in some order. Such an operation can be found in several systems. As we shall see in Sec-
tion 20.6, iteration is essentially expressible within ALGcv. On the other hand, an iteration
that depends on a specific ordering of the underlying domain of elements cannot be simu-
lated using ALGcv unless the ordering is presented as part of the input.

In the following sections, we (informally) call extended algebra the algebra consisting
of the operations of ALGcv and allowing complex constants, renaming, cross-product, join,
n-ary set_create, singleton, nest, and unnest.

An important subset of ALGcv, denoted ALGcv−, is formed from the core operators of
ALGcv by removing the powerset operator and adding the nest operator. As will be seen in
Section 20.7, although the nest operator has the ability to construct sets, it is much weaker
than powerset. When restricted to nested relations, the language ALGcv− is usually called
nested relation algebra.

20.3 The Calculus

The calculus is modeled after a standard, first-order, many-sorted calculus. However, as
we shall see, calculus variables may denote sets, so the calculus will permit quantification
over sets (something normally considered to be a second-order feature). For complex
value calculus, the separation between first and second order (and higher order as well)
is somewhat blurred. As with the algebra, we first present a core calculus and then extend
it. The issues of domain independence and safety are also addressed.

For each sort, we assume the existence of a countably infinite set of variables of that
sort. A variable is atomic if it ranges over the sort dom. Let R be a schema. A term is an
atomic element, a variable, or an expression x.A, where x is a tuple variable and A is an
attribute of x. We do not consider (yet) fancier terms. A positive literal is an expression of
the form
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R(t), t = t ′, t ∈ t ′, or t ⊆ t ′,

where R ∈ R, t, t ′ are terms and the appropriate sort restrictions apply.1 Formulas are
defined from atomic formulas using the standard connectives and quantifiers:∧,∨,¬,∀, ∃.
A query is an expression {x | ϕ}, where formula ϕ has exactly one free variable (i.e. x). We
sometimes denote it by ϕ(x). The calculus is denoted CALCcv.

The following example illustrates this calculus.

Example 20.3.1 Consider the schema and the instance of Fig. 20.3. We can verify that
J(R2) is the answer on instance J to the query

{x | ∃y, z, z′, u, v,w (R1(y) ∧ y.A= u ∧ y.B = z
∧ z′ ∈ z ∧ z′.A1 = v ∧ z′.A2 = w
∧ x.A= u ∧ x.A1 = v ∧ x.A2 = w) },

where the sorts of the variables are as follows:

sort(x)= 〈A,A1, A2〉, sort(y)= 〈A,B : {〈A1, A2〉}〉,
sort(u)= sort(v)= sort(w)= dom, sort(z′)= 〈A1, A2〉,
sort(z)= {〈A1, A2〉}.

We could also have used an unsorted alphabet of variables and sorted them inside the
formula, as in

{x : 〈A,A1, A2〉 | ∃y : 〈A,B : {〈A1, A2〉}〉,
z : {〈A1, A2〉}, z′ : 〈A1, A2〉,
u : dom, v : dom, w : dom
(R1(y) ∧ y.A= u ∧ y.B = z
∧ z′ ∈ z ∧ z′.A1 = v ∧ z′.A2 = w
∧ x.A= u ∧ x.A1 = v ∧ x.A2 = w) }.

The key difference with relational calculus is the presence of the predicates ∈ and ⊆,
which are interpreted as the standard set membership and inclusion. Another difference (of
a more cosmetic nature) is that we allow only one free variable in relation atoms and in
query formulas. This comes from the stronger sorts: A variable may represent an n-tuple.

The answer to a query q on an instance I, denoted q(I), is defined as for the relational
model. As in the relational case, we may define various interpretations, depending on the
underlying domain of base values used. As with relational calculus, the basis for defining
the semantics is the notion

I satisfies ϕ for ν relative to d.

1 Strictly speaking, the symbols =,⊆ and ∈ are also many sorted.
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[Recall that ν is a valuation of the free variables of ϕ and d is an arbitrary set of elements
containing adom(ϕ, I).]

Consider the definition of this notion in Section 5.3. Cases (a) through (g) remain valid
for the complex object calculus. We have to consider two supplementary cases. Recall that
for equality, we had case (b):

(b) I |=d ϕ[ν] if ϕ = (s = s′) and ν(s)= ν(s′).

In the same spirit, we add

I |=d ϕ[ν] if ϕ = (s ∈ s′) and ν(s) ∈ ν(s′)(h-1)

I |=d ϕ[ν] if ϕ = (s ⊆ s′) and ν(s)⊆ ν(s′).(h-2)

This formally states that ∈ is interpreted as set membership and ⊆ as set inclusion (in the
same sense that as = is interpreted as equality).

The issues surrounding domain independence for relational calculus also arise with
CALCcv. We develop a syntactic condition ensuring domain independence, but we also
occasionally use an active domain interpretation.

Extensions

As in the case of the algebra, we now consider extensions of the calculus that can be
simulated by the core syntax just given.

The standard abbreviations used for relational calculus, such as the logical connectives
→,←,↔, can be incorporated into CALCcv. Using these connectives, it is easy to see the
nonminimality of the calculus: Each literal x ⊆ y can be replaced by ∀z(z ∈ x→ z ∈ y),
where z is a fresh variable.

Arity In the core calculus, only relation atoms of the form R(t) are permitted. Suppose
that the sort of R is 〈A1 : τ1, . . . , An : τn〉 for some n. Then R(u1, . . . , un) is a shorthand
for

∃y(R(y) ∧ y.A1 = u1 ∧ · · · ∧ y.An = un),

where y is a new variable. In particular, if R0 is a relation of sort 〈 〉 (n= 0), observe that
the only value of that sort is the empty tuple. Thus a variable y of that sort has only one
possible value, namely 〈 〉. Thus for such y, we can use the following expression:

R0( ) for ∃y(R0(y)).

Constructed Terms Next we allow constructed terms in the calculus such as

{x, b}, x.A.C, 〈B1 : a, B2 : y〉.

More formally, if t1, . . . , tk are terms and B1, . . . , Bk are distinct attributes, then 〈B1 :
t1, . . . , Bk : tk〉 is a term. Furthermore, if the ti are of the same sort, {t1, . . . , tk} is a term;
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and if t1 is a tuple term with attribute C, then t1.C is a term. The sorts of terms are defined
in the obvious way. Note that a term may have several sorts because of the empty set. (We
ignore this issue here.)

The use of constructed terms can be viewed as syntactic sugaring. For instance, sup-
pose that the term {a, y} occurs in a formula ψ . Then ψ is equivalent to

∃x(ψ ′ ∧ ∀z(z ∈ x↔ (z= a ∨ z= y))),

where ψ ′ is obtained from ψ by replacing the term {a, y} by x (a fresh variable).

Complex Terms We can also view relations as terms. For instance, if R is a relation of
sort 〈A,B〉, then R can be used in the language as a term of sort {〈A,B〉}. We may then
consider literals such as x ∈ R, which is equivalent to R(x); or more complex ones such as
S ∈ T , which essentially means

∃y(T (y) ∧ ∀x(x ∈ y↔ S(x))).

The previous extension is based on the fact that a relation (in our context) can be
viewed as a complex value. This is again due to the stronger sort system. Now the answer
to a query q is also a complex value. This suggests considering the use of queries as terms
of the language. We consider this now: A query q ≡ {y | ψ(y)} is a legal term that can be
used in the calculus like any other term. More generally, we allow terms of the form

{y | ψ(y, y1, . . . , yn)},

where the free variables of ψ are y, y1, . . . , yn. Intuitively, we obtain queries by providing
bindings for y1, . . . , yn. We will call such an expression a parameterized query and denote
it q(y1, . . . , yn) (where y1, . . . , yn are the parameters).

For instance, suppose that a formula liked(x, y) computes the films y that person x
liked; and another one saw(x, y) computes those that x has seen. The set of persons who
liked all the films that they saw is given by

{ x | {y | liked(x, y)} ⊆ {y | saw(x, y)} }.

The following form of literals will play a particular role when we study safety for this
calculus:

x = {y | ψ(y, y1, . . . , yn)},
x′ ∈ {y | ψ(y, y1, . . . , yn)}, and

x′′ ⊆ {y | ψ(y, y1, . . . , yn)},

where y is a free variable of ψ . Like the previous extensions, the parameterized queries
can be viewed simply as syntactic sugaring. For instance, the three last formulas are,
respectively, equivalent to
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∀y(y ∈ x↔ ψ),

∃y(x′ = y ∧ ψ), and

∀y(y ∈ x′′ → ψ).

In the following sections, we (informally) call extended calculus the calculus consist-
ing of CALCcv extended with the abbreviations described earlier (such as constructed and
complex terms and, notably, parameterized queries).

20.4 Examples

We illustrate the previous two sections with a series of examples. The queries in the
examples apply to schema {R, S} with

sort(R)= 〈A : dom, A′ : dom〉,
sort(S)= 〈B : dom, B ′ : {dom}〉.

For each query, we give an algebraic and a calculus expression.

Example 20.4.1 The union of R and a set of two constant tuples is given by

{r | R(r) ∨ r = 〈A : 3, A′ : 5〉 ∨ r = 〈A : 0, A′ : 0〉}

or

R ∪ {〈A : 3, A′ : 5〉, 〈A : 0, A′ : 0〉}.

Example 20.4.2 The selection of the tuples from S, where the first component is a
member of the second component, is obtained with

{s | S(s) ∧ s.B ∈ s.B ′} or σB∈B ′(S).

Example 20.4.3 The (classical) cross-product of R and S is the result of

{t | ∃r, s(R(r) ∧ S(s) ∧ t = 〈A : r.A,A′ : r.A′, B : s.B, B ′ : s.B ′〉)}

or

πAA′BB′(σA=A′′.A(σA′=A′′.A′(σB=B ′′.B(σB ′=B ′′.B ′(q))))),

where q is
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tup_createAA′BB′A′′B ′′(tup_destroy(πA(R)),

tup_destroy(πA′(R)),

tup_destroy(πB(S)),

tup_destroy(πB ′(S)), R, S).

Example 20.4.4 The join of R and S on A = B. This query is the composition of the
cross-product of Example 20.4.3, with a selection. In Example 20.4.3, let the formula
describing the cross-product be ϕ3 and let (R × S) be the algebraic expression. Then the
(A= B) join of R and S is expressed by

{t | ϕ3(t) ∧ t.A= t.B} or σA=B(R × S).

Example 20.4.5 The renaming of the attributes ofR toA1, A2 is obtained in the calculus
by

{t | ∃r(R(r) ∧ t.A1 = r.A ∧ t.A2 = r.A′)}

with t of sort 〈A1 : dom, A2 : dom〉. In the algebra, it is given by

πA1A2(σA0.A=A1(σA0.A
′=A2(tup_createA0A1A2

(R, tup_destroy(πA(R)), tup_destroy(πA′(R)))))).

Example 20.4.6 Flattening S means producing a set of flat tuples, each of which con-
tains the first component of a tuple of S and one of the elements of the second component.
This is the unnest operation unnestB ′(·) in the extended algebra, or in the calculus

{t | ∃s(S(s) ∧ t.B = s.B ∧ t.C ∈ s.B ′)},

where t is of sort 〈B,C〉. In the core algebra, this is slightly more complicated. We first
obtain the set of values occurring in the B ′ sets using

E1 = tup_createC(set_destroy(tup_destroy(πB ′(S)))).

We can next compute (E1× S) (using the same technique as in Example 20.4.3). Then the
desired query is given by

πBC(σC∈B ′(E1 × S)).

Flattening can be extended to sorts with arbitrary nesting depth.

Example 20.4.7 The next example is a selection using ⊆. Consider a relation T of sort
〈C : {dom}, C′ : {dom}〉. We want to express the query
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{t | T (t) ∧ t.C ⊆ t.C′}

in the algebra. We do this in stages:

F1 = σC′′∈C(T × tup_createC′′(set_destroy(tup_destroy(πC(T ))))),

F2 = σC′′∈C′(F1),

F3 = F1 − F2,

F4 = T − πCC′(F3).

Observe that

1. A tuple 〈C : U,C′ : V,C′′ : u〉 is in F1 if 〈C : U,C′ : V 〉 is in T and u is in U .

2. A tuple 〈C : U,C′ : V,C′′ : u〉 is in F2 if 〈C : U,C′ : V 〉 is in T and u is in U and
V .

3. A tuple 〈C : U,C′ : V,C′′ : u〉 is in F3 if 〈C : U,C′ : V 〉 is in T and u is inU − V .

4. A tuple 〈C : U,C′ : V 〉 is in F4 if it is in T and there is no u in U − V (i.e.,
U ⊆ V ).

Example 20.4.8 This example illustrates the use of nesting and of sets. Consider the
algebraic query

nestC=(A) ◦ nestC′=(A′) ◦ σC=C′ ◦ unnestC ◦ unnestC′(R).

It is expressed in the calculus by

{〈x, y〉 | ∃u(x ∈ u ∧ y ∈ u
∧ u= {x′ | R(x′, y)}
∧ u= {y′ | {x′ | R(x′, y′)} = u})}.

A consequence of Theorem 20.7.2 is that this query is expressible in relational calculus or
algebra. It is a nontrivial exercise to obtain a relational query for it. (See Exercise 20.24.)

Example 20.4.9 Our last example highlights an important difference between the flat
relational calculus and CALCcv. As shown in Proposition 17.2.3, the flat calculus cannot
express the transitive closure of a binary relation. In contrast, the following CALCcv query
does:

{y | ∀x(closed(x) ∧ contains_R(x)→ y ∈ x)},

where

• closed(x)≡

∀u, v,w(〈A : u,A′ : v〉 ∈ x ∧ 〈A : v,A′ : w〉 ∈ x→ 〈A : u,A′ : w〉 ∈ x);
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• contains_R(x)≡ ∀z(R(z)→ z ∈ x);
• sort(x)= {sort(R)}, sort(y)= sort(z)= sort(R); and

sort(u)= sort(v)= sort(w)= dom.

Intuitively, the formula specifies the set of pairs y such that y belongs to each binary re-
lation x containing R and transitively closed. This construction will be revisited in Sec-
tion 20.6.

20.5 Equivalence Theorems

This section presents three results that compare the complex value algebra and calculus.
First we establish the equivalence of the algebra and the domain-independent calculus.
Next we develop a syntactic safeness condition for the calculus and show that it does not
reduce expressive power. Finally we develop a natural syntactic condition on CALCcv that
yields a subset equivalent to ALGcv−.

Our first result is as follows:

Theorem 20.5.1 The algebra and the domain independent calculus for complex values
are equivalent.

In the sketch of the proof, we present a simulation of the core algebra by the extended
calculus and the analogous simulation in the opposite direction. An important component
of this proof—namely, that the extended algebra (calculus) is no stronger than the core
algebra (calculus)—is left for the reader (see Exercises 20.6, 20.7, 20.8, 20.10, and 20.11).

From Algebra to Calculus

We now show that for each algebra query, there is a domain-independent calculus query
equivalent to it.

Let q be a named algebra query. We construct a domain-independent query {x | ϕq}
equivalent to q. The formula ϕq is constructed by induction on subexpressions of q. For a
subexpression E of q, we define ϕE as follows:

(a) E is R for some R ∈ R: ϕE is R(x).

(b) E is {a}: ϕE is x = a.

(c) E is σγ (E1): ϕE is ϕE1(x) ∧ 9, where 9 is

x.Ai = x.Aj if γ ≡ Ai = Aj ; x.Ai = a if γ ≡ Ai = a;
x.Ai ∈ x.Aj if γ ≡ Ai ∈ Aj ; x.Ai = x.Aj .C if γ ≡ Ai = Aj.C.

(d) E is πAi1,...,Aik (E1): ϕE is

∃y(x = 〈Ai1 : y.Ai1, . . . , Aik : y.Aik〉 ∧ ϕE1(y)).
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(e) For the basic set operations, we have

ϕE1∩E2(x)= ϕE1(x) ∧ ϕE2(x),

ϕE1∪E2(x)= ϕE1(x) ∨ ϕE2(x),

ϕE1−E2(x)= ϕE1(x) ∧ ¬ϕE2(x).

(f) E is powerset(E1): ϕE is x ⊆ {y | ϕE1(y)}.
(g) E is set_destroy(E1): ϕE is ∃y(x ∈ y ∧ ϕE1(y)).

(h) E is tup_destroy(E1): ϕE is ∃y(〈A : x〉 = y ∧ ϕE1(y)), where A is the name of
the field (of y).

(i) E is tup_createA1,...,An(E1, . . . , En): ϕE is

∃y1, . . . , yn(x = 〈A1 : y1, . . . , An : yn〉 ∧ ϕE1(y1) ∧ · · · ∧ ϕEn(yn)).

(j) E is set_create(E1): x = {y | ϕE1(y)}.
We leave the verification of this construction to the reader (see Exercise 20.13). The

domain independence of the obtained calculus query follows from the fact that algebra
queries are domain independent.

From Calculus to Algebra

We now show that for each domain-independent query, there is a named algebra query
equivalent to it.

Let q = {x | ϕ} be a domain-independent query over R. As in the flat relational case,
we assume without loss of generality that associated with each variable x occurring in q
(and also variables used in the following proof) is a unique, distinct attribute Ax in att. We
use the active domain interpretation for the query, denoted as before with a subscript adom.

The crux of the proof is to construct, for each subformula ψ of ϕ, an algebra formula
Eψ that has the property that for each input I,

Eψ(I)= {y | ∃x1, . . . , xn(y = 〈Ax1 : x1, . . . , Axn : xn〉 ∧ ψ(x1, . . . , xn))}adom(I),

where x1, . . . , xn is a listing of free(ψ).
This construction is accomplished in three stages.

Computing the Active Domain The first step is to construct an algebra query Eadom

having sort dom such that on input instance I, Eadom(I) = adom(q, I). The construction
of Eadom is slightly more intricate than the similar construction for the relational case. We
prove by induction that for each sort τ , there exists an algebra operation Fτ that maps a set
I of values of sort τ to adom(I ). This induction was not necessary in the flat case because
the base relations had fixed depth. For the base case (i.e., τ = dom), it suffices to use for
Fτ an identity operation (e.g., tup_createA ◦ tup_destroy). For the induction, the following
cases occur:
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1. τ is 〈A1 : τ1, . . . , An : τn〉 for n≥ 2. Then Fτ is

F〈A1:τ1〉(πA1) ∪ · · · ∪ F〈An:τn〉(πAn).

2. τ is 〈A1 : τ1〉. Then Fτ is Fτ1(tup_destroy).

3. τ is {τ1}. Then Fτ is Fτ1(set_destroy).

Now consider the schema R. Then for each R in R, Fsort(R) maps a relation I over R to
adom(I ). Thus adom(q, I) can be computed with the query

Eadom = Fsort(R1)(R1) ∪ · · · ∪ Fsort(Rm)(Rm) ∪ {a1} ∪ · · · ∪ {ap},

where R1, . . . , Rm is the list of relations in R and a1, . . . , ap is the list of elements occur-
ring in q.

Constructing Complex Values In the second stage, we prove by induction that for each
sort τ , there exists an algebra query Gτ that constructs the set of values I of sort τ such
that adom(I )⊆ adom(q, I). For τ = dom, we can use Eadom. For the induction, two cases
occur:

1. τ is 〈A1 : τ1, . . . , An : τn〉. Then Gτ is tup_createA1,...,An(Gτ1, . . . ,Gτn).

2. τ is {τ1}. Then Gτ is powerset(Gτ1).

Last Stage We now describe the last stage, an inductive construction of the queries Eψ
for subformulas ψ of ϕ. We assume without loss of generality that the logical connectives
∨ and ∀ do not occur in ϕ. The proof is similar to the analogous proof for the flat case.
We also assume that relation atoms in ϕ do not contain constants or repeated variables. We
only present the new case (the standard cases are left as Exercise 20.13). Let ψ be x ∈ y.
Suppose that x is of sort τ , so y is of sort {τ }. The set of values of sort τ (or {τ }) within the
active domain is returned by query Gτ , or G{τ }. The query

σAx∈Ay(tup_createAx,Ay(Gτ,G{τ }))

returns the desired result.
Observe that with this construction, Eϕ returns a set of tuples with a single attribute

Ax. The query q is equivalent to tup_destroy(Eϕ).
As we did for the relational model, we can define a variety of syntactic restrictions of

the calculus that yield domain-independent queries. We consider such restrictions next.

Safe Queries

We now turn to the development of syntactic conditions, called safe range, that ensure
domain independence. These conditions are reminiscent of those presented for relational
calculus in Chapter 5. As we shall see, a variant of safe range, called strongly safe range,
will yield a subset of CALCcv, denoted CALCcv−, that is equivalent to ALGcv−.
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We could define safe range on the core calculus. However, such a definition would be
cumbersome. A much more elegant definition can be given using the extended calculus.
In particular, we consider here the calculus augmented with (1) constructed terms and (2)
parameterized queries.

Recall that intuitively, if a formula is safe range, then each variable is bounded, in the
sense that it is restricted by the formula to lie within the active domain of the query or the
input. We now define the notions of safe formulas and safe terms. To give these definitions,
we define the set of safe-range variables of a formula using the following procedure, which
returns either the symbol ⊥ (which indicates that some quantified variable is not bounded)
or the set of free variables that are bounded. In this discussion, we consider only formulas
in which universal quantifiers do not occur.

In the following procedure, if several rules are applicable, the one returning the largest
set of safe-range variables (which always exists) is chosen.

procedure safe-range (sr)

input: a calculus formula ϕ

output: a subset of the free variables of ϕ or ⊥. (In the following, for each Z, ⊥ ∪ Z =
⊥ ∩ Z =⊥− Z = Z −⊥=⊥.)

begin
(pred is a predicate in {=,∈,⊆})
if for some parameterized query {x | ψ} occurring as a term in ϕ, x "∈ sr(ψ) then
return ⊥
case ϕ of

R(t) : sr(ϕ)= free(t);
(t pred t ′ ∧ ψ) : if ψ is safe and free(t ′)⊆ free(ψ)

then sr(ϕ)= free(t) ∪ free(ψ);
t pred t ′ : if free(t ′)= sr(t ′) then sr(ϕ)= free(t ′) ∪ free(t);

else sr(ϕ)= ∅;
ϕ1 ∧ ϕ2 : sr(ϕ)= sr(ϕ1) ∪ sr(ϕ2);
ϕ1 ∨ ϕ2 : sr(ϕ)= sr(ϕ1) ∩ sr(ϕ2);
¬ϕ1 : sr(ϕ)= ∅;
∃xϕ1 : if x ∈ sr(ϕ1)

then sr(ϕ)= sr(ϕ1)− {x}
else return ⊥

end;

We say that a formula ϕ is safe if sr(ϕ)= free(ϕ); and a query q is safe if its associated
formula is safe.

It is important to understand how new sets are created in a safe manner. The next
example illustrates two essential techniques for such creation.
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Example 20.5.2 Let R be a relation of sort 〈A,B〉. The powerset of R can be obtained
in a safe manner with the query

{x | x ⊆ {y | R(y)}}.

For {y | R(y)} is clearly a safe query (by the first case). Now letting t ≡ x, t ′ ≡ {y | R(y)},
the formula is safe (by the third case).

Now consider the nesting of the B column of R. It is achieved by the following query:

{x | x = 〈z, {y | R(z, y)}〉 ∧ ∃y′(R(z, y′))}.

Let t ≡ x, t ′ ≡ 〈z, {y | R(z, y)}〉 and ψ ≡ ∃y′(R(z, y′)). First note that sr(R(z, y)) con-
tains y, so the parameterized query {y | R(z, y)} can be used safely. Next the formula ψ is
safe. Finally the only free variable in t ′ is z, which is also free in ψ . Thus x is safe range
(by the second case) and the query is safe.

As detailed in Section 20.7, the complex value algebra and calculus can express
mappings with complexity corresponding to arbitrarily many nestings of exponentiation.
In contrast, as discussed in that section, the nested relation algebra ALGcv−, which uses
the nest operator but not powerset, has complexity in ptime. Interestingly, there is a minor
variation of the safe-range condition that yields a subset of the calculus equivalent to
ALGcv−. Specifically, a formula is strongly safe range if it is safe range and the inclusion
predicate does not occur in it. In the previous example, the nesting is strongly safe range
whereas powerset is not.

We now have the following:

Theorem 20.5.3

(a) The safe-range calculus, the domain-independent calculus, and ALGcv coincide.

(b) The strongly safe-range calculus and ALGcv− coincide.

Crux Consider (a). By inspection of the construction in the proof that ALGcv 	 CALCcv,
each algebra query is equivalent to a safe-range calculus query. Clearly, each safe-range
calculus query is a domain-independent calculus query. We have already shown that each
domain-independent calculus query is an algebra query.

Now consider (b). Observe that in the proof that ALGcv 	 CALCcv, ⊆ is used only
for powerset. Thus each query in ALGcv− is a strongly safe-range query. Now consider
a strongly safe-range query; we construct an equivalent algebra query. We cannot use the
construction from the proof of the equivalence theorem, because powerset is crucial for
constructing complex domains. However, we can show that this can be avoided using the
ranges of variables. (See Exercise 20.16.) More precisely, the brute force construction of
the domain of variables using powerset is replaced by a careful construction based on the
strongly safe-range restriction. The remainder of the proof stays unchanged.
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Because of part (b) of the previous result, we denote the strongly safe-range calculus
by CALCcv−.

20.6 Fixpoint and Deduction

Example 20.4.9 suggests that the complex value algebra and calculus can simulate itera-
tion. In this section, we examine iteration in the spirit of both fixpoint queries and datalog.
In both cases, they do not increase the expressive power of the algebra or calculus. How-
ever, they allow us to express certain queries more efficiently.

Fixpoint for Complex Values

Languages with fixpoint semantics were considered in the context of the relational model
to overcome limitations of relational algebra and calculus. In particular, we observed
that transitive closure cannot be computed in relational calculus. However, as shown by
Example 20.4.9, transitive closure can be expressed in the complex value algebra and
calculus. Although transitive closure can be expressed in that manner, the use of powerset
seems unnecessarily expensive. More precisely, it can be shown that any query in the
complex value algebra and calculus that expresses transitive closure uses exponential space
(assuming the straightforward evaluation of the query). In other words, the blowup caused
by the powerset operator cannot be avoided. On the other hand, a fixpoint construct allows
us to express transitive closure in polynomial space (and time). It is thus natural to develop
fixpoint extensions of the calculus and algebra.

We can provide inflationary and noninflationary extensions of the calculus with recur-
sion. As in the relational case, an inflationary fixpoint operator µ+T allows the iteration of a
CALCcv formula ϕ(T ) up to a fixpoint. This essentially permits the inductive definition of
relations, using calculus formulas. The calculus CALCcv augmented with the inflationary
fixpoint operator is defined similarly to the flat case (Chapter 14) and yields CALCcv+µ+.
We only consider the inflationary fixpoint operator. (Exercise 20.19 explores the noninfla-
tionary version.)

Theorem 20.6.1 CALCcv + µ+ is equivalent to ALGcv and CALCcv.

The proof of this theorem is left for Exercise 20.18. It involves simulating a fixpoint
in a manner similar to Example 20.4.9.

Before leaving the fixpoint extension, we show how powerset can be computed by iter-
ating a ALGcv− formula to a fixpoint. (We will see later that powerset cannot be computed
in ALGcv− alone.)

Example 20.6.2 Consider a relation R of sort dom (i.e., a set of atomic elements). The
powerset of R is computed by {x | µT (ϕ(T ))(x)}, where T is of sort {dom} and

ϕ(T )(y)≡ [y = ∅ ∨ ∃x′, y′(R(x′) ∧ T (y′) ∧ y = y′ ∪ {x′}.]
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This formula is in fact equivalent to a query in ALGcv−. (See Exercise 20.15.) For example,
suppose that R contains {2, 3, 4}. The iteration of ϕ yields

J0 = ∅
J1 = ϕ(∅) = {∅}
J2 = ϕ(J1) = J1 ∪ {{2}, {3}, {4}}
J3 = ϕ(J2) = J2 ∪ {{2, 3}, {2, 4}, {3, 4}}
J4 = ϕ(J3) = J3 ∪ {{2, 3, 4}},

and J4 is a fixpoint and coincides with powerset({2, 3, 4}).

Datalog for Complex Values

We now briefly consider an extension of datalog to incorporate complex values. The basic
result is that the extension is equivalent to the complex value algebra and calculus. We
also consider a special grouping construct, which can be used for set construction in this
context.

In the datalog extension considered here, the predicates ⊆ and ∈ are permitted. A rule
is safe range if each variable that appears in the head also appears in the body, and the
body is safe (i.e., the conjunction of the literals of the body is a safe formula). We assume
henceforth that rules are safe. Stratified negation will be used. The language is illustrated
in the following example.

Example 20.6.3 The input is a relation R of sort 〈A,B : {〈C,C′〉}〉. Consider the query
defining an idb relation T , which contains the tuples of R, with the B-component re-
placed by its transitive closure. Let us assume that we have a ternary relation ins, where
ins(w, y, z) is interpreted as “z is obtained by inserting w into y.” We show later how to
define this relation in the language. The program consists of the following rules:

S(x, y)← R(x, y)(r1)

S(x, z)← S(x, y), u ∈ y, v ∈ y, u.C′ = v.C, ins(〈u.C, v.C′〉, y, z)(r2)

S′(x, z)← S(x, z), S(x, z′), z⊆ z′, z "= z′(r3)

T (x, z)← S(x, z),¬S′(x, z).(r4)

The first two rules compute in S pairs corresponding to pairs from R, such that the second
component of a pair contains the corresponding component from the pair in R and possibly
additional elements derived by transitivity. Obviously, for each pair 〈x, y〉 of R, there is a
pair 〈x, z〉 in S, such that z is the transitive closure of y, but there are other tuples as well.
To answer the query, we need to select for each x the unique tuple 〈x, z〉 of S, where z is
maximal.2 The third rule puts into S′ tuples 〈x, z〉 such that z is not maximal for that x. The
last rule then selects those that are maximal, using negation.

2 We assume, for simplicity, that the first column of R is a key. It is easy to change the rules for the
case when this does not hold.
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We now show the program that defines ins for some given sort τ (the variables are of
sort {τ } except for w, which is of sort τ ):

super(w, y, z) ← w ∈ z, y ⊆ z
not-min-super(w, y, z)← super(w, y, z), super(w, y, z′), z′ ⊆ z, z′ "= z
ins(w, y, z) ← super(w, y, z),¬not-min-super(w, y, z)

Note that the program is sort specific only through its dependence on the sorts of the
variables. The same program computes ins for another sort τ ′, if we assume that the sort of
w is τ ′ and that of the other variables is {τ ′}. Note also that the preceding program is not
safe. To make it safe, we would have to use derived relations to range restrict the various
variables.

We note that although we used ⊆ in the example as a built-in predicate, it can be
expressed using membership and stratified negation.

The proof of the next result is omitted but can be reconstructed reasonably easily using
the technique of Example 20.6.3.

Theorem 20.6.4 A query is expressible in datalogcv with stratified negation if and only
if it is expressible in CALCcv.

The preceding language relies heavily on negation to specify the new sets. We could
consider more set-oriented constructs. An example is the grouping construct, which is
closely related to the algebraic nest operation. For instance, in the language LDL, the rule:

S(x, 〈y〉)← R(x, y)

groups in S, for each x, all the y’s related to it in R (i.e., S is the result of the nesting of R
on the second coordinate).

The grouping construct can be used to simulate negation. Consider a query q whose
input consists of two unary relations R, S not containing some particular element a and
that computes R − S. Query q can be answered by the following LDL program:

Temp(x, a)← R(x)

Temp(x, x)← S(x)

T (x, 〈y〉) ← Temp(x, y)

Res(x) ← T (x, {a})
Note that for an x in R − S, we derive T (x, {a}); but for x in R ∩ S, we derive
T (x, {x, a}) "= T (x, {a}) because a is not in R.

From the previous example, it is clear that programs with grouping need not be mono-
tone. This gives rise to semantic problems similar to those of negation. One possiblity,
adopted in LDL, is to define the semantics of programs with grouping analogously to strat-
ification for negation.
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20.7 Expressive Power and Complexity

This section presents two results. First the expressive power and complexity of ALGcv/
CALCcv is established—it is the family of queries computable in hyperexponential time.
Second, we consider the expressive power of ALGcv−/CALCcv− (i.e., in algebraic terms
the expressive power of permitting the nest operator, but not powerset). Surprisingly, we
show that the nest operator can be eliminated from ALGcv− queries with flat input/ouput.

Complex Value Languages and Elementary Queries

We now characterize the queries in ALGcv in terms of the set of computable queries in a
certain complexity class. First the notion of computable query is extended to the complex
value model in the straightforward manner. The complexity class of interest is the class of
elementary queries, defined next.

The hyperexponential functions hypi for i in N are defined by

1. hyp0(m)=m; and

2. hypi+1(m)= 2hypi(m) for i ≥ 0.

A query is an elementary query if it is a computable query and has hyperexponential time
data complexity3 w.r.t. the database size. By database size we mean the amount of space
it takes to write the content of the database using some natural encoding. Note that, for
complex value databases, size can be very different from cardinality. For example, the
database could consist of a single but very large complex value.

It turns out that a query is in ALGcv/CALCcv iff it is an elementary query.

Theorem 20.7.1 A query is in ALGcv/CALCcv iff it is an elementary query.

Crux It is trivial to see that each query in ALGcv/CALCcv is elementary. All operations
can be evaluated in polynomial time in the size of their arguments except for powerset,
which takes exponential time.

Conversely, let q be of complexity hypn. We show how to compute it in CALCcv.
Suppose first that an enumeration of adom(I) is provided in some binary relation succ.

(We explain later how this is done.) We prove that q can then be computed in CALCcv+µ+.
LetX0 = adom(I ) and for each i, Xi = powerset(Xi−1). Observe that for eachXi, we can
provide an enumeration as follows: First succ provides the enumeration for X0; and for
each i, we define V <i U for U,V in Xi if there exists x in U − V such that each element
larger than x (under <i−1) is in both or neither of U,V . Clearly, there exists a query in
CALCcv+µ+ that constructs Xn and a binary relation representing <n.

Now we view each element of Xn as an atomic element. The input instance together
with Xn and the enumeration can be seen as an ordered database with size the order of
hypn. Query q is now polynomial in this new (much larger) instance. Finally we can easily

3 We are concerned exclusively with the data complexity. Observe that when considering the union
of hyperexponential complexities, time and space coincide.
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extend to complex values the result from the flat case that CALC+µ+ can express qptime
on ordered databases (Theorem 17.4.2). Thus CALCcv+µ+ can also express all qptime
queries on ordered complex value databases, so q can be computed in CALCcv+µ+ using
<n on Xn. By Theorem 20.6.1, CALCcv+µ+ is equivalent to CALCcv, so there exists a
CALCcv query ϕ computing q if an (arbitrary) enumeration of the active domain is given
in some binary relation succ.

To conclude the proof, it remains to remove the restriction on the existence of an
enumeration of the active domain. Let ϕ′ be the formula obtained from ϕ by replacing

1. succ by some fresh variable y (the sort of y is set of pairs); and

2. each literal succ(t, t ′) by 〈t, t ′〉 ∈ y.

Then q can be computed by

∃y(ϕ′ ∧ ψ).

where ψ is the CALCcv formula stating that y is the representation in a binary relation of
an enumeration of the active domain. (Observe that it is easy to state in CALCcv that the
content of a binary relation is an enumeration.)

On the Power of the nest Operator

The set-height of a complex sort is the maximum number of set constructors in any branch
of the sort. We can exhibit hierarchies of classes of queries in CALCcv based on the set-
height of the sorts of variables used in the query. For example, consider all queries that
take as input a flat relational schema and produce as output a flat relation. Then for each
n > 0, the family of CALCcv queries using variables that have sorts with set-height ≤ n is
strictly weaker than the family of CALCcv queries using variables that have sorts with set-
height ≤ n+ 1. A similar hierarchy exists for ALGcv, based on the sorts of intermediate
types used. Intuitively, these results follow from the use of the powerset operator, which
essentially provides an additional exponential amount of scratch paper for each additional
level of set nesting.

The bottom of this hierarchy is simply relational calculus. Recall that ALGcv− can use
the nest operator but not the powerset operator. It is thus natural to ask, Where do ALGcv−/
CALCcv− (assuming flat input and output) lie relative to the relational calculus and the first
level of the hierarchy? Rather surprisingly, it turns out that the nest operator alone does
not increase expressive power. Specifically, we show now that with flat input and output,
ALGcv−/CALCcv− is equivalent to relational calculus.

Theorem 20.7.2 Let ϕ be a CALCcv−/ALGcv− query over a relational database schema
R with output of relational sort S. Then there exists a relational calculus query ϕ′ equivalent
to ϕ.

Crux The basic intuition underlying the proof is that with a flat input in CALCcv− or
ALGcv−, each set constructed at an intermediate stage can be identified by a tuple of atomic
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values. In terms of ALGcv−, the intuitive reason for this is that sets can be created only in
two ways:

• by nest, which builds a relation whose nonnested coordinates form a key for the
nested one, and

• by set_create, which can build only singleton sets.

Thus all created sets can be identified using some flat key of bounded length. The sets
can then be simulated in the computation by their flat representations. The proof consists
of

• providing a careful construction of the flat representation of the sets created in the
computation, which reflects the history of their creation; and

• constructing a new query, equivalent to the original one, that uses only the flat
representations of sets.

The details of the proof are omitted.

Observe that an immediate consequence of the previous result is that transitive closure
or powerset are not expressible in ALGcv−.

Remark 20.7.3 The previous results focus on relational queries. The same technique
can be used for nonflat inputs. An arbitrary input I can be represented by a flat database
If of size polynomial in the size of the input. Now an arbitrary ALGcv− query on I can be
simulated by a relational query on If to yield a flat database representing the result. Finally
the complex object result is constructed in polynomial time. This shows in particular that
ALGcv− is in ptime.

20.8 A Practical Query Language for Complex Values

We conclude our discussion of languages for complex values with a brief survey of a frag-
ment of the query language O2SQL supported by the commercial object-oriented database
system O2 (see Chapter 21). This fragment provides an elegant syntax for accessing and
constructing deeply nested complex values, and it has been incorporated into a recent in-
dustrial standard for object-oriented databases.

For the first example we recall the query

(4.3) What are the address and phone number of the Le Champo?

Using the CINEMA database (Fig. 3.1), this query can be expressed in O2SQL as

element select tuple ( t.address, t.phone )
from t in Location
where t.name = “Le Champo”



20.8 A Practical Query Language for Complex Values 537

The select-from-where clause has semantics analogous to those for SQL. Unlike SQL, the
select part can specify an essentially arbitrary complex value, not just tuples. A select-
from-where clause returns a set4; the keyword element here is a desetting operator that
returns a runtime error if the set does not have exactly one element.

The next example illustrates how O2SQL can work inside nested structures. Recall the
complex value shown in Fig. 20.2, which represents a portion of the CINEMA database.
Let the full complex value be named Films. The following query returns all movies for
which the director does not participate as an actor.

select m.Title
from f in Films

m in f.Movies
where f.Director not in select a

from a in m.Actors

O2SQL also provides a mechanism for collapsing nested sets. Again using the complex
value Films of Fig. 20.2, the following gives the set of all directors that have not acted in
any Hitchcock film.

select f.Director
from f in Films
where f.Director not in flatten select m.Actors

from g in Films
m in g.Movies

where g.Director = “Hitchcock”

Here the inner select-from-where clause returns a set of sets of actors. The keyword flatten
has the effect of forming the union of these sets to yield a set of actors.

We conclude with an illustration of how O2SQL can be used to construct a deeply
nested complex value. The following query builds, from the complex value Films of
Fig. 20.2, a complex value of the same type that holds information about all movies for
which the director does not serve as an actor.

select tuple ( Director: f.Director,
Movies: select tuple ( Title: m.Title,

Actors: select a
from a in m.Actors )

from m in f.Movies
where f.Director not in m.Actors )

from f in Films

4 In the full language O2SQL, a list or bag might also be returned; we do not discuss that here.
Furthermore, we do not include the keyword unique in our queries, although technically it should be
included to remove duplicates from answer sets.
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The proof of Theorem 20.7.2 outlined in this chapter suggests a strong connection between
ALGcv− and the V-relation model.

Reference [BTBW92] introduces a rich family of languages for complex objects,
extended to include lists and bags, that is based on structural recursion. One language in this
family corresponds to the nested algebra presented in this chapter. Using this, an elegant
family of generalizations of Theorem 20.7.2 is developed in [Won93].

An extension of complex values, called formats [HY84], includes a marked union
construct in addition to tuple and finitary set. Abstract notions of relative information
capacity are developed there; for example, it can be shown that two complex value types
have equivalent information capacity iff they are isomorphic.

Exercises

Exercise 20.1 (V-relations) Consider the schema R of sort

〈A,B : {〈C,D〉}〉.

Furthermore, we impose the fd A→ B (more precisely, the generalization of a functional
dependency). (a) Prove that for each instance I of R, the size of I is bounded by a polynomial
in adom(I ). (b) Show how the same information can be naturally represented using two flat
relations. (One suffices with some coding.) (c) Formalize the notion of V-relation of Section 20.1
and generalize the results of (a) and (b).

Exercise 20.2 Consider a (flat) relation R of sort

name age address car child_name child_age

and the multivalued dependency name age address→→ car. Prove that the same information
can be stored in a complex value relation of sort

〈name, age, address, cars : {dom}, children : {〈child_name, child_age〉}〉

Discuss the advantages of this alternative representation. (In particular, show that for the same
data, the size of the instance in the second representation is smaller. Also consider update
anomalies.)

Exercise 20.3 Consider the value

{ 〈A : a, B : 〈A : {a, b}, B : 〈A : a〉〉, C : 〈 〉〉,
〈A : a, B : 〈A : {}, B : 〈A : a〉〉, C : 〈 〉〉 }.

Show how to construct it in the core algebra from {a} and {b}.
Exercise 20.4 Prove that for each complex value relation I , there exists a constant query in
the core algebra returning I .
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Exercise 20.5 Let R be a database schema consisting of a relation R of sort

〈A : dom, B : 〈A : {dom}, B : 〈A : dom〉〉, C : 〈 〉〉;

and let τ = {〈A : dom, B : {{dom}}〉}.
(a) Give a query computing for each I over R, adom(I).

(b) Give a query computing the set of values J of sort τ such that adom(J )⊆ adom(I).

Exercise 20.6 Prove that set_create can be expressed using the other operations of the core
algebra. Hint: Use powerset.

Exercise 20.7 Formally define the following operations: (a) renaming, (b) singleton, (c)
cross-product, and (d) join. In each case, prove that the operation is expressible in ALGcv.
Which of these can be expressed without powerset?

Exercise 20.8 (Nest,unnest)

(a) Show that nest is expressible in ALGcv.

(b) Show that unnest is expressible in ALGcv without using the powerset operator.

(c) Prove that unnestA is a right inverse of nestA=(A1...Ak) and that unnestA has no right
inverse.

Exercise 20.9 (Map) The operation mapC,q is applicable to relations of sort τ where τ is of
the form {〈C : {τ ′}, . . .〉} and q is a query over relations of sort τ ′. For instance, let

I = {〈C : I1, C
′ : J1〉, 〈C : I2, C

′ : J2〉, 〈C : I3, C
′ : J3〉}.

Then

mapC,q(I )= {〈C : q(I1), C
′ : J1〉, 〈C : q(I2), C

′ : J2〉, 〈C : q(I3), C
′ : J3〉}.

(a) Give an example of map and show how the query of this example can be expressed
in ALGcv.

(b) Give a formal definition of map and prove that the addition of map does not change
the expressive power of the algebra.

Exercise 20.10 Show how to express

{x | {y | liked(x, y)} = {y | saw(x, y)}}

in the core calculus.

Exercise 20.11 The calculus is extended by allowing terms of the form z ∪ z′ and z − z′ for
each set term z, z′ of identical sort. Prove that this does not modify the expressive power of the
language. More generally, consider introducing in the calculus terms of the form q(t1, . . . , tn),
where q is an n-ary algebraic operation and the ti are set terms of appropriate sort.

Exercise 20.12 Give five queries on the CINEMA database expressed in ALGcv. Give the
same queries in CALCcv.
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Exercise 20.13 Complete the proof that ALGcv 	 CALCcv for Theorem 20.5.1. Complete the
proof of “Last Stage” for Theorem 20.5.1.

Exercise 20.14 This exercise elaborates the simulation of CALCcv by ALGcv presented in the
proof of Theorem 20.5.1. In particular, give the details of

(a) the construction of Eadom

(b) the construction of Gτ for each τ

(c) the last stage of the construction.

Exercise 20.15 Show that the query in Example 20.6.2 is strongly safe range (e.g., give a
query in ALGcv− or CALCcv− equivalent to it).

Exercise 20.16 Show that every strongly safe-range query is in ALGcv− [one direction of (b)
of Theorem 20.5.3].

Exercise 20.17 Sketch a program expressing the query even in CALCcv+µ+.

Exercise 20.18 Prove that CALCcv+µ+ =ALGcv.

Exercise 20.19 Define a while language based on ALGcv. Show that it does not have more
power than ALGcv.

Exercise 20.20 Consider a query q whose input consists of two relations blue, red of sort
〈A,B〉 (i.e., consists of two graphs). Query q returns a relation of sort 〈A,B : {dom}〉 with the
following meaning. A tuple 〈x,X〉 is in the result if x is a vertex and X is the set of vertexes y
such that there exists a path from x to y alternating blue and red edges. Prove in one line that q is
expressible in ALGcv. Show how to express q in some complex value language of this chapter.

Exercise 20.21 Generalize the construction of Example 20.6.2 to prove Theorem 20.6.1.

Exercise 20.22 Datalog with stratified negation was shown to be weaker than datalog with
inflationary negation. Is the situation similar for datalogcv with negation?

Exercise 20.23 Exhibit a query that is not expressible in CALCcv− but is expressible in
CALCcv, and one that is not expressible in CALCcv.

Exercise 20.24 Give a relational calculus formula or algebra expression for the query in
Example 20.4.8.

�Exercise 20.25 Recall the language whileN from Chapter 18. The language allows assign-
ments of relational algebra expressions to relational variables, looping, and integer arithmetic.
Let whilecv

N be like whileN , except that the relational algebra expressions are in ALGcv. Prove
that whilecv

N can express all queries from flat relations to flat relations.




