
2 Theoretical Background

Alice: Will we ever get to the real stuff?
Vittorio: Cine nu cunoaşte lema, nu cunoaşte teorema.

Riccardo: What is Vittorio talking about?
Sergio: This is an old Romanian saying that means, “He who doesn’t know the

lemma doesn’t know the teorema.”
Alice: I see.

This chapter gives a brief review of the main theoretical tools and results that are used in
this volume. It is assumed that the reader has a degree of maturity and familiarity with

mathematics and theoretical computer science. The review begins with some basics from
set theory, including graphs, trees, and lattices. Then, several topics from automata and
complexity theory are discussed, including finite state automata, Turing machines, com-
putability and complexity theories, and context-free languages. Finally basic mathematical
logic is surveyed, and some remarks are made concerning the specializing assumptions
typically made in database theory.

2.1 Some Basics

This section discusses notions concerning binary relations, partially ordered sets, graphs
and trees, isomorphisms and automorphisms, permutations, and some elements of lattice
theory.

A binary relation over a (finite or infinite) set S is a subset R of S × S, the cross-
product of S with itself. We sometimes write R(x, y) or xRy to denote that (x, y) ∈ R.

For example, if Z is a set, then inclusion (⊆) is a binary relation over the power set
P(Z) of Z and also over the finitary power set Pfin(Z) of Z (i.e., the set of all finite subsets
of Z). Viewed as sets, the binary relation ≤ on the set N of nonnegative integers properly
contains the relation < on N.

We also have occasion to study n-ary relations over a set S; these are subsets of Sn,
the cross-product of S with itself n times. Indeed, these provide one of the starting points
of the relational model.

A binary relation R over S is reflexive if (x, x) ∈ R for each x ∈ S; it is symmetric if
(x, y) ∈ R implies that (y, x) ∈ R for each x, y ∈ S; and it is transitive if (x, y) ∈ R and
(y, z) ∈ R implies that (x, z) ∈ R for each x, y, z ∈ S. A binary relation that is reflexive,
symmetric, and transitive is called an equivalence relation. In this case, we associate to
each x ∈ S the equivalence class [x]R = {y ∈ S | (x, y) ∈ R}.

10

2.1 Some Basics 11

An example of an equivalence relation on N is modulo for some positive integer n,
where (i, j) ∈ modn if the absolute value |i − j | of the difference of i and j is divisible
by n.

A partition of a nonempty set S is a family of sets {Si | i ∈ I } such that (1) ∪i∈ISi = S,
(2) Si ∩ Sj = ∅ for i �= j , and (3) Si �= ∅ for i ∈ I . If R is an equivalence relation on S, then
the family of equivalence classes over R is a partition of S.

Let E and E′ be equivalence relations on a nonempty set S. E is a refinement of E′
if E ⊆ E′. In this case, for each x ∈ S we have [x]E ⊆ [x]E′, and, more precisely, each
equivalence class of E′ is a disjoint union of one or more equivalence classes of E.

A binary relation R over S is irreflexive if (x, x) �∈ R for each x ∈ S.
A binary relation R is antisymmetric if (y, x) �∈ R whenever x �= y and (x, y) ∈ R.

A partial order of S is a binary relation R over S that is reflexive, antisymmetric, and
transitive. In this case, we call the ordered pair (S, R) a partially ordered set. A total order
is a partial order R over S such that for each x, y ∈ S, either (x, y) ∈ R or (y, x) ∈ R.

For any set Z, the relation⊆ over P(Z) is a partially ordered set. If the cardinality |Z|
of Z is greater than 1, then this is not a total order. ≤ on N is a total order.

If (S, R) is a partially ordered set, then a topological sort of S (relative toR) is a binary
relation R′ on S that is a total order such that R′ ⊇ R. Intuitively, R′ is compatible with R

in the sense that xRy implies xR′y.
Let R be a binary relation over S, and P be a set of properties of binary relations. The

P-closure of R is the smallest binary relation R′ such that R′ ⊇ R and R′ satisfies all of the
properties in P (if a unique binary relation having this specification exists). For example, it
is common to form the transitive closure of a binary relation or the reflexive and transitive
closure of a binary relation. In many cases, a closure can be constructed using a recursive
procedure. For example, given binary relation R, the transitive closure R+ of R can be
obtained as follows:

1. If (x, y) ∈ R then (x, y) ∈ R+;

2. If (x, y) ∈ R+ and (y, z) ∈ R+ then (x, z) ∈ R+; and

3. Nothing is in R+ unless it follows from conditions (1) and (2).

For an arbitrary binary relation R, the reflexive, symmetric, and transitive closure of R
exists and is an equivalence relation.

There is a close relationship between binary relations and graphs. The definitions and
notation for graphs presented here have been targeted for their application in this book. A
(directed) graph is a pairG= (V ,E), where V is a finite set of vertexes andE ⊆ V ×V . In
some cases, we define a graph by presenting a set E of edges; in this case, it is understood
that the vertex set is the set of endpoints of elements of E.

A directed path in G is a nonempty sequence p = (v0, . . . , vn) of vertexes such
that (vi, vi+1) ∈ E for each i ∈ [0, n − 1]. This path is from v0 to vn and has length n.
An undirected path in G is a nonempty sequence p = (v0, . . . , vn) of vertexes such that
(vi, vi+1) ∈ E or (vi+1, vi) ∈ E for each i ∈ [0, n− 1]. A (directed or undirected) path is
proper if vi �= vj for each i �= j . A (directed or undirected) cycle is a (directed or undi-
rected, respectively) path v0, . . . , vn such that vn = v0 and n > 0. A directed cycle is proper
if v0, . . . , vn−1 is a proper path. An undirected cycle is proper if v0, . . . , vn−1 is a proper

12 Theoretical Background

path and n > 2. If G has a cycle from v, then G has a proper cycle from v. A graph
G = (V ,E) is acyclic if it has no cycles or, equivalently, if the transitive closure of E
is irreflexive.

Any binary relation over a finite set can be viewed as a graph. For any finite set Z, the
graph (P(Z),⊆) is acyclic. An interesting directed graph is (M,L), where M is the set of
metro stations in Paris and (s1, s2) ∈ L if there is a train in the system that goes from s1 to
s2 without stopping in between. Another directed graph is (M,L′), where (s1, s2) ∈ L′ if
there is a train that goes from s1 to s2, possibly with intermediate stops.

Let G= (V ,E) be a graph. Two vertexes u, v are connected if there is an undirected
path in G from u to v, and they are strongly connected if there are directed paths from u

to v and from v to u. Connectedness and strong connectedness are equivalence relations
on V . A (strongly) connected component of G is an equivalence class of V under (strong)
connectedness. A graph is (strongly) connected if it has exactly one (strongly) connected
component.

The graph (M,L) of Parisian metro stations and nonstop links between them is
strongly connected. The graph ({a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)})
is connected but not strongly connected.

The distance d(a, b) of two nodes a, b in a graph is the length of the shortest path
connecting a to b [d(a, b)=∞ if a is not connected to b]. The diameter of a graph G is
the maximum finite distance between two nodes in G.

A tree is a graph that has exactly one vertex with no in-edges, called the root, and no
undirected cycles. For each vertex v of a tree there is a unique proper path from the root to
v. A leaf of a tree is a vertex with no outedges. A tree is connected, but it is not strongly
connected if it has more than one vertex. A forest is a graph that consists of a set of trees.
Given a forest, removal of one edge increases the number of connected components by
exactly one.

An example of a tree is the set of all descendants of a particular person, where (p, p′)
is an edge if p′ is the child of p.

In general, we shall focus on directed graphs, but there will be occasions to use
undirected graphs. An undirected graph is a pair G = (V ,E), where V is a finite set of
vertexes and E is a set of two-element subsets of V , again called edges. The notions of
path and connected generalize to undirected graphs in the natural fashion.

An example of an undirected graph is the set of all persons with an edge {p, p′} if p
is married to p′. As defined earlier, a tree T = (V ,E) is a directed graph. We sometimes
view T as an undirected graph.

We shall have occasions to label the vertexes or edges of a (directed or undirected)
graph. For example, a labeling of the vertexes of a graph G= (V ,E) with label set L is a
function λ : V → L.

Let G= (V ,E) and G′ = (V ′, E′) be two directed graphs. A function h : V → V ′ is a
homomorphism from G to G′ if for each pair u, v ∈ V , (u, v) ∈ E implies (h(u), h(v)) ∈
E′. The function h is an isomorphism from G to G′ if h is a one-one onto mapping from
V to V ′, h is a homomorphism from G to G′, and h−1 is a homomorphism from G′ to G.
An automorphism on G is an isomorphism from G to G. Although we have defined these
terms for directed graphs, they generalize in the natural fashion to other data and algebraic
structures, such as relations, algebraic groups, etc.

2.2 Languages, Computability, and Complexity 13

Consider the graph G = ({a, b, c, d, e}, {(a, b), (b, a), (b, c), (b, d), (b, e), (c, d),
(d, e), (e, c)}). There are three automorphisms on G: (1) the identity; (2) the function that
maps c to d , d to e, e to c and leaves a, b fixed; and (3) the function that maps c to e, d to
c, e to d and leaves a, b fixed.

Let S be a set. A permutation of S is a one-one onto function ρ : S→ S. Suppose that
x1, . . . , xn is an arbitrary, fixed listing of the elements of S (without repeats). Then there is
a natural one-one correspondence between permutations ρ on S and listings xi1, . . . , xin
of elements of S without repeats. A permutation ρ′ is derived from permutation ρ by
an exchange if the listings corresponding to ρ and ρ′ agree everywhere except at some
positions i and i + 1, where the values are exchanged. Given two permutations ρ and ρ′,
ρ′ can be derived from ρ using a finite sequence of exchanges.

2.2 Languages, Computability, and Complexity

This area provides one of the foundations of theoretical computer science. A general
reference for this area is [LP81]. References on automata theory and languages include, for
instance, the chapters [BB91, Per91] of [Lee91] and the books [Gin66, Har78]. References
on complexity include the chapter [Joh91] of [Lee91] and the books [GJ79, Pap94].

Let # be a finite set called an alphabet. A word over alphabet # is a finite sequence
a1 . . . an, where ai ∈ #, 1 ≤ i ≤ n, n ≥ 0. The length of w = a1 . . . an, denoted |w|, is n.
The empty word (n= 0) is denoted by ε. The concatenation of two words u= a1 . . . an and
v = b1 . . . bk is the word a1 . . . anb1 . . . bk, denoted uv. The concatenation of u with itself
n times is denoted un. The set of all words over # is denoted by #∗. A language over # is
a subset of #∗. For example, if # = {a, b}, then {anbn | n≥ 0} is a language over #. The
concatenation of two languages L and K is LK = {uv | u ∈ L, v ∈ K}. L concatenated
with itself n times is denoted Ln, and L∗ =⋃n≥0 L

n.

Finite Automata

In databases, one can model various phenomena using words over some finite alphabet.
For example, sequences of database events form words over some alphabet of events. More
generally, everything is mapped internally to a sequence of bits, which is nothing but a word
over alphabet {0, 1}. The notion of computable query is also formalized using a low-level
representation of a database as a word.

An important type of computation over words involves acceptance. The objective is
to accept precisely the words that belong to some language of interest. The simplest form
of acceptance is done using finite-state automata (fsa). Intuitively, fsa process words by
scanning the word and remembering only a bounded amount of information about what
has already been scanned. This is formalized by computation allowing a finite set of states
and transitions among the states, driven by the input. Formally, an fsa M over alphabet #
is a 5-tuple 〈S,#, δ, s0, F 〉, where

• S is a finite set of states;

• δ, the transition function, is a mapping from S ×# to S;

14 Theoretical Background

• s0 is a particular state of S, called the start state;

• F is a subset of S called the accepting states.

An fsa 〈S,#, δ, s0, F 〉 works as follows. The given input word w = a1 . . . an is read one
symbol at a time, from left to right. This can be visualized as a tape on which the input word
is written and an fsa with a head that reads symbols from the tape one at a time. The fsa
starts in state s0. One move in state s consists of reading the current symbol a in w, moving
to a new state δ(s, a), and moving the head to the next symbol on the right. If the fsa is in
an accepting state after the last symbol in w has been read, w is accepted. Otherwise it is
rejected. The language accepted by an fsa M is denoted L(M).

For example, let M be the fsa

〈{even,odd}, {0, 1}, δ, even, {even}〉, with

δ 0 1

even even odd

odd odd even

The language accepted by M is

L(M)= {w | w has an even number of occurrences of 1}.

A language accepted by some fsa is called a regular language. Not all languages are
regular. For example, the language {anbn | n ≥ 0} is not regular. Intuitively, this is so
because no fsa can remember the number of a’s scanned in order to compare it to the
number of b’s, if this number is large enough, due to the boundedness of the memory.
This property is formalized by the so-called pumping lemma for regular languages.

As seen, one way to specify regular languages is by writing an fsa accepting them.
An alternative, which is often more convenient, is to specify the shape of the words in the
language using so-called regular expressions. A regular expression over # is written using
the symbols in # and the operations concatenation, ∗ and +. (The operation + stands
for union.) For example, the foregoing language L(M) can be specified by the regular
expression ((0∗10∗)2)∗ + 0∗. To see how regular languages can model things of interest
to databases, think of employees who can be affected by the following events:

hire, transfer, quit, fire, retire.

Throughout his or her career, an employee is first hired, can be transferred any number of
times, and eventually quits, retires, or is fired. The language whose words are allowable
sequences of such events can be specified by a regular expression as hire (transfer)∗ (quit
+ fire + retire). One of the nicest features of regular languages is that they have a dual
characterization using fsa and regular expressions. Indeed, Kleene’s theorem says that a
language L is regular iff it can be specified by a regular expression.

There are several important variations of fsa that do not change their accepting power.
The first allows scanning the input back and forth any number of times, yielding two-way

2.2 Languages, Computability, and Complexity 15

automata. The second is nondeterminism. A nondeterministic fsa allows several possible
next states in a given move. Thus several computations are possible on a given input.
A word is accepted if there is at least one computation that ends in an accepting state.
Nondeterministic fsa (nfsa) accept the same set of languages as fsa. However, the number
of states in the equivalent deterministic fsa may be exponential in the number of states of
the nondeterministic one. Thus nondeterminism can be viewed as a convenience allowing
much more succinct specification of some regular languages.

Turing Machines and Computability

Turing machines (TMs) provide the classical formalization of computation. They are also
used to develop classical complexity theory. Turing machines are like fsa, except that
symbols can also be overwritten rather than just read, the head can move in either direction,
and the amount of tape available is infinite. Thus a move of a TM consists of reading
the current tape symbol, overwriting the symbol with a new one from a specified finite
tape alphabet, moving the head left or right, and changing state. Like an fsa, a TM can
be viewed as an acceptor. The language accepted by a TM M , denoted L(M), consists
of the words w such that, on input w, M halts in an accepting state. Alternatively, one
can view TM as a generator of words. The TM starts on empty input. To indicate that
some word of interest has been generated, the TM goes into some specified state and then
continues. Typically, this is a nonterminating computation generating an infinite language.
The set of words so generated by some TM M is denoted G(M). Finally, TMs can also
be viewed as computing a function from input to output. A TM M computes a partial
mapping f from #∗ to #∗ if for each w ∈ #∗: (1) if w is in the domain of f , then M

halts on input w with the tape containing the word f (w); (2) otherwise M does not halt on
input w.

A function f from #∗ to #∗ is computable iff there exists some TM computing it.
Church’s thesis states that any function computable by some reasonable computing device
is also computable in the aforementioned sense. So the definition of computability by TMs
is robust. In particular, it is insensitive to many variations in the definition of TM, such
as allowing multiple tapes. A particularly important variation allows for nondeterminism,
similar to nondeterministic fsa. In a nondeterministic TM (NTM), there can be a choice of
moves at each step. Thus an NTM has several possible computations on a given input (of
which some may be terminating and others not). A word w is accepted by an NTM M if
there exists at least one computation of M on w halting in an accepting state.

Another useful variation of the Turing machine is the counter machine. Instead of a
tape, the counter machine has two stacks on which elements can be pushed or popped.
The machine can only test for emptiness of each stack. Counter machines can also define
all computable functions. An essentially equivalent and useful formulation of this fact is
that the language with integer variables i, j, . . . , two instructions increment(i) and decre-
ment(i), and a looping construct while i > 0 do, can define all computable functions on the
integers.

Of course, we are often interested in functions on domains other than words—integers
are one example. To talk about the computability of such functions on other domains, one
goes through an encoding in which each element d of the domain is represented as a word

16 Theoretical Background

enc(d) on some fixed, finite alphabet. Given that encoding, it is said that f is computable if
the function enc(f)mapping enc(d) to enc(f (d)) is computable. This often works without
problems, but occasionally it raises tricky issues that are discussed in a few places of this
book (particularly in Part E).

It can be shown that a language is L(M) for some acceptor TM M iff it is G(M)

for some generator TM M . A language is recursively enumerable (r.e.) iff it is L(M) [or
G(M)] for some TM M . L being r.e. means that there is an algorithm that is guaranteed to
say eventually yes on input w if w ∈ L but may run forever if w �∈ L (if it stops, it says no).
Thus one can never know for sure if a word is not in L.

Informally, saying that L is recursive means that there is an algorithm that always
decides in finite time whether a given word is in L. If L= L(M) and M always halts, L is
recursive. A language whose complement is r.e. is called co-r.e. The following useful facts
can be shown:

1. If L is r.e. and co-r.e., then it is recursive.

2. L is r.e. iff it is the domain of a computable function.

3. L is r.e. iff it is the range of a computable function.

4. L is recursive iff it is the range of a computable nondecreasing function.1

As is the case for computability, the notion of recursive is used in many contexts that
do not explicitly involve languages. Suppose we are interested in some class of objects
called thing-a-ma-jigs. Among these, we want to distinguish widgets, which are those
thing-a-ma-jigs with some desirable property. It is said that it is decidable if a given thing-
a-ma-jig is a widget if there is an algorithm that, given a thing-a-ma-jig, decides in finite
time whether the given thing-a-ma-jig is a widget. Otherwise the property is undecidable.
Formally, thing-a-ma-jigs are encoded as words over some finite alphabet. The property of
being a widget is decidable iff the language of words encoding widgets is recursive.

We mention a few classical undecidable problems. The halting problem asks if a given
TM M halts on a specified input w. This problem is undecidable (i.e., there is no algorithm
that, given the description of M and the input w, decides in finite time if M halts on w).
More generally it can be shown that, in some precise sense, all nontrivial questions about
TMs are undecidable (this is formalized by Rice’s theorem). A more concrete undecidable
problem, which is useful in proofs, is the Post correspondence problem (PCP). The input
to the PCP consists of two lists

u1, . . . , un; v1, . . . , vn;

of words over some alphabet # with at least two symbols. A solution to the PCP is a
sequence of indexes i1, . . . , ik, 1≤ ij ≤ n, such that

ui1 . . . uik = vi1 . . . vik.

1 f is nondecreasing if |f (w)| ≥ |w| for each w.

2.2 Languages, Computability, and Complexity 17

The question of interest is whether there is a solution to the PCP. For example, consider the
input to the PCP problem:

u1 u2 u3 u4 v1 v2 v3 v4

aba bbb aab bb a aaa abab babba.

For this input, the PCP has the solution 1, 4, 3, 1; because

u1u4u3u1 = ababbaababa = v1v4v3v1.

Now consider the input consisting of just u1, u2, u3 and v1, v2, v3. An easy case analysis
shows that there is no solution to the PCP for this input. In general, it has been shown that
it is undecidable whether, for a given input, there exists a solution to the PCP.

The PCP is particularly useful for proving the undecidability of other problems. The
proof technique consists of reducing the PCP to the problem of interest. For example,
suppose we are interested in the question of whether a given thing-a-ma-jig is a widget.
The reduction of the PCP to the widget problem consists of finding a computable mapping
f that, given an input i to the PCP, produces a thing-a-ma-jig f (i) such that f (i) is a
widget iff the PCP has a solution for i. If one can find such a reduction, this shows that it
is undecidable if a given thing-a-ma-jig is a widget. Indeed, if this were decidable then one
could find an algorithm for the PCP: Given an input i to the PCP, first construct the thing-
a-ma-jig f (i), and then apply the algorithm deciding if f (i) is a widget. Because we know
that the PCP is undecidable, the property of being a widget cannot be decidable. Of course,
any other known undecidable problem can be used in place of the PCP.

A few other important undecidable problems are mentioned in the review of context-
free grammars.

Complexity

Suppose a particular problem is solvable. Of course, this does not mean the problem has a
practical solution, because it may be prohibitively expensive to solve it. Complexity theory
studies the difficulty of problems. Difficulty is measured relative to some resources of
interest, usually time and space. Again the usual model of reference is the TM. SupposeL is
a recursive language, accepted by a TMM that always halts. Let f be a function on positive
integers. M is said to use time bounded by f if on every input w, M halts in at most f (|w|)
steps. M uses space bounded by f if the amount of tape used by M on every input w is at
most f (|w|). The set of recursive languages accepted by TMs using time (space) bounded
by f is denoted TIME(f) (SPACE(f)). Let F be a set of functions on positive integers.
Then TIME(F) =

⋃
f∈F TIME(f), and SPACE(F) =

⋃
f∈F SPACE(f). A particularly

important class of bounding functions is the polynomials Poly. For this class, the following
notation has emerged: TIME(Poly) is denoted ptime, and SPACE(Poly) is denoted pspace.
Membership in the class ptime is often regarded as synonymous to tractability (although,
of course, this is not reasonable in all situations, and a case-by-case judgment should be
made). Besides the polynomials, it is of interest to consider lower bounds, like logarithmic
space. However, because the input itself takes more than logarithmic space to write down, a

18 Theoretical Background

separation of the input tape from the tape used throughout the computation must be made.
Thus the input is given on a read-only tape, and a separate worktape is added. Now let
logspace consist of the recursive languages L that are accepted by some such TM using
on input w an amount of worktape bounded by c × log(|w|) for some constant c.

Another class of time-bounding functions we shall use is the so-called elementary
functions. They consist of the set of functions

Hyp= {hypi | i ≥ 0}, where
hyp0(n)= n

hypi+1(n)= 2hypi(n).

The elementary languages are those in TIME(Hyp).
Nondeterministic TMs can be used to define complexity classes as well. An NTM

uses time bounded by f if all computations on input w halt after at most f (|w|) steps. It
uses space bounded by f if all computations on input w use at most f (|w|) space (note
that termination is not required). The set of recursive languages accepted by some NTM
using time bounded by a polynomial is denoted np, and space bounded by a polynomial
is denoted by npspace. Are nondeterministic classes different from their deterministic
counterparts? For polynomial space, Savitch’s theorem settles the question by showing
that pspace = npspace (the theorem actually applies to a much more general class of space
bounds). For time, things are more complicated. Indeed, the question of whether ptime
equals np is the most famous open problem in complexity theory. It is generally conjectured
that the two classes are distinct.

The following inclusions hold among the complexity classes described:

logspace⊆ ptime⊆ np⊆ pspace⊂ TIME(Hyp)= SPACE(Hyp).

All nonstrict inclusions are conjectured to be strict.
Complexity classes of languages can be extended, in the same spirit, to complexity

classes of computable functions. Here we look at the resources needed to compute the
function rather than just accepting or rejecting the input word.

Consider some complexity class, sayC = TIME(F). Such a class contains all problems
that can be solved in time bounded by some function in F . This is an upper bound, so
C clearly contains some easy and some hard problems. How can the hard problems be
distinguished from the easy ones? This is captured by the notion of completeness of a
problem in a complexity class. The idea is as follows: A language K in C is complete
in C if solving it allows solving all other problems in C, also within C. This is formalized
by the notion of reduction. Let L and K be languages in C. L is reducible to K if there
is a computable mapping f such that for each w, w ∈ L iff f (w) ∈K . The definition of
reducibility so far guarantees that solving K allows solving L. How about the complexity?
Clearly, if the reduction f is hard then we do not have an acceptance algorithm in C.
Therefore the complexity of f must be bounded. It might be tempting to use C as the
bound. However, this allows all the work of solving L within the reduction, which really
makes K irrelevant. Therefore the definition of completeness in a class C requires that the
complexity of the reduction function be lower than that for C. More formally, a recursive

2.2 Languages, Computability, and Complexity 19

language is complete in C by C′ reductions if for each L ∈ C there is a function f in C′
reducing L to K . The class C′ is often understood for some of the main classes C. The
conventions we will use are summarized in the following table:

Type of Completeness Type of Reduction

p completeness logspace reductions
np completeness ptime reductions
pspace completeness ptime reductions

Note that to prove that a problem L is complete in C by C′ reductions, it is sufficient
to exhibit another problem K that is known to be complete in C by C′ reductions, and a C′
reduction from K to L. Because the C′-reducibility relation is transitive for all customarily
used C′, it then follows that L is itself C complete by C′ reductions. We mention next a
few problems that are complete in various classes.

One of the best-known np-complete problems is the so-called 3-satisfiability (3-SAT)
problem. The input is a propositional formula in conjunctive normal form, in which each
conjunct has at most three literals. For example, such an input might be

(¬x1 ∨ ¬x4 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4) ∧ (¬x4 ∨ x3 ∨ ¬x1).

The question is whether the formula is satisfiable. For example, the preceding formula
is satisfied with the truth assignment ξ(x1) = ξ(x2) = false, ξ(x3) = ξ(x4) = true. (See
Section 2.3 for the definitions of propositional formula and related notions.)

A useful pspace-complete problem is the following. The input is a quantified propo-
sitional formula (all variables are quantified). The question is whether the formula is true.
For example, an input to the problem is

∃x1∀x2∀x3∃x4[(¬x1 ∨ ¬x4 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x4) ∧ (¬x4 ∨ x3 ∨ ¬x1)].

A number of well-known games, such as GO, have been shown to be pspace complete.
For ptime completeness, one can use a natural problem related to context-free gram-

mars (defined next). The input is a context-free grammar G and the question is whether
L(G) is empty.

Context-Free Grammars

We have discussed specification of languages using two kinds of acceptors: fsa and TM.
Context-free grammars (CFGs) provide different approach to specifying a language that
emphasizes the generation of the words in the language rather than acceptance. (Nonethe-
less, this can be turned into an accepting mechanism by parsing.) A CFG is a 4-tuple
〈N,#, S, P 〉, where

• N is a finite set of nonterminal symbols;

• # is a finite alphabet of terminal symbols, disjoint from N ;

20 Theoretical Background

• S is a distinguished symbol of N , called the start symbol;

• P is a finite set of productions of the form ξ → w, where ξ ∈N and w ∈ (N ∪#)∗.

A CFG G = 〈N,#, S, P 〉 defines a language L(G) consisting of all words in #∗ that
can be derived from S by repeated applications of the productions. An application of the
production ξ → w to a word v containing ξ consists of replacing one occurrence of ξ by
w. If u is obtained by applying a production to some word v, this is denoted by u⇒ v, and
the transitive closure of⇒ is denoted ∗⇒. Thus L(G)= {w | w ∈#∗, S ∗⇒ w}. A language
is called context free if it is L(G) for some CFG G. For example, consider the grammar
〈{S}, {a, b}, S, P 〉, where P consists of the two productions

S→ ε,

S→ aSb.

Then L(G) is the language {anbn | n ≥ 0}. For example the following is a derivation of
a2b2:

S⇒ aSb⇒ a2Sb2 ⇒ a2b2.

The specification power of CFGs lies between that of fsa’s and that of TMs. First,
all regular languages are context free and all context-free languages are recursive. The
language {anbn | n≥ 0} is context free but not regular. An example of a recursive language
that is not context free is {anbncn | n ≥ 0}. The proof uses an extension to context-free
languages of the pumping lemma for regular languages. We also use a similar technique in
some of the proofs.

The most common use of CFGs in the area of databases is to view certain objects as
CFGs and use known (un)decidability properties about CFGs. Some questions about CFGs
known to be decidable are (1) emptiness [is L(G) empty?] and (2) finiteness [is L(G)

finite?]. Some undecidable questions are (3) containment [is it true that L(G1)⊆ L(G2)?]
and (4) equality [is it true that L(G1)= L(G2)?].

2.3 Basics from Logic

The field of mathematical logic is a main foundation for database theory. It serves as the
basis for languages for queries, deductive databases, and constraints. We briefly review the
basic notions and notations of mathematical logic and then mention some key differences
between this logic in general and the specializations usually considered in database theory.
The reader is referred to [EFT84, End72] for comprehensive introductions to mathematical
logic, and to the chapter [Apt91] in [Lee91] and [Llo87] for treatments of Herbrand models
and logic programming.

Although some previous knowledge of logic would help the reader understand the
content of this book, the material is generally self-contained.

2.3 Basics from Logic 21

Propositional Logic

We begin with the propositional calculus. For this we assume an infinite set of proposi-
tional variables, typically denoted p, q, r, . . . , possibly with subscripts. We also permit
the special propositional constants true and false. (Well-formed) propositional formulas
are constructed from the propositional variables and constants, using the unary connective
negation (¬) and the binary connectives disjunction (∨), conjunction (∧), implication (→),
and equivalence (↔). For example, p, (p ∧ (¬q)) and ((p ∨ q)→ p) are well-formed
propositional formulas. We generally omit parentheses if not needed for understanding a
formula.

A truth assignment for a set V of propositional variables is a function ξ : V →
{true, false}. The truth value ϕ[ξ] of a propositional formula ϕ under truth assignment ξ
for the variables occurring in ϕ is defined by induction on the structure of ϕ in the natural
manner. For example,

• true[ξ]= true;

• if ϕ = p for some variable p, then ϕ[ξ]= ξ(p);

• if ϕ = (¬ψ) then ϕ[ξ]= true iff ψ[ξ]= false;

• (ψ1 ∨ ψ2)[ξ]= true iff at least one of ψ1[ξ]= true or ψ2[ξ]= true.

If ϕ[ξ]= true we say that ϕ[ξ] is true and that ϕ is true under ξ (and similarly for false).
A formula ϕ is satisfiable if there is at least one truth assignment that makes it true,

and it is unsatisfiable otherwise. It is valid if each truth assignment for the variables in ϕ

makes it true. The formula (p ∨ q) is satisfiable but not valid; the formula (p ∧ (¬p)) is
unsatisfiable; and the formula (p ∨ (¬p)) is valid.

A formula ϕ logically implies formula ψ (or ψ is a logical consequence of ϕ), denoted
ϕ |= ψ if for each truth assignment ξ , if ϕ[ξ] is true, then ψ[ξ] is true. Formulas ϕ and ψ

are (logically) equivalent, denoted ϕ ≡ ψ , if ϕ |= ψ and ψ |= ϕ.
For example, (p ∧ (p→ q)) |= q. Many equivalences for propositional formulas are

well known. For example,

(ϕ1 → ϕ2)≡ ((¬ϕ1) ∨ ϕ2); ¬(ϕ1 ∨ ϕ2)≡ (¬ϕ1 ∧ ¬ϕ2);
(ϕ1 ∨ ϕ2) ∧ ϕ3 ≡ (ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3); ϕ1 ∧ ¬ϕ2 ≡ ϕ1 ∧ (ϕ1 ∧ ¬ϕ2);

(ϕ1 ∨ (ϕ2 ∨ ϕ3))≡ ((ϕ1 ∨ ϕ2) ∨ ϕ3).

Observe that the last equivalence permits us to view ∨ as a polyadic connective. (The same
holds for ∧.)

A literal is a formula of the form p or ¬p (or true or false) for some propositional
variable p. A propositional formula is in conjunctive normal form (CNF) if it has the form
ψ1 ∧ · · · ∧ ψn, where each formula ψi is a disjunction of literals. Disjunctive normal form
(DNF) is defined analogously. It is known that if ϕ is a propositional formula, then there
is some formula ψ equivalent to ϕ that is in CNF (respectively DNF). Note that if ϕ is in
CNF (or DNF), then a shortest equivalent formula ψ in DNF (respectively CNF) may have
a length exponential in the length of ϕ.

22 Theoretical Background

First-Order Logic

We now turn to first-order predicate calculus. We indicate the main intuitions and concepts
underlying first-order logic and describe the primary specializations typically made for
database theory. Precise definitions of needed portions of first-order logic are included in
Chapters 4 and 5.

First-order logic generalizes propositional logic in several ways. Intuitively, proposi-
tional variables are replaced by predicate symbols that range over n-ary relations over an
underlying set. Variables are used in first-order logic to range over elements of an abstract
set, called the universe of discourse. This is realized using the quantifiers ∃ and ∀. In ad-
dition, function symbols are incorporated into the model. The most important definitions
used to formalize first-order logic are first-order language, interpretation, logical implica-
tion, and provability.

Each first-order language L includes a set of variables, the propositional connectives,
the quantifiers ∃ and ∀, and punctuation symbols “)”, “(”, and “,”. The variation in first-
order languages stems from the symbols they include to represent constants, predicates,
and functions. More formally, a first-order language includes

(a) a (possibly empty) set of constant symbols;

(b) for each n≥ 0 a (possibly empty) set of n-ary predicate symbols;

(c) for each n≥ 1 a (possibly empty) set of n-ary function symbols.

In some cases, we also include

(d) the equality symbol ≈, which serves as a binary predicate symbol,

and the propositional constants true and false. It is common to focus on languages that are
finite, except for the set of variables.

A familiar first-order language is the language LN of the nonnegative integers, with

(a) constant symbol 0;

(b) binary predicate symbol ≤;

(c) binary function symbols +,×, and unary S (successor);

and the equality symbol.
Let L be a first-order language. Terms of L are built in the natural fashion from con-

stants, variables, and the function symbols. An atom is either true, false, or an expres-
sion of the form R(t1, . . . , tn), where R is an n-ary predicate symbol and t1, . . . , tn are
terms. Atoms correspond to the propositional variables of propositional logic. If the equal-
ity symbol is included, then atoms include expressions of the form t1 ≈ t2. The family
of (well-formed predicate calculus) formulas over L is defined recursively starting with
atoms, using the Boolean connectives, and using the quantifiers as follows: If ϕ is a for-
mula and x a variable, then (∃xϕ) and (∀xϕ) are formulas. As with the propositional case,
parentheses are omitted when understood from the context. In addition, ∨ and∧ are viewed
as polyadic connectives. A term or formula is ground if it involves no variables.

Some examples of formulas in LN are as follows:

2.3 Basics from Logic 23

∀x(0 ≤ x), ¬(x ≈ S(x)),

¬∃x(∀y(y ≤ x)), ∀y∀z(x ≈ y × z→ (y ≈ S(0) ∨ z≈ S(0))).

(For some binary predicates and functions, we use infix notation.)
The notion of the scope of quantifiers and of free and bound occurrences of variables

in formulas is now defined using recursion on the structure. Each variable occurrence in an
atom is free. If ϕ is (ψ1 ∨ ψ2), then an occurrence of variable x in ϕ is free if it is free as
an occurrence of ψ1 or ψ2; and this is extended to the other propositional connectives. If ϕ
is ∃yψ , then an occurrence of variable x �= y is free in ϕ if the corresponding occurrence is
free in ψ . Each occurrence of y is bound in ϕ. In addition, each occurrence of y in ϕ that is
free in ψ is said to be in the scope of ∃y at the beginning of ϕ. A sentence is a well-formed
formula that has no free variable occurrences.

Until now we have not given a meaning to the symbols of a first-order language and
thereby to first-order formulas. This is accomplished with the notion of interpretation,
which corresponds to the truth assignments of the propositional case. Each interpretation
is just one of the many possible ways to give meaning to a language.

An interpretation of a first-order language L is a 4-tuple I = (U, C,P,F) where U
is a nonempty set of abstract elements called the universe (of discourse), and C, P , and F
give meanings to the sets of constant symbols, predicate symbols, and function symbols.
For example, C is a function from the constant symbols into U , and P maps each n-ary
predicate symbol p into an n-ary relation over U (i.e., a subset of Un). It is possible for
two distinct constant symbols to map to the same element of U .

When the equality symbol denoted ≈ is included, the meaning associated with it
is restricted so that it enjoys properties usually associated with equality. Two equivalent
mechanisms for accomplishing this are described next.

Let I be an interpretation for language L. As a notational shorthand, if c is a constant
symbol in L, we use cI to denote the element of the universe associated with c by I. This
is extended in the natural way to ground terms and atoms.

The usual interpretation for the language LN is IN, where the universe is N; 0 is
mapped to the number 0; ≤ is mapped to the usual less than or equal relation; S is mapped
to successor; and + and × are mapped to addition and multiplication. In such cases, we
have, for example, [S(S(0)+ 0))]IN ≈ 2.

As a second example related to logic programming, we mention the family of Her-
brand interpretations ofLN. Each of these shares the same universe and the same mappings
for the constant and function symbols. An assignment of a universe, and for the constant
and function symbols, is called a preinterpretation. In the Herbrand preinterpretation for
LN, the universe, denoted ULN, is the set containing 0 and all terms that can be constructed
from this using the function symbols of the language. This is a little confusing because the
terms now play a dual role—as terms constructed from components of the language L, and
as elements of the universe ULN. The mapping C maps the constant symbol 0 to 0 (consid-
ered as an element of ULN). Given a term t in U , the function F(S) maps t to the term S(t).
Given terms t1 and t2, the function F(+) maps the pair (t1, t2) to the term+(t1, t2), and the
function F(×) is defined analogously.

The set of ground atoms of LN (i.e., the set of atoms that do not contain variables)
is sometimes called the Herbrand base of LN. There is a natural one-one correspondence

24 Theoretical Background

between interpretations of LN that extend the Herbrand preinterpretation and subsets of
the Herbrand base of LN. One Herbrand interpretation of particular interest is the one
that mimics the usual interpretation. In particular, this interpretation maps ≤ to the set
{(t1, t2) | (tIN

1 , t
IN
2) ∈ ≤IN}.

We now turn to the notion of satisfaction of a formula by an interpretation. The
definition is recursive on the structure of formulas; as a result we need the notion of variable
assignment to accommodate variables occurring free in formulas. Let L be a language and
I an interpretation of L with universe U . A variable assignment for formula ϕ is a partial
function µ : variables of L→ U whose domain includes all variables free in ϕ. For terms t ,
tI,µ denotes the meaning given to t by I, using µ to interpret the free variables. In addition,
if µ is a variable assignment, x is a variable, and u ∈ U , then µ[x/u] denotes the variable
assignment that is identical to µ, except that it maps x to u. We write I |= ϕ[µ] to indicate
that I satisfies ϕ under µ. This is defined recursively on the structure of formulas in the
natural fashion. To indicate the flavor of the definition, we note that I |= p(t1, . . . , tn)[µ] if
(t
I,µ
1 , . . . , t

I,µ
n) ∈ pI; I |= ∃xψ[µ] if there is some u ∈ U such that I |= ψ[µ[x/u]]; and

I |= ∀xψ[µ] if for each u ∈ U , I |= ψ[µ[x/u]]. The Boolean connectives are interpreted
in the usual manner. If ϕ is a sentence, then no variable assignment needs to be specified.

For example, IN |= ∀x∃y(¬(x ≈ y) ∨ x ≤ y); IN �|= S(0)≤ 0; and

IN |= ∀y∀z(x ≈ y × z→ (y ≈ S(0) ∨ z≈ S(0)))[µ]

iff µ(x) is 1 or a prime number.
An interpretation I is a model of a set 7 of sentences if I satisfies each formula in 7.

The set 7 is satisfiable if it has a model.
Logical implication and equivalence are now defined analogously to the propositional

case. Sentence ϕ logically implies sentence ψ , denoted ϕ |= ψ , if each interpretation that
satisfies ϕ also satisfies ψ . There are many straightforward equivalences [e.g., ¬(¬ϕ)≡ ϕ

and ¬∀xϕ ≡ ∃x¬ϕ]. Logical implication is generalized to sets of sentences in the natural
manner.

It is known that logical implication, considered as a decision problem, is not recursive.
One of the fundamental results of mathematical logic is the development of effective
procedures for determining logical equivalence. These are based on the notion of proofs,
and they provide one way to show that logical implication is r.e. One style of proof,
attributed to Hilbert, identifies a family of inference rules and a family of axioms. An
example of an inference rule is modus ponens, which states that from formulas ϕ and
ϕ→ ψ we may conclude ψ . Examples of axioms are all tautologies of propositional logic
[e.g., ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ) for all formulas ϕ and ψ], and substitution (i.e., ∀xϕ→
ϕxt , where t is an arbitrary term and ϕxt denotes the formula obtained by simultaneously
replacing all occurrences of x free in ϕ by t). Given a family of inference rules and axioms,
a proof that set 7 of sentences implies sentence ϕ is a finite sequence ψ0, ψ1, . . . , ψn = ϕ,
where for each i, either ψi is an axiom, or a member of 7, or it follows from one or more
of the previous ψj ’s using an inference rule. In this case we write 7 # ϕ.

The soundness and completeness theorem of Gödel shows that (using modus ponens
and a specific set of axioms) 7 |= ϕ iff 7 # ϕ. This important link between |= and #
permits the transfer of results obtained in model theory, which focuses primarily on in-

2.3 Basics from Logic 25

terpretations and models, and proof theory, which focuses primarily on proofs. Notably,
a central issue in the study of relational database dependencies (see Part C) has been the
search for sound and complete proof systems for subsets of first-order logic that correspond
to natural families of constraints.

The model-theoretic and proof-theoretic perspectives lead to two equivalent ways of
incorporating equality into first-order languages. Under the model-theoretic approach, the
equality predicate ≈ is given the meaning {(u, u) | u ∈ U} (i.e., normal equality). Under
the proof-theoretic approach, a set of equality axioms EQL is constructed that express the
intended meaning of ≈. For example, EQL includes the sentences ∀x, y, z(x ≈ y ∧ y ≈
z→ x ≈ z) and ∀x, y(x ≈ y→ (R(x)↔ R(y)) for each unary predicate symbol R.

Another important result from mathematical logic is the compactness theorem, which
can be demonstrated using Gödel’s soundness and completeness result. There are two
common ways of stating this. The first is that given a (possibly infinite) set of sentences
7, if 7 |= ϕ then there is a finite 7′ ⊆7 such that 7′ |= ϕ. The second is that if each finite
subset of 7 is satisfiable, then 7 is satisfiable.

Note that although the compactness theorem guarantees that the 7 in the preceding
paragraph has a model, that model is not necessarily finite. Indeed, 7 may only have
infinite models. It is of some solace that, among those infinite models, there is surely at least
one that is countable (i.e., whose elements can be enumerated: a1, a2, . . .). This technically
useful result is the Löwenheim-Skolem theorem.

To illustrate the compactness theorem, we show that there is no set 9 of sentences
defining the notion of connectedness in directed graphs. For this we use the language L

with two constant symbols, a and b, and one binary relation symbol R, which corresponds
to the edges of a directed graph. In addition, because we are working with general first-
order logic, both finite and infinite graphs may arise. Suppose now that 9 is a set of
sentences that states that a and b are connected (i.e., that there is a directed path from
a to b in R). Let # = {σi | i > 0}, where σi states “a and b are at least i edges apart from
each other.” For example, σ3 might be expressed as

¬R(a, b) ∧ ¬∃x1(R(a, x1) ∧ R(x1, b)).

It is clear that each finite subset of 9 ∪# is satisfiable. By the compactness theorem
(second statement), this implies that 9 ∪# is satisfiable, so it has a model (say, I). In I,
there is no directed path between (the elements of the universe identified by) a and b, and
so I �|=9. This is a contradiction.

Specializations to Database Theory

We close by mentioning the primary differences between the general field of mathematical
logic and the specializations made in the study of database theory. The most obvious
specialization is that database theory has not generally focused on the use of functions
on data values, and as a result it generally omits function symbols from the first-order
languages used. The two other fundamental specializations are the focus on finite models
and the special use of constant symbols.

An interpretation is finite if its universe of discourse is finite. Because most databases

26 Theoretical Background

are finite, most of database theory is focused exclusively on finite interpretations. This is
closely related to the field of finite model theory in mathematics.

The notion of logical implication for finite interpretations, usually denoted |=fin, is
not equivalent to the usual logical implication |=. This is most easily seen by considering
the compactness theorem. Let 7 = {σi | i > 0}, where σi states that there are at least i
distinct elements in the universe of discourse. Then by compactness, 7 �|= false, but by the
definition of finite interpretation, 7 |=fin false.

Another way to show that |= and |=fin are distinct uses computability theory. It is
known that |= is r.e. but not recursive, and it is easily seen that |=fin is co-r.e. Thus if they
were equal, |= would be recursive, a contradiction.

The final specialization of database theory concerns assumptions made about the uni-
verse of discourse and the use of constant symbols. Indeed, throughout most of this book
we use a fixed, countably infinite set of constants, denoted dom (for domain elements).
Furthermore, the focus is almost exclusively on finite Herbrand interpretations over dom.
In particular, for distinct constants c and c′, all interpretations that are considered satisfy
¬c ≈ c′.

Most proofs in database theory involving the first-order predicate calculus are based
on model theory, primarily because of the emphasis on finite models and because the link
between |=fin and # does not hold. It is thus informative to identify a mechanism for
using traditional proof-theoretic techniques within the context of database theory. For this
discussion, consider a first-order language with set dom of constant symbols and predicate
symbols R1, . . . , Rn. As will be seen in Chapter 3, a database instance is a finite Herbrand
interpretation I of this language. Following [Rei84], a family #I of sentences is associated
with I. This family includes the axioms of equality (mentioned earlier) and

Atoms: Ri($a) for each $a in RI
i .

Extension axioms: ∀$x(Ri($x)↔ ($x ≈ $a1 ∨ · · · ∨ $x ≈ $am)), where $a1, . . . , $am is a listing of
all elements of RI

i , and we are abusing notation by letting ≈ range over vectors of
terms.

Unique Name axioms: ¬c ≈ c′ for each distinct pair c, c′ of constants occurring in I.

Domain Closure axiom: ∀x(x ≈ c1 ∨ · · · ∨ x ≈ cn), where c1, . . . , cn is a listing of all
constants occurring in I.

A set of sentences obtained in this manner is termed an extended relational theory.
The first two sets of sentences of an extended relational theory express the specific

contents of the relations (predicate symbols) of I. Importantly, the Extension sentences en-
sure that for any (not necessarily Herbrand) interpretation J satisfying #I, an n-tuple is in
RJi iff it equals one of the n-tuples in RI

i . The Unique Name axiom ensures that no pair of
distinct constants is mapped to the same element in the universe of J , and the Domain Clo-
sure axiom ensures that each element of the universe of J equals some constant occurring
in I. For all intents and purposes, then, any interpretation J that models #I is isomorphic
to I, modulo condensing under equivalence classes induced by ≈J . Importantly, the fol-
lowing link with conventional logical implication now holds: For any set < of sentences,
I |= < iff #I ∪ < is satisfiable. The perspective obtained through this connection with clas-

2.3 Basics from Logic 27

sical logic is useful when attempting to extend the conventional relational model (e.g., to
incorporate so-called incomplete information, as discussed in Chapter 19).

The Extension axioms correspond to the intuition that a tuple $a is in relation R only
if it is explicitly included in R by the database instance. A more general formulation of
this intuition is given by the closed world assumption (CWA) [Rei78]. In its most general
formulation, the CWA is an inference rule that is used in proof-theoretic contexts. Given
a set # of sentences describing a (possibly nonconventional) database instance, the CWA
states that one can infer a negated atom R($a) if # �# R($a) [i.e., if one cannot prove R($a)
from # using conventional first-order logic]. In the case where # is an extended relational
theory this gives no added information, but in other contexts (such as deductive databases)
it does. The CWA is related in spirit to the negation as failure rule of [Cla78].

	Some Basics
	Languages, Computability, and Complexity
	Basics from Logic

