
P A R T

F Finale

In this part, we consider four advanced topics. Two of them (incomplete information and
dynamic aspects) have been studied for a while, but for some reason (perhaps their diffi-

culty) they have never reached the maturity of more established areas such as dependency
theory. Interest in the other two topics (complex values and object databases) is more re-
cent, and our understanding of them is rudimentary. In all cases, no clear consensus has
yet emerged. Our choice of material, as well as our presentation, are therefore unavoid-
ably more subjective than in other parts of this book. However, the importance of these
issues for practical systems, as well as the interesting theoretical issues they raise, led us to
incorporate a discussion of them in this book.

In Chapter 19, we address the issue of incomplete information. In many database
applications, the knowledge of the real world is incomplete. It is crucial to be able to handle
such incompleteness and, in particular, to be able to ask queries and perform updates.
Chapter 19 surveys various models of incomplete databases, research directions, and some
results.

In Chapter 20, we present an extension of relations called complex values. These are
obtained from atomic elements using tuple and set constructors. The richer structure allows
us to overcome some limitations of the relational model in describing complex data. We
generalize results obtained for the relational model; in particular, we present a calculus
and an equivalent algebra.

Chapter 21 looks at another way to enrich the relational model by introducing a num-
ber of features borrowed and adapted from object-oriented programming, such as objects,
classes, and inheritance. In particular, objects consist of a structural part (a data reposi-
tory) and a behavioral part (pieces of code). Thus the extended framework encompasses
behavior, a notion conspicuously absent from relational databases.

Chapter 22 deals with dynamic aspects. This is one of the less settled areas in data-
bases, and it raises interesting and difficult questions. We skim through a variety of issues:
languages and semantics for updates; updating views; updating incomplete information;
and active and temporal databases.

A comprehensive vision of the four areas discussed in Part F is lacking. The reader
should therefore keep in mind that some of the material presented is in flux, and its
importance pertains more to the general flavor than the specific results.

485

19 Incomplete Information

Somebody: What are we doing next?
Alice: Who are we? Who are you?

Somebody: We are you and the authors of the book, and I am one of them. This is an
instance of incomplete information.

Somebody: It’s not much, but we can still tell that surely one of us is Alice and that
there are possibly up to three “Somebodies” speaking.

In the previous parts, we have assumed that a database always records information that
is completely known. Thus a database has consisted of a completely determined finite

instance. In reality, we often must deal with incomplete information. This can be of many
kinds. There can be missing information, as in “John bought a car but I don’t know which
one.” In the case of John’s car, the information exists but we do not have it. In other
cases, some attributes may be relevant only to some tuples and irrelevant to others. Alice is
single, so the spouse field is irrelevant in her case. Furthermore, some information may be
imprecise: “Heather lives in a large and cheap apartment,” where the values of large and
cheap are fuzzy. Partial information may also arise when we cannot completely rely on the
data because of possible inconsistencies (e.g., resulting from merging data from different
sources).

As soon as we leave the realm of complete databases, most issues become much more
intricate. To deal with the most general case, we need something resembling a theory of
knowledge. In particular, this quickly leads to logics with modalities: Is it certain that John
lives in Paris? Is it possible that he may? What is the probability that he does? Does John
know that Alice is a good student? Does he believe so? etc.

The study of knowledge is a fascinating topic that is outside the scope of this book.
Clearly, there is a trade-off between the expressivity of the model for incomplete informa-
tion used and the difficulty of answering queries. From the database perspective, we are
primarily concerned with identifying this trade-off and understanding the limits of what is
feasible in this context. The purpose of this chapter is to make a brief foray into this topic.
We limit ourselves mostly to models and results of a clear database nature. We consider
simple forms of incompleteness represented by null values. The main problem we examine
is how to answer queries on such databases. In relation to this, we argue that for a represen-
tation system of incomplete information to be adequate in the context of a query language,
it must also be capable of representing answers to queries. This leads to a desirable closure
property of representations of incomplete information with respect to query languages. We
observe the increase of complexity resulting from the use of nulls.

We also consider briefly two approaches closer to knowledge bases. The first is based

487

488 Incomplete Information

on the introduction of disjunctions in deductive databases, which also leads to a form of
incompleteness. The second is concerned with the use of modalities. We briefly mention
the language KL, which permits us to talk about knowledge of the world.

19.1 Warm-Up

As we have seen, there are many possible kinds of incomplete information. In this section,
we will focus on databases that partially specify the state of the world. Instead of com-
pletely identifying one state of the world, the database contents are compatible with many
possible worlds. In this spirit, we define an incomplete database simply as a set of possible
worlds (i.e., a set of instances). What is actually stored is a representation of an incomplete
database. Choosing appropriate representations is a central issue.

We provide a mechanism for representing incomplete information using null values.
The basic idea is to allow occurrences of variables in the tuples of the database. The
different possible values of the variables yield the possible worlds.

The simplest model that we consider is the Codd table (introduced by Codd), or table
for short. A table is a relation with constants and variables, in which no variable occurs
twice. More precisely, let U be a finite set of attributes. A table T over U is a finite set of
free tuples over U such that each variable occurs at most once. An example of a table is
given in Fig. 19.1. The figure also illustrates an alternative representation (using @) that is
more visual but that we do not adopt here because it is more difficult to generalize.

The preceding definition easily extends to database schemas. A database table T over
a database schema R is a mapping over R such that for each R in R, T(R) is a table
over sort (R). For this generalization, we assume that the sets of variables appearing in
each table are pairwise disjoint. Relationships between the variables can be stated through

R A B C R A B C

0 1 x 0 1 @

y z 1 @ @ 1

2 0 v 2 0 @

Table T Alternative representation of T

R A B C R A B C R A B C R A B C

0 1 2 0 1 2 0 1 2 0 1 1

2 0 1 3 0 1 2 0 1 2 0 1

2 0 0 2 0 5 2 0 0

I1 I2 I3 I4

Figure 19.1: A table and examples of corresponding instances

19.1 Warm-Up 489

global conditions (which we will introduce in the next section). In this section, we will
focus on single tables, which illustrate well the main issues.

To specify the semantics of a table, we use the notion of valuation (see Chapter 4). The
incomplete database represented by a table is defined as follows:

rep(T)= {ν(T) | ν a valuation of the variables in T }.

Consider the table T in Fig. 19.1. Then I1, . . . , I4 all belong to rep(T) (i.e., are possible
worlds).

The preceding definition assumes the Closed World Assumption (CWA) (see Chap-
ter 2). This is because each tuple in an instance of ref (T) must be justified by the presence
of a particular free tuple in T . An alternative approach is to use the Open World Assumption
(OWA). In that case, the incomplete database of T would include all instances that contain
an instance of rep(T). In general, the choice of CWA versus OWA does not substantially
affect the results obtained for incomplete databases.

We now have a simple way of representing incomplete information. What next? Nat-
urally, we wish to be able to query the incomplete database. Exactly what this means is
not clear at this point. We next look at this issue and argue that the simple model of tables
has serious shortcomings with respect to queries. This will naturally lead to an extension
of tables that models more complicated situations.

Let us consider what querying an incomplete database might mean. Consider a table T
and a query q. The table T represents a set of possible worlds rep(T). For each I ∈ rep(T),
q would produce an answer q(I). Therefore the set of possible answers of q is q(rep(T)).
This is, again, an incomplete database. The answer to q should be a representation of this
incomplete database.

More generally, consider some particular representation system (e.g., tables). Such a
system involves a language for describing representations and a mapping rep that associates
a set of instances with each representation. Suppose that we are interested in a particular
query language L (e.g., relational algebra). We would always like to be capable of repre-
senting the result of a query in the same system. More precisely, for each representation T
and query q, there should exist a computable representation q(T) such that

rep(q(T))= q(rep(T)).

In other words, q(T) represents the possible answers of q [i.e., {q(I) | I ∈ rep(T)}].
If some representation system τ has the property described for a query language L, we

will say that τ is a strong representation system forL. Clearly, we are particularly interested
in strong representation systems for relational algebra and we shall develop such a system
later.

Let us now return to tables. Unfortunately, we quickly run into trouble when asking
queries against them, as the following example shows.

Example 19.1.1 Consider T of Fig. 19.1 and the algebraic query σA=3(T). There is no
table representing the possible answers to this query. A possible answer (e.g., for I1) is
the empty relation, whereas there are nonempty possible answers (e.g., for I2). Suppose

490 Incomplete Information

that there exists a table T ′ representing the set of possible answers. Either T ′ is empty and
σA=3(I2) is not in rep(T ′); or T ′ is nonempty and the empty relation is not in rep(T ′). This
is a contradiction, so no such T ′ can exist.

The problem lies in the weakness of the representation system of tables; we will
consider richer representation systems that lead to a complete representation system for
all of relational algebra. An alternative approach is to be less demanding; we consider this
next and present the notion of weak representation systems.

19.2 Weak Representation Systems

To relax our expectations, we will no longer require that the answer to a query be a
representation of the set of all possible answers. Instead we will ask which are the tuples
that are surely in the answer (i.e., that belong to all possible answers). (Similarly, we may
ask for the tuples that are possibly in the answer (i.e., that belong to some possible answer).
We make this more precise next.

For a table T and a query q, the set of sure facts, sure(q, T), is defined as

sure(q, T)= ∩{q(I) | I ∈ rep(T)}.

Clearly, a tuple is in sure(q, T) iff it is in the answer for every possible world. Observe
that the sure tuples in a table T [i.e., the tuples in every possible world in rep(T)] can be
computed easily by dropping all free tuples with variables. One could similarly define the
set poss(q, T) of possible facts.

One might be tempted to require of a weak system just the ability to represent the
set of tuples surely in the answer. However, the definition requires some care due to
the following subtlety. Suppose T is the table in Fig. 19.1 and q the query σA=2(R),
for which sure(q, T) = ∅. Consider now the query q ′ = πAB(R) and the query q ◦ q ′.
Clearly, q ′(sure(q, T))= ∅; however, sure(q ′(q(rep(T)))= {〈2, 0〉}. So q ◦ q ′ cannot be
computed by first computing the tuples surely returned by q and then applying q ′. This
is rather unpleasant because generally it is desirable that the semantics of queries be
compositional (i.e., the result of q ◦ q ′ should be obtained by applying q ′ to the result
of q). The conclusion is that the answer to q should provide more information than just
sure(q, T); the incomplete database it specifies should be equivalent to q(rep(T)) with
respect to its ability to compute the sure tuples of any query in the language applied to it.
This notion of equivalence of two incomplete databases is formalized as follows.

If L is a query language, we will say that two incomplete databases I,J are L
equivalent, denoted I ≡L J , if for each q in L we have

∩{q(I) | I ∈ I} = ∩{q(I) | I ∈ J }.

In other words, the two incomplete databases are undistinguishable if all we can ask for is
the set of sure tuples in answers to queries in L.

We can now define weak representation systems. Suppose L is a query language. A

19.2 Weak Representation Systems 491

representation system is weak for L if for each representation T of an incomplete database,
and each q in L, there exists a representation denoted q(T) such that

rep(q(T))≡L q(rep(T)).

With the preceding definition, q(T) does not provide precisely sure(q, T) for tables
T . However, note that sure(q, T) can be obtained at the end simply by eliminating from
the answer all rows with occurrences of variables.

The next result indicates the power of tables as a weak representation system.

Theorem 19.2.1 Tables form a weak representation system for selection-projection (SP)
[i.e., relational algebra limited to selection (involving only equalities and inequalities) and
projection]. If union or join are added, tables no longer form a weak representation system.

Crux It is easy to see that tables form a weak representation system for SP queries.
Selections operate conservatively on tables. For example,

σcond(T)= {t | t ∈ T and cond(ν(t)) holds

for all valuations ν of the variables in t}.

Projections operate like classical projections. For example, if T is again the table in
Fig. 19.1, then

σA=2(T)= {〈2, 0, v〉}

and

(πAB(R) ◦ σA=2(R))(T)= {〈2, 0〉}.

Let us show that tables are no longer a weak representation system if join or union are
added to SP. Consider join first. So the query language is now SPJ. Let T be the table

R A B C

a x c

a′ x′ c′

where x, x′ are variables and a, a′, c, c′ are constants.
Let q = πAC(R) ./ πB(R). Suppose there is table W such that

rep(W)≡SPJ q(rep(T)),

and consider the query q ′ = πAC(πAB(R) ./ πBC(R)). Clearly, sure(q ◦ q ′, T) is

492 Incomplete Information

A C

a c

a′ c

a c′
a′ c′

Therefore sure(q ′,W) must be the same. Because 〈a′, c〉 ∈ sure(q ′,W), for each valua-
tion ν of variables in W there must exist tuples u, v ∈W such that u(A) = a′, v(C) =
c, ν(u)(B)= ν(v)(B). Let ν be a valuation such that ν(z) �= ν(y) for all variables z, y, z �=
y. If u= v, then u(A)= a′ and u(C)= c so 〈a′, c〉 ∈ sure(πAC(R),W). This cannot be be-
cause, clearly, 〈a′, c〉 �∈ sure(πAC(R), q(rep(T))). So, u �= v. Because ν(u)(B)= ν(v)(B)
andW has no repeated variables, it follows that u(B) and v(B) equal some constant k. But
then 〈a′, k〉 ∈ sure(πAB(R),W), which again cannot be because one can easily verify that
sure(πAB(R), q(rep(T)))= ∅.

The proof that tables do not provide a weak representation system for SPU follows
similar lines. Just consider the table T

R A B

x b

and the query q outputting two relations: σA=a(R) and σA�=a(R). It is easily seen that there
is no pair of tablesW1,W2 weakly representing q(rep(T))with respect to SPU. To see this,
consider the query q ′ = πB(W1 ∪W2). The details are left to the reader (Exercise 19.7).

Naive Tables

The previous result shows the limitations of tables, even as weak representation systems.
As seen from the proof of Theorem 19.2.1, one problem is the lack of repeated variables.
We next consider a first extension of tables that allows repetitions of variables. It will
turn out that this will provide a weak representation system for a large subset of relational
algebra.

A naive table is like a table except that variables may repeat. A naive table is shown
in Fig. 19.2. Naive tables behave beautifully with respect to positive existential queries
(i.e., conjunctive queries augmented with union). Recall that, in terms of the algebra, this
is SPJU.

Theorem 19.2.2 Naive tables form a weak representation system for positive relational
algebra.

Crux Given a naive table T and a positive query q, the evaluation of q(T) is extremely
simple. The variables are treated as distinct new constants. The standard evaluation of q is
then performed on the table. Note that incomplete information yields no extra cost in this
case. We leave it to the reader to verify that this works.

19.3 Conditional Tables 493

R A B C

0 1 x

x z 1

2 0 v

Figure 19.2: A naive table

Naive tables yield a nice representation system for a rather large language. But the
representation system is weak and the language does not cover all of relational algebra. We
introduce in the next section a representation that is a strong system for relational algebra.

19.3 Conditional Tables

We have seen that Codd tables and naive tables are not rich enough to provide a strong
representation system for relational algebra. To see what is missing, recall that when we
attempt to represent the result of a selection on a table, we run into the problem that
the presence or absence of certain tuples in a possible answer is conditioned by certain
properties of the valuation. To capture this, we extend the representation with conditions
on variables, which yields conditional tables. We will show that such tables form a strong
representation system for relational algebra.

A condition is a conjunct of equality atoms of the form x = y, x = c and of inequality
atoms of the form x �= y, x �= c, where x and y are variables and c is a constant. Note that
we only use conjuncts of atoms and that the Boolean true and false can be respectively
encoded as atoms x = x and x �= x.

If formula P is a condition, we say that a valuation ν satisfies P if its assignment of
constants to variables makes the formula true.

Conditions may be associated with table T in two ways: (1) A global condition PT is
associated with the entire table T ; (2) a local condition ϕt is associated with one tuple t of
table T . A conditional table (c-table for short) is a triple (T ,PT , ϕ), where

• T is a table,

• PT is a global condition,

• ϕ is a mapping over T that associates a local condition ϕt with each tuple t of T .

A c-table is shown in Fig. 19.3. If we omit listing a condition, then it is by default the atom
true. Note also that conditions PT and ϕt for t in T may contain variables not appearing
respectively in T or t .

For our purposes, the global conditions in c-tables could be distributed at the tuple level
as local conditions. However, they are convenient as shorthand and when dependencies are
considered.

For brevity, we usually refer to a c-table (T ,PT , ϕ) simply as T . A given c-table T
represents a set of instances as follows (again adopting the CWA):

494 Incomplete Information

J4 A B

0 1
0 3

J3 A B

0 1

J2 A B

0 1
1 0

J1 A B

0 1
0 0

T ′ A B

0 1
1 x
y x

z = z
y = 0
x ≠ y

x ≠ 2, y ≠ 2

Figure 19.3: A c-table and some possible instances

rep(T)= {I | there is a valuation ν satisfying PT such that relation I

consists exactly of those facts ν(t) for which ν satisfies ϕt}.

Consider the table T ′ in Fig. 19.3. Then J1, J2, J3, J4 are obtained by valuating x, y, z
to (0,0,0), (0,1,0), (1,0,0), and (3,0,0), respectively.

The next example illustrates the considerable power of the local conditions of c-tables,
including the ability to capture disjunctive information.

Example 19.3.1 Suppose we know that Sally is taking math or computer science (CS)
(but not both) and another course; Alice takes biology if Sally takes math, and math or
physics (but not both) if Sally takes physics. This can be represented by the following
c-table:

Student Course

(x �= math) ∧ (x �= CS)

Sally math (z= 0)
Sally CS (z �= 0)
Sally x

Alice biology (z= 0)
Alice math (x = physics) ∧ (t = 0)
Alice physics (x = physics) ∧ (t �= 0)

19.3 Conditional Tables 495

Observe that there may be several c-table representations for the same incomplete
database. Two representations T , T ′ are said to be equivalent, denoted T ≡ T ′, if rep(T)=
rep(T ′). Testing for equivalence of c-tables is not a trivial task. Just testing membership
of an instance in rep(T), apparently a simpler task, will be shown to be np-complete. To
test equivalence of two c-tables T and T ′, one must show that for each valuation ν of the
variables in T there exists a valuation ν′ for T ′ such that ν(T)= ν′(T ′), and conversely.
Fortunately, it can be shown that one need only consider valuations to a set C of constants
containing all constants in T or T ′ and whose size is at most the number of variables in the
two tables (Exercise 19.11). This shows that equivalence of c-tables is decidable.

In particular, finding a minimal representation can be hard. This may affect the com-
putation of the result of a query in various ways: The complexity of computing the answer
may depend on the representation of the input; and one may require the result to be some-
what compact (e.g., not to contain tuples with unsatisfiable local conditions).

It turns out that c-tables form a strong representation system for relational algebra.

Theorem 19.3.2 For each c-table T over U and relational algebra query q over U , one
can construct a c-table q(T) such that rep(q(T))= q(rep(T)).

Crux The proof is straightforward and is left as an exercise (Exercise 19.13). The exam-
ple in Fig. 19.4 should clarify the construction.1 For projection, it suffices to project the
columns of the table. Selection is performed by adding new conjuncts to the local condi-
tions. Union is represented by the union of the two tables (after making sure that they use
distinct sets of variables) and choosing the appropriate local conditions. Join and intersec-
tion involve considering all pairs of tuples from the two tables. For difference, we consider
a tuple in the first table and add a huge conjunct stating that it does not match any tuple
from the second table (disjunctions may be used as shorthand; they can be simulated using
new variables, as illustrated in Example 19.3.1).

To conclude this section, we consider (1) languages with recursion, and (2) depen-
dencies. In both cases (and for related reasons) the aforementioned representation system
behaves well. The presentation is by examples, but the formal results can be derived easily.

Languages with Recursion

Consider an incomplete database and a query involving fixpoint. For instance, consider the
table in Fig. 19.5. The representation tc(T) of the answer to the transitive closure query tc
is also given in the same figure. One can easily verify that

rep(tc(T))= tc(rep(T)).

This can be generalized to arbitrary languages with iteration. For example, consider a
c-table T and a relational algebra query q that we want to iterate until a fixpoint is reached.

1 The representations in the tables can be simplified; they are given in rough form to illustrate the
proof technique.

496 Incomplete Information

T1 B C

x c

T2 B C

y c
z w

(y = b)

πB(T2) B

y
z

(y = b)

T3 A B

a y

σB=b(T1 T3) A

a (y = x) ∧ (y = b)

B

y

C

c

T1 ∪ T2 B C

x c

T1 T3 A

a (y = x)

B

y

C

c
y c
z w

(y = b)

T1 – T2 B C

x c
x c
x c

(y ≠ b) ∧ (w ≠ c)

x c
(y = b) ∧ (x ≠ b) ∧ (x ≠ z)
(y = b) ∧ (x ≠ b) ∧ (w ≠ c)

(y ≠ b) ∧ (x ≠ z)

Figure 19.4: Computing with c-tables

Then we can construct the sequence of c-tables:

q(T), q2(T), . . . , qi(T),

Suppose now that q is a positive query. We are guaranteed to reach a fixpoint on
every single complete instance. However, this does not a priori imply that the sequence
of representations {qi(T)}i>0 converges. Nonetheless, we can show that this is in fact the
case. For some i,

rep(qi(T))= rep(qi+1(T)).

19.3 Conditional Tables 497

T A B tc(T) A B

a b a b

x c x c

c d c d

a c x = b
x d

c c x = d
a d x = b

Figure 19.5: Transitive closure of a table

(See Exercise 19.17.) It can also be shown easily that for such i, every I ∈ rep(qi(T))
is a fixpoint of q. The proof is by contradiction: Suppose there is I ∈ rep(qi(T)) such
that q(I) �= I , and consider one such I with a minimum number of tuples. Because
rep(qi(T)) = rep(qi+1(T)), I = q(J) for some J ∈ rep(qi(T)). Because q is positive,
J ⊆ I ; so because q(I) �= I , J ⊂ I . This contradicts the minimality of I . So qi(T)) is
indeed the desired answer.

Thus to find the table representing the result, it suffices to compute the sequence
{qi(T)}i>0 and stop when two consecutive tables are equivalent.

Dependencies

In Part B, we studied dependencies in the context of complete databases. We now recon-
sider dependencies in the context of incomplete information. Suppose we are given an
incomplete database (i.e., a set I of complete databases) and are told, in addition, that
some set $ of dependencies is satisfied. The question arises: How should we interpret the
combined information provided by I and by $?

The answer depends on our view of the information provided by an incomplete data-
base. Dependencies should add to the information we have. But how do we compare in-
complete databases with respect to information content? One common-sense approach, in
line with our discussion so far, is that more information means reducing further the set
of possible worlds. Thus an incomplete database I (i.e., a set of possible worlds) is more
informative than J iff I ⊂ J . In this spirit, the natural use of dependencies would be to
eliminate from I those possible worlds not satisfying $. This makes sense for egd’s (and
in particular fd’s).

A different approach may be more natural in the context of tgd’s. This approach stems
from a relaxation of the CWA that is related to the OWA. Let I be an incomplete database,
and let $ be a set of dependencies. Recall that tgd’s imply the presence of certain tuples
based on the presence of other tuples. Suppose that for some I ∈ I, a tuple t implied by a
tgd in $ is not present in I . Under the relaxation of the CWA, we conclude that t should
be viewed as present in I , even though it is not represented explicitly. More generally, the
chase (see Chapter 8), suitably generalized to operate on instances rather than tableaux,

498 Incomplete Information

I1 I2 I3 J1 J2

A B C A B C A B C A B C A B C

a b c e f g a b c a b c e f g

a b′ c′ e f ′ g′ g b h a b′ c′ e f ′ g′
e f g′ a b c′ e f g

e f ′ g a b′ c e f ′ g

Figure 19.6: Incomplete databases and dependencies

can be used to complete the instance by adding all missing tuples implied by the tgd’s in
$. (See Exercise 19.18.)

In fact, the chase can be used for both egd’s and tgd’s. In contrast to tgd’s, the effect of
chasing with egd’s (and, in particular, fd’s) may be to eliminate possible worlds that violate
them. Note that tuples added by tgd’s may lead to violations of egd’s. This suggests that an
incomplete database I with a set $ of dependencies represents

{chase(I,$) | I ∈ I and the chase of I by $ succeeds}.

For example, consider Fig. 19.6, which shows the incomplete database I = {I1, I2, I3}.
Under this perspective, the incorporation of the dependencies $ = {A→→ B,B→ A} in
this incomplete database leads to J = {J1, J2}.

Suppose now that the incomplete database I is represented as a c-table T . Can the
effect of a set $ of full dependencies on T be represented by another c-table T ′? The
answer is yes, and T ′ is obtained by extending the chase to c-tables in the straightforward
way. For example, a table T1 and its completion T2 by $ = {A→→ B,C→D} are given
in Fig. 19.7. The reader might want to check that

chase$(rep(T1))= rep(T2).

T1 A B C D T2 A B C D

a b c d a b c d

x e y g x e y g

a b c z a b y g (x = a)
a e c d (x = a)

Figure 19.7: c-tables and dependencies

19.4 The Complexity of Nulls 499

19.4 The Complexity of Nulls

Conditional tables may appear to be a minor variation from the original model of complete
relational databases. However, we see next that the use of nulls easily leads to intractability.
This painfully highlights the trade-off between modeling power and resources.

We consider some basic computational questions about incomplete information data-
bases. Perhaps the simplest question is the possibility problem: “Given a set of possible
worlds (specified, for instance, by a c-table) and a set of tuples, is there a possible world
where these tuples are all true?” A second question is the certainty problem: “Given a set
of possible worlds and a set of tuples, are these tuples all true in every possible world?”
Natural variations of these problems involve queries: Is a given set of tuples possibly (or
certainly) in the answer to query q?

Consider a (c-) table T , a query q, a relation I , and a tuple t . Some typical questions
include the following:

(Membership) Is I a possible world for T [i.e., I ∈ rep(T)]?

(Possibility) Is t possible [i.e., ∃I ∈ rep(T)(t ∈ I)]?
(Certainty) Is t certain [i.e., ∀I ∈ rep(T)(t ∈ I)]?
(q-Membership) Is I a possible answer for q and T [i.e., I ∈ q(rep(T))]?

(q-Possibility) Is t possibly in the answer [i.e., ∃I ∈ rep(T)(t ∈ q(I))]?
(q-Certainty) Is t certainly in the answer [i.e., ∀I ∈ rep(T)(t ∈ q(I))]?

Finally we may consider the following generalizations of the q-membership problem:

(q-Containment) Is T contained in q(T ′) [i.e., rep(T)⊆ q(rep(T ′))]?
(q, q ′-Containment) Is q(T) contained in q ′(T) [i.e., rep(q(T))⊆ rep(q ′(T))]?

The crucial difference between complete and incomplete information is the large num-
ber of possible valuations for the latter case. Because of the finite number of variables in a
set of c-tables, only a finite number of valuations are nonisomorphic (see Exercise 19.10).
However, the number of such valuations may grow exponentially in the input size. By sim-
ple reasoning about all valuations and by guessing particular valuations, we have some
easy upper bounds. For a query q that can be evaluated in polynomial time on complete
databases, deciding whether I ∈ q(rep(T)), or whether I is a set of possible answers, can
be answered in np; checking whether q(rep(T))= {I }, or if I is a set of certain tuples, is
in co-np.

To illustrate such complexity results, we demonstrate one lower bound concerning the
q-membership problem for (Codd) tables.

Proposition 19.4.1 There exists a positive existential query q such that checking, given
a table T and a complete instance I , whether I ∈ q(rep(T)) is np-complete.

Proof The proof is by reduction of graph 3-colorability. For simplicity, we use a query
mapping a two-relation database into another two-relation database. (An easy modification
of the proof shows that the result also holds for databases with one relation. In particular,

500 Incomplete Information

increase the arity of the largest relation, and use constants in the extra column to encode
several relations into this one.)

We will use (1) an input schema R with two relations R, S of arity 5 and 2, respec-
tively; (2) an output schema R′ with two relations R′, S′ of arity 3 and 1, respectively; and
(3) a positive existential query q from R to R′. The query q [returning, on each input I over
R, two relations q1(I) and q2(I) over R′ and S′] is defined as follows:

q1 = {〈x, z, z′〉 | ∃y([∃vw(R(x, y, v,w, z) ∨ R(v,w, x, y, z))]
∧ [∃vw(R(x, y, v,w, z′) ∨ R(v,w, x, y, z′))])}

q2 = {z | ∃xyvw(R(x, y, v,w, z) ∧ S(y,w))}.

For each input G= (V ,E) to the graph 3-colorability problem, we construct a table
T over the input schema R and an instance I′ over the output schema R′, such that G is
3-colorable iff I′ ∈ q(rep(T)).

Without loss of generality, assume that G has no self-loops and that E is a binary
relation, where we list each edge once with an arbitrary orientation.

Let V = {ai | i ∈ [1..n]} and E = {(bj , cj) | j ∈ [1..m]}. Let {xj | j ∈ [1..m]} and
{yj | j ∈ [1..m]} be two disjoint sets of distinct variables. Then T and I′ are constructed
as follows:

(a) T(R)= {tj | j ∈ [1..m]}, where tj is the tuple 〈bj, xj , cj , yj , j〉;
(b) T(S)= {〈i, j〉 | i, j ∈ {1, 2, 3}, i �= j};
(c) I′(R′)= {〈a, j, k〉 | a ∈ {bj, cj} ∩ {bk, ck}, where each (b, c) pair is an edge in

E }; and

(d) I′(S′)= {j | j ∈ [1..m]}.

Intuitively, for each tuple in I(R), the second column contains the color of the vertex in
the first column, and the fourth column contains the color of the vertex in the third column.
The edges are numbered in the fifth column. The role of query q2 is to check whether this
provides an assignment of the three colors {1, 2, 3} to vertexes such that the colors of the
endpoints of each edge are distinct. Indeed, q2 returns the edges z for which the colors
y,w of its endpoints are among {1, 2, 3}. So if q(I)(S′)= I′(S′), then all edges have color
assignments among {1, 2, 3} to their endpoints. Next query q1 checks whether a vertex is
assigned the same color consistently in all edges where it occurs. It returns the 〈x, z, z′〉,
where x is a vertex, z and z′ are edges, x occurs as an endpoint, and x has the same color
assignment y in both z and z′. So if q1(I)(R′)= I′(R′), it follows that the color assignment
is consistent everywhere for all vertexes.

For example, consider the graph G given in Fig. 19.8; the corresponding I′ and T
are exhibited in Fig. 19.9. Suppose that f is a 3-coloring of G. Consider the valuation σ
defined by σ(xj)= f (bj) and σ(yj)= f (cj) for all j . It is easily seen that I′ = q(σ (T)).
Moreover, it is straightforward to show that G is 3-colorable iff I′ is in q(rep(T)).

19.5 Other Approaches 501

1 2
2 3
3 4
4 1
3 1

Figure 19.8: Graph G

T(R) T(S) I′(R′) I′(S′)

1 x1 2 y1 1 1 2 1 1 1 1
2 x2 3 y2 2 1 3 1 1 4 2
3 x3 4 y3 3 2 1 1 1 5 3
4 x4 1 y4 4 2 3 1 4 1 4
3 x5 1 y5 5 3 1 1 4 4 5

3 2 1 4 5
2 1 1
2 1 2
2 2 1
2 2 2

...
4 3 3
4 3 4
4 4 3
4 4 4

Figure 19.9: Encoding for the reduction of 3-colorability

19.5 Other Approaches

Incomplete information often arises naturally, even when the focus is on complete data-
bases. For example, the information in a view is by nature incomplete, which in particular
leads to problems when trying to update the view (as discussed in Chapter 22); and we
already considered relations with nulls in the weak universal relations of Chapter 11.

In this section, we briefly present some other aspects of incomplete information. We
consider some alternative kinds of null values; we look at disjunctive deductive databases;
we mention a language that allows us to address directly in queries the issue of incom-
pleteness; and we briefly mention several situations in which incomplete information arises
naturally, even when the database itself is complete. An additional approach to representing
incomplete information, which stems from using explicit logical theories, will be presented
in connection with the view update problem in Chapter 22.

502 Incomplete Information

Other Nulls in Brief

So far we have focused on a specific kind of null value denoting values that are unknown.
Other forms of nulls may be considered. We may consider, for instance, nonexisting nulls.
For example, in the tuple representing a CEO, the field DirectManager has no meaning
and therefore contains a nonexisting null. Nonexisting nulls are at the core of the weak
universal model that we considered in Chapter 11.

It may also be the case that we do not know for a specific field if a value exists. For
example, if the database ignores the marital status of a particular person, the spouse field
is either unknown or nonexisting. It is possible to develop a formal treatment of such no-
information nulls. An incomplete database consists of a set of sets of tuples, where each set
of tuples is closed under projection. This closure under projection indicates that if a tuple
is known to be true, the projections of this tuple (although less informative) are also known
to be true. (The reader may want to try, as a nontrivial exercise, to define tables formally
with such nulls and obtain a closure theorem analogous to Theorem 19.3.2.)

For each new form of null values, the game is to obtain some form of representation
with clear semantics and try to obtain a closure theorem for some reasonable language
(like we did for unknown nulls). In particular, we should focus on the most important
algebraic operations for accessing data: projection and join. It is also possible to establish
a lattice structure with the different kinds of nulls so that they can be used meaningfully in
combination.

Disjunctive Deductive Databases

Disjunctive logic programming is an extension of standard logic programming with rules
of the form

A1 ∨ · · · ∨ Ai← B1, . . . , Bj,¬C1, . . . ,¬Ck.

In datalog, the answer to a query is a set of valuations. For instance, the answer to a query
←Q(x) is a set of constants a such that Q(a) holds. In disjunctive deductive databases,
an answer may also be a disjunctionQ(a) ∨Q(b).

Disjunctions give rise to new problems of semantics for logic programs. Although in
datalog each program has a unique minimal model, this is no longer the case for datalog
with disjunctions. For instance, consider the database consisting of a single statement
{Q(a) ∨Q(b)}. Then there are clearly two minimal models: {Q(a)} and {Q(b)}. This
leads to semantics in terms of sets of minimal models, which can be viewed as incomplete
databases. We can develop a fixpoint theory for disjunctive databases, extending naturally
the fixpoint approach for datalog. To do this, we use an ordering over sets of minimal
interpretations (i.e., sets I of instances such that there are no I, J in I with I ⊂ J).

Definition 19.5.1 Let I,J be sets of minimal interpretations. Then

J 	 I iff ∀I ∈ I (∃J ∈ J (J ⊆ I)).

19.5 Other Approaches 503

Consider the following immediate consequence operator. Let P be a datalog program
with disjunctions, and let I be a set of minimal interpretations. A new set J of interpre-
tations is obtained as follows. For each I in I, stateP (I) is the set of disjunctions of the
form A1 ∨ · · · ∨ Ai that are immediate consequences of some facts in I using P . Then J
is the set of of instances J such that for some I ∈ I, J is a model of stateP (I) contain-
ing I . Clearly, J is not a set of minimal interpretations. The immediate consequence of I,
denoted TP (I), is the set of minimal interpretations in J . Now consider the sequence

I0 = ∅
Ii = TP (Ii−1).

It is easy to see that the sequence {Ii}i≥0 is nondecreasing with respect to the ordering 	,
so it becomes constant at some point. The semantics of P is the limit of the sequence.

When negation is introduced, the situation, as usual, becomes more complicated. How-
ever, it is possible to extend semantics, such as stratified and well founded, to disjunctive
deductive databases.

Overall, the major difficulty in handling disjunction is the combinatorial explosion it
entails. For example, the fixpoint semantics of datalog with disjunctions may yield a set of
interpretations exponential in the input.

Logical Databases and KL

The approach to null values adopted here is essentially a semantic approach, because the
meaning of an incomplete database is a set of possible instances. One can also use a
syntactic, proof-theoretic approach to modeling incomplete information. This is done by
regarding the database as a set of sentences, which yields the logical database approach.

As discussed in Chapter 2, in addition to statements about the real world, logical
databases consider the following:

1. Uniqueness axioms: State that distinct constants stand for distinct elements in the
real world.

2. Domain closure axiom: Specify the universe of constants.

3. Completion axiom: Specify that no fact other than recorded holds.

Missing in both the semantic and syntactic approaches is the ability to make more
refined statements about what the database knows. Such capabilities are particularly im-
portant in applications where the real world is slowly discovered through imprecise data.
In such applications, it is general impossible to wait for a complete state to answer queries,
and it is often desirable to provide the user with information about the current state of
knowledge of the database.

To overcome such limitations, we may use languages with modalities. We briefly
mention one such language: KL. The language KL permits us to distinguish explicitly
between the real world and the knowledge the database has of it. It uses the particular
modal symbolK . Intuitively, whereas the sentence ϕ states the truth of ϕ in the real world,
Kϕ states that the database knows that ϕ holds.

For instance, the fact that the database knows neither that Alice is a student nor that

504 Incomplete Information

she is not is expressed by the statement

¬KStudent(Alice) ∧ ¬K(¬Student(Alice)).

The following KL statement says that there is a teacher who is unknown:

∃x(Teacher(x) ∧ ¬K(Teacher(x))).

This language allows the database to reason and answer queries about its own knowledge
of the world.

Incomplete Information in Complete Databases

Incomplete information often arises naturally even when the focus is on complete data-
bases. The following are several situations that naturally yield incomplete information:

• Views: Although a view of a database is usually a complete database, the information
it contains is incomplete relative to the whole database. For a user seeing the view,
there are many possible underlying databases. So the view can be seen as a rep-
resentation for the set of possible underlying databases. The incompleteness of the
information in the view is the source of the difficulty in view updating (see Chap-
ter 22).

• Weak universal relations: We have already seen how relations with nulls arise in the
weak universal relations of Chapter 11.

• Nondeterministic queries: Recall from Chapter 17 that nondeterministic languages
have several possible answers on a given input. Thus we can think of nondeter-
ministic queries as producing as an answer a set of possible worlds (see also Ex-
ercise 19.20).

• Semantics of negation: As seen in Chapter 15, the well-founded semantics for
datalog¬ involves 3-valued interpretations, where some facts are neither true nor
false but unknown. Clearly, this is a form of incomplete information.

Bibliographic Notes

It was accepted early on that database systems should handle incomplete information
[Cod75]. After some interesting initial work on the topic (e.g., [Cod75, Gra77, Cod79,
Cod82, Vas79, Vas80, Bis81, Lip79, Lip81, Bis83]), the landmark paper [IL84] laid the
formal groundwork for incomplete databases with nulls of the unknown kind and intro-
duced the notion of representation system. That paper assumed the OWA, as opposed to
the CWA that was assumed in this chapter. Since then, there has been considerable work
on querying incomplete information databases. The focus of most of this work has been
a search for the correct semantics for queries applied to incomplete information databases
(e.g., [Gra84, Imi84, Zan84, AG85, Rei86, Var86b]).

Much of the material presented in this chapter is from [IL84] (although it was pre-
sented there assuming the OWA), and we refer the reader to it for a detailed treatment.

Bibliographic Notes 505

Tables form the central topic of the monograph [Gra91]. Examples in Section 19.1 are
taken from there. The naive tables have been called “V-tables” and “e-tables” in [AG85,
Gra84, IL84]. The c-tables with local conditions are from [IL84]; they were augmented
with global conditions in [Gra84]. The fact that c-tables provide a strong representation
system for relational algebra is shown in [IL84]. That this strong representation property
extends to query languages with fixpoint on positive queries is reported in [Gra91]. Chasing
is applied to c-tables in [Gra91].

There are two main observations in the literature on certainty semantics. The first
observation follows from the results of [IL84] (based on c-tables) and [Rei86, Var86b]
(based on logical databases). Namely, under particular syntactic restrictions on c-tables
and using positive queries, the certainty question can be handled exactly as if one had a
complete information database. The second observation deals with the negative effects of
the many possible instantiations of the null values (e.g., [Var86b]).

Comprehensive data-complexity analysis of problems related to representing and
querying databases with null values is provided in [IL84, Var86b, AKG91]. The program
complexity of evaluation is higher by an exponential than the data complexity [Cos83,
Var82a]. Such problems were first noted in [HLY80, MSY81] as part of the study of nulls
in weak universal instances.

Early investigations suggesting the use of orderings in the spirit of denotational se-
mantics for capturing incomplete information include [Vas79, Bis81]. The first paper to
develop this approach is [BJO91], which focused on fd’s and universal relations. This
has spawned several papers, including an extension to complex objects (see Chapter 20)
[BDW88, LL90], mvd’s [Lib91], and bags [LW93b]. An important issue in this work con-
cerns which power domain ordering is used (Hoare, Smyth, or Plotkin); see [BDW91,
Gun92, LW93a].

The logical database approach has been largely influenced by the work of Reiter
[Rei78, Rei84, Rei86] and by that of Vardi [Var86a, Var86b]. The extension of the fixpoint
operator of logic programs to disjunctive logic programs is shown in [MR90]. Disjunctive
logic programming is the topic of [LMR92]. A survey on deductive databases with disjunc-
tions can be found in [FM92]. The complexity of datalog with disjunction is investigated
in [EGM94].

A related but simpler approach to incomplete information is the use of “or-sets.” As a
simple example, a tuple 〈Joe, {20, 21}〉 might be used to indicate that Joe has age either 20
or 21. This approach is introduced in [INV91a, INV91b] in the context of complex objects;
subsequent works include [Rou91, LW93a].

One will find in [Lev84b, Lev84a] entry points to the interesting world of knowledge
bases (from the viewpoint of incompleteness of information), including the language KL. A
related, active area of research, called reasoning about knowledge, extends modal operators
to talk about the knowledge of several agents about facts in the world or about each other’s
knowledge. This may be useful in distributed databases, where sites may have different
knowledge of the world. The semantics of such statements is in terms of an extension of
the possible worlds semantics, based on Kripke structures. An introduction to reasoning
about knowledge can be found in [Hal93, FHMV95].

Finally, nonapplicable nulls are studied in [LL86]; open nulls are studied in [GZ88];
and weak instances with nonapplicable nulls are studied in [AB87b].

506 Incomplete Information

Exercises

Exercise 19.1 Consider the c-table in Example 19.3.1. Give the c-tables for the answers to
these queries: (1) Which students are taking Math? (2) Which students are not taking Math? (3)
Which students are taking Biology? In each case, what are the sets of sure and possible tuples
of the answer?

Exercise 19.2 Consider the c-table T ′ in Fig. 19.3. Show that each I in rep(T ′) has two tuples.
Is T ′ equivalent to some 2-tuple c-table?

Exercise 19.3 Consider the naive table in Fig. 19.2. In the weak representation system de-
scribed in Section 19.1, compute the naive tables for the answers to the queries σA=C(R),
πAB(R) �� πAC(R). What are the tuples surely in the answers to these queries?

Exercise 19.4 A ternary c-table T represents a directed graph with blue, red, and yellow
edges. The first two columns represent the edges and the last the colors. Some colors are
unknown. The local conditions are used to enforce that a blue edge cannot follow a red one
on a path. Give a datalog query q stating that there is a cycle with no two consecutive edges of
the same color. Give c-tables such that (1) there is surely such a cycle; and (2) there may be one
but it is not sure. In each case, compute the table strongly representing the answer to q.

Exercise 19.5 Let T be the Codd table in Fig. 19.1. Compute strong representations of the
results of the following queries, using c-tables: (a) σA=3(R); (b) q1 = δBC→AB(πBC(R)); (c)
q1 ∪ πAB(R); (d) q1 ∩ πAB(R); (e) q1 − πAB(R); (f) q1 �� πBC(R).

Exercise 19.6 Consider the c-table T4 = T1 ∪ T2 of Fig. 19.4. Compute a strong representation
of the transitive closure of T4.

Exercise 19.7 Complete the proof that Codd tables are not a weak representation system with
respect to SPU, in Theorem 19.2.1.

Exercise 19.8 Example 19.1.1 shows that one cannot strongly represent the result of a selec-
tion on a table with another table. For which operations of relational algebra applied to tables is
it possible to strongly represent the result?

Exercise 19.9 Prove that naive tables are not a weak representation system for relational
algebra.

Exercise 19.10 Prove that, given a c-table T without constants, rep(T) is the closure under
isomorphism of a finite set of instances. Extend the result for the case with constants.

Exercise 19.11 Provide an algorithm for testing equivalence of c-tables.

�Exercise 19.12 Show that there exists a datalog query q such that, given a naive table T and
a tuple t , testing whether t is possibly in the answer is np-complete.

Exercise 19.13 Prove Theorem 19.3.2.

Exercise 19.14 Prove that for each c-table T1 and each set of fd’s and mvd’s, there exists a
table T2 such that chase�(rep(T1))= rep(T2). Hint: Use the chase on c-tables.

�Exercise 19.15 Show that there is a query q in polynomial time for which deciding, given I
and a c-table T , (a) whether I ∈ q(rep(T)), or whether I is possible, are np-complete; and (b)
whether q(rep(T))⊆ {I }, or whether I is certain, are co-np-complete.

Exercises 507

Exercise 19.16 Give algorithms to compute, for a c-table T and a relational algebra query q,
the set of tuples sure(q, T) surely in the answer and the set of tuples poss(q, T) possibly in the
answer. What is the complexity of your algorithms?

Exercise 19.17 Let T be a c-table and q a positive existential query of the same arity as T .
Show that the sequence qi(T) converges [i.e., that for some i, qi(T)≡ qi+1(T)]. Hint: Show
that the sequence converges in at most m stages, where m=max{i | qi(I)= qi+1(I), I ∈ I}
and where I is a finite set of relations representing the nonisomorphic instances in rep(T).

Exercise 19.18 Describe how to generalize the technique of chasing by full dependencies
to apply to instances rather than tableau. If an egd can be applied and calls for two distinct
constants to be identified, then the chase ends in failure. Show that for instance I , if the chase
of I by � succeeds, then chase(I,�) |=�.

Exercise 19.19 Show that for datalog programs with disjunctions in heads of rules, the se-
quence {Ii}i≥0 of Section 19.5 converges. What can be said about the limit in model-theoretic
terms?

♠Exercise 19.20 [ASV90] There is an interesting connection between incomplete information
and nondeterminism. Recall the nondeterministic query languages based on the witness operator
W , in Chapter 17. One can think of nondeterministic queries as producing as an answer a
set of possible worlds. In the spirit of the sure and possible answers to queries on incomplete
databases, one can define for a nondeterministic query q the deterministic queries sure(q) and
poss(q) as follows:

sure(q)(I)= ∩{J | J ∈ q(I)}
poss(q)(I)= ∪{J | J ∈ q(I)}

Consider the language FO +W , where a program consists of a finite sequence of assignment
statements of the form R := ϕ, where ϕ is a relational algebra expression or an application ofW
to a relation. Let sure(FO+W) denote all deterministic queries that can be written as sure(q)
for some FO+W query q, and similarly for poss(FO+W). Prove that

(a) poss(FO+W)=np, and

(b) sure(FO+W)=co-np.

