
18 Highly Expressive
Languages

Alice: I still cannot check if I have an even number of shoes.
Riccardo: This will not stand!

Sergio: We now provide languages that do just that.
Vittorio: They can also express any query you can think of.

In previous chapters, we studied a number of powerful query languages, such as the
fixpoint and while queries. Nonetheless, there are queries that these languages cannot

express. As pointed out in the introduction to Chapter 14, fixpoint lies within ptime, and
while within pspace. The complexity bound implies that there are queries, of complexity
higher than pspace, that are not expressible in the languages considered so far. Moreover,
we showed simple, specific queries that are not in fixpoint or while, such as the query even.

In this chapter, we exhibit several powerful languages that have no complexity bound
on the queries they can express. We build up toward languages that are complete (i.e.,
they express all queries). Recall that the notion of query was made formal in Chapter 16.
Basically, a query is a mapping from instances of a fixed input schema to instances of a
fixed answer schema that is computable and generic. Recall that, as a consequence, answers
to queries contain only constants from the input (except possibly for some fixed, finite set
of new constants).

We begin with a language that extends while by providing arbitrary computing power
outside the database; this yields a language denoted whileN , in the style of embedded
relational languages like C+SQL. This would seem to provide the simplest cure for the
computational limitations of the languages exhibited so far. There is no complexity bound
on the queries whileN can express. Surprisingly, we show that, nonetheless, whileN is not
complete. In fact, whileN cannot express certain simple queries, including the infamous
query even. Intuitively, whileN is not complete because the external computation has lim-
ited interaction with the database. Complete languages are obtained by overcoming this
limitation. Specifically, we present two ways to do this: (1) by extending while with the
ability to create new values in the course of the computation, and (2) by extending while
with an untyped version of relational algebra that allows relations of variable arity.

For conciseness, in this chapter we do not pursue the simultaneous development of
languages in the three paradigms—algebraic, logic, and deductive. Instead we choose to
focus on the algebraic paradigm. However, analogous languages could be developed in the
other paradigms (see Exercise 18.22).

466

18.1 WhileN—while with Arithmetic 467

18.1 WhileN— while with Arithmetic

The language while is the most powerful of the languages considered so far. We have seen
that it lies within pspace. Thus it does not have full computing power. Clearly, a complete
language must provide such power. In this section, we consider an extension of while that
does provide full computing power outside the database. Nonetheless, we will show that
the resulting language is not complete; it is important to understand why this is so before
considering more exotic ways of augmenting languages.

The extension of while that we consider allows us to perform, outside the database,
arbitrary computations on the integers. Specifically, the following are added to the while
language:

(i) integer variables, denoted i, j, k, . . . ;
(ii) the integer constant 0 (zero);

(iii) instructions of the form increment(i), decrement(i), where i is an integer variable;

(iv) conditional statements of the form if i = 0 then s else s′, where i is an integer
variable and s, s′ are statements in the language;

(v) loops of the form while i > 0 do s, where i is an integer variable and s a program.

The semantics is straightforward. All integer variables are initialized to zero. The
semantics of the while change construct is not affected by the integer variables (i.e., the
loop is executed as long as there is a change in the content of a relational variable).
The resulting language is denoted by whileN .

Because the language whileN can simulate an arbitrary number of counters, it is
computationally complete on the integers (see Chapter 2). More precisely, the following
holds:

Fact For every computable function f (i1, . . . , ik) on integers, there exists a whileN pro-
gram wf that computes f (i1, . . . , ik) for every integer initialization of i1, . . . , ik. In partic-
ular, wf stops on input i1, . . . , ik iff f is defined on (i1, . . . , ik).

In view of this fact, one can use in whileN programs, whenever convenient, statements
of the form n := f (i1, . . . , ik), where n, i1, . . . , ik are integer variables and f is a com-
putable function on the integers. This is used in the following example.

Example 18.1.1 Let G be a binary relation with attributes AB. Consider the query on
the graph G:

square(G)= ∅ if the diameter of G is a perfect square, and G otherwise.

The following whileN program computes square(G) (the output relation is answer; it is
assumed that G �= ∅):

i := 0; T :=G;

468 Highly Expressive Languages

while change do
begin
T := T ∪ πAB(δB→C(T) ./ δA→C(G));
increment(i);
end;

j := f (i);
answer :=G;
if j > 0 then answer := ∅.

where f is the function such that f (x)= 1 if x is a perfect square and f (x)= 0 otherwise.
(Clearly, f is computable.) Note that, after execution of the while loop, the value of i is the
diameter of G.

It turns out that the preceding program can been expressed in while alone, and even
fixpoint, without the need for arithmetic (see Exercise 18.2). However, this is clearly not
the case in general. For instance, consider the whileN program obtained by replacing f in
the preceding program by some arbitrary computable function.

Despite its considerable power, whileN cannot express certain simple queries, such
as even. There are several ways to show this, just as we did for while. Recall that, in
Chapter 17, it was shown that while has a 0-1 law. It turns out that whileN also has a
0-1 law, although proving this is beyond the scope of this book. Thus there are many
queries, including even, that whileN cannot express. One can also give a direct proof
that even cannot be expressed by whileN by extending straightforwardly the hyperplane
technique used in the direct proof that while cannot express even (Proposition 17.3.2, see
Exercise 18.3).

As in the case of other languages we considered, order has a significant impact on the
expressiveness of whileN . Indeed, whileN is complete on ordered databases.

Theorem 18.1.2 The language whileN expresses all queries on ordered databases.

Crux Let q be a query on an ordered database with schema R. Let I denote an input
instance over R and α the enumeration of constants in I given by the relation succ. By the
definition of query, there exists a Turing machineMq that, given as input encα(I), produces
as output encα(q(I)) (whenever q is defined on I). Because whileN manipulates integers,
we wish to encode I as an integer rather than a Turing machine tape. This can be done easily
because each word over some finite alphabet with k symbols (with some arbitrary order
among the symbols) can be viewed as an integer in base k. For any instance J, let enc∗α(J)
denote the integer encoding of J obtained by viewing encα(J) as an integer. It is easy to see
that there is a computable function fq on the integers such that fq(enc∗α(I))= enc∗α(q(I))
whenever q is defined on I. Furthermore, because whileN can express any computable
function over the integers (see the preceding Fact), there exists a whileN program wfq(i)

that computes fq . It is left to show that whileN can compute enc∗α(I) and can decode q(I)
from enc∗α(q(I)). Recall that, in the proof of Theorem 17.4.2, it was shown that while can
compute a relational representation of encα(I) and, conversely, it can decode q(I) from
the representation of encα(q(I)). A slight modification of that construction can be used to

18.2 Whilenew —while with New Values 469

S R

a b a b α

a c a c β

c a c a γ

Figure 18.1: An application of new

show that whileN can compute the desired integer encoding and decoding. Thus a whileN
program computes q in three phases:

1. compute enc∗α(I);
2. compute fq(enc∗α(I))= enc∗α(q(I));
3. compute q(I) from enc∗α(q(I)).

18.2 Whilenew — while with New Values

Recall that, as discussed in the introduction to Chapter 14, while cannot go beyond pspace
because (1) throughout the computation it uses only values from the input, and (2) it uses
relations of fixed arity. The addition of integers as in whileN is one way to break the space
barrier. Another is to relax (1) or (2). Relaxing (1) is done by allowing the creation of new
values not present in the input. Relaxing (2) yields an extension of while with untyped
algebra (i.e., an algebra of relations with variable arities). In this and the next section, we
describe two languages obtained by relaxing (1) and (2) and prove their completeness.

We first present the extension of while denoted whilenew, which allows the creation of
new values throughout the computation. The language while is modified as follows:

(i) There is a new instruction R := new(S), where R and S are relational variables
and arity(R)= arity(S)+ 1;

(ii) The looping construct is of the form while R do s, whereR is a relational variable.

The semantics of (i) is as follows: Relation R is obtained by extending each tuple of S
by one distinct new value from dom not occurring in the input, the current state, or in the
program. For example, if the value of S is the relation in Fig. 18.1, then R is of the form
shown in that figure. The values α, β, γ are distinct new values1 in dom.

The semantics of while R do s is that statement s is executed while R is nonempty.
We could have used while change instead because each looping construct can simulate the
other. However, in our context of value invention, it is practical to have the more direct
control on loops provided by while R.

1 If arity(S)= 0, then R is unary and contains one new value if S = {〈〉} and is empty if S = ∅. This
allows the creation of values one by one. One might wonder if this kind of one-by-one value creation
is sufficient. The answer is negative. The language with one-by-one value creation is equivalent to
whileN (see Exercise 18.6).

470 Highly Expressive Languages

Note that the new construct is, strictly speaking, nondeterministic. The new values
are arbitrary, so several possible outcomes are possible depending on the choice of values.
However, the different outcomes differ only in the choice of new values. This is formalized
by the following:

Lemma 18.2.1 Let w be a whilenew program with input schema R, and let R be a relation
variable in w. Let I be an instance over R, and let J, J ′ be two possible values of R at the
same point during the execution of w on I. Then there exists an isomorphism ρ from J to
J ′ that is the identity on the constants occurring in I or w.

The proof of Lemma 18.2.1 is done by a straightforward induction on the number of
steps in a partial execution of w on I (Exercise 18.7).

Recall that our definition of query requires that the answer be unique (i.e., the query
must be deterministic). Therefore we must consider only whilenew programs whose an-
swer never contains values introduced by the new statements. Such programs are called
well-behaved whilenew programs. It is possible to give a syntactic restriction on whilenew

programs that guarantees good behavior, can be checked, and yields a class of programs
equivalent to all well-behaved whilenew programs (see Exercises 18.8 and 18.9).

We wish to show that well-behaved whilenew programs can express all queries. First
we have to make sure that well-behaved whilenew programs do in fact express queries. This
is shown next.

Lemma 18.2.2 Each well-behaved whilenew program with input schema R and output
schema answer expresses a query from inst(R) to inst(answer).

Proof We need to show that well-behaved whilenew programs define mappings from
inst(R) to inst(answer) (i.e., they are deterministic with respect to the final answer). Com-
putability and genericity are straightforward. Let w be a well-behaved whilenew program
with input schema R and output answer. Let I, I ′ be two possible values of answer after
the execution of w on an instance I of R. By Lemma 18.2.1, there exists an isomorphism
ρ from I to I ′ that is the identity on values in I or w. Because w is well behaved, answer
contains only values from I or w. Thus ρ is the identity and I = I ′.

Note that although well-behaved programs are deterministic with respect to their final
answer, they are not deterministic with respect to intermediate results that may contain new
values.

We next show that well-behaved whilenew programs express all queries. The basic idea
is simple. Recall that whileN is complete on ordered databases. That is, for each query q,
there is a whileN program w that, given an enumeration of the input values in a relation
succ, computes q. If, given an input, we were able to construct such an enumeration,
we could then simulate whileN to compute any desired query. Because of genericity, we
cannot hope to construct one such enumeration. However, constructing all enumerations
of values in the input would not violate genericity. Both whilenew and the language with
variable arities considered in the next section can compute arbitrary queries precisely in
this fashion: They first compute all possible enumerations of the input values and then

18.2 Whilenew —while with New Values 471

simulate a whileN program on the ordered database corresponding to each enumeration.
These computations yield the same result for all enumerations because queries are generic,
so the result is independent of the particular enumeration used to encode the database (see
Chapter 16).

Before proving the result, we show how we can construct all the possible enumerations
of the elements in the active domain of the input.

Representation

Let I be an instance over R. Let Success be the set of all binary relations defining a
successor relation over adom(I). We can represent all the enumerations in Success with
a 3-ary relation:

succ=
⋃

I∈Success

I × {αI },

where {αI | I ∈ Success} is a set of distinct new values. [Each such αI is used to denote
a particular enumeration of adom(I).] For example, Fig. 18.2 represents an instance I and
the corresponding succ.

Computation of succ

We now argue that there exists a whilenew program w that, given I, computes succ. Clearly,
there is a whilenew program that, given I, produces a unary relation D containing all values
in I. Following is a whilenew program wsucc that computes the relation succ starting from
D (using a query q explained next):

I succ ŝucc

a b a b α1 a b a b c

a c b c α1 b c a b c

c a a c α2 a c a c b

c b α2 c b a c b

b a α3 b a b a c

a c α3 a c b a c

b c α4 b c b c a

c a α4 c a b c a

c a α5 c a c a b

a b α5 a b c a b

c b α6 c b c b a

b a α6 b a c b a

Figure 18.2: An example of succ and ŝucc

472 Highly Expressive Languages

succ := new(σ1�=2(D ×D));
8 := q;
while 8 do

begin
S := new(8);

succ :=
{
〈x, y, α′〉

∣∣∣∣∣
∃α, x′, y′[S(x′, y′, α, α′) ∧ succ(x, y, α)]

∨ ∃α[S(x, y, α, α′)]

}
;

8 := q;
end

The intuition is that we construct in turn enumerations of subsets of size 2, 3, etc., until
we obtain the enumerations of D. (To simplify, we assume that D contains more than two
elements.) An enumeration of a subset of D consists of a successor (binary) relation over
that subset. As mentioned earlier, the program associates a marking (invented value) with
each such successor relation.

During the computation, succ contains the successor relation of subsets of size i
computed so far. A triple 〈a, b, α〉 indicates that b follows a in enumeration denoted α.

The first instruction computes the enumerations of subsets of size 2 (i.e., the distinct
pairs of elements of D) and marks them with new values. At each iteration, 8 indicates
for each enumeration the elements that are missing in this enumeration. More precisely,
relation 8 must contain the following set of triples:

{
〈a, b, α〉

∣∣∣∣∣
b does not occur in the successor relation corresponding to α

and the last element of α is a.

}

The relational query q computes the set8 given a particular relation succ. If8 is not empty,
for each α a new value α′ is created for each element missing in α (i.e., the enumeration
α is extended in all possible ways with each of the missing elements). This yields as many
new enumerations from each α as missing elements.

This is iterated until 8 becomes empty, at which point all enumerations are complete.
Note that if D contains n elements, the final result succ contains n! enumerations.

Theorem 18.2.3 The well-behaved whilenew programs express all queries.

Crux Let q be a query from inst(R) to inst(answer). Assume the query is generic (i.e.,
C-generic with C = ∅). The proof is easily modified for the case when the query is
C-generic with C �= ∅. It is sufficient to observe that

(*)
for each whileN program,

there exists an equivalent well-behaved whilenew program.

Suppose that (*) holds. Let wsucc be the whilenew program computing succ from given
I over R. By Theorem 18.1.2 and (*), there exists a whilenew program w(succ) that com-
putes q using a successor relation succ. We construct another whilenew program w(succ)
that computes q given I and succ. Intuitively, w(succ) is run in parallel for all possible

18.2 Whilenew —while with New Values 473

enumerations succ provided by succ. All computations produce the same result and are
placed in answer. The computations for different enumerations in succ are identified by
the α marking the enumeration in succ. To this end, each relation R of arity k in w(succ)
is replaced by a relation R of arity k + 1. The extended database relations are first initial-
ized by statements of the form R := R × π3(succ). Next the instructions of w(succ) are
modified as follows:

• R := {〈u〉 | φ(u)} becomes R := {〈u, α〉 | ∃y∃zsucc(y, z, α) ∧ φ(u, α)}, where
φ(u, α) is obtained from φ(u) by replacing each atom S(v) by S(v, α);

• while change do remains unchanged.

Finally the instruction answer := π1..n(answer), where n= arity(answer), is appended at
the end of the program. The following can be shown by induction on the steps of a partial
execution of w(succ) on I (Exercise 18.10):

(**) At each point in the computation of w(succ) on I, the set of tuples in relation R
marked with α coincides with the value of R at the same point in the computation
when w(succ) is run on I and succ is the successor relation corresponding to α.

In particular, at the end of the computation of w(succ) on I,

answer =
⋃
α

w(α)(I)× {α},

where α ranges over the enumeration markers. Because w(α)(I)= q(I) for each α, it fol-
lows that answer contains q(I) at the end of the computation. Thus query q is computable
by a well-behaved whilenew program.

Thus it remains to show (*). Integer variables are easily simulated as follows. An
integer variable i is represented by a binary variable Ri. If i contains the integer n, then
Ri contains a successor relation for n+ 1 distinct new values:

{〈αj, αj+1〉 | 0 ≤ j < n}.

(The integer 0 is represented by an empty relation and the integer 1 by a singleton
{〈α0, α1〉}.) It is easy to find a whilenew program for increment and decrement of i.

We showed that well-behaved whilenew programs are complete with respect to our
definition of query. Recall that whilenew programs that are not well behaved can compute
a different kind of query that we excluded deliberately, which contains new values in the
answer. It turns out, however, that such queries arise naturally in the context of object-
oriented databases, where new object identifiers appear in query results (see Chapter 21).
This requires extending our definition of query. In particular, the query is nondeterministic
but, as discussed earlier, the different answers differ only in the particular choice of new
values. This leads to the following extended notion of query:

Definition 18.2.4 A determinate query is a relation Q from inst(R) to inst(answer)
such that

474 Highly Expressive Languages

ψ3

ψ0 ψ2

ψ1

b a{a, b} ⇒

Figure 18.3: A query not expressible in whilenew

• Q is computable;

• if 〈I, J 〉 ∈Q and ρ is a one-to-one mapping on constants, then 〈ρ(I), ρ(J)〉 ∈Q;
and

• if 〈I, J 〉 ∈Q and 〈I, J ′〉 ∈Q, then there exists an isomorphism from J to J ′ that is
the identity on the constants in I .

A language is determinate complete if it expresses only determinate queries and all deter-
minate queries.

Let Q be a determinate query. If 〈I, J 〉 ∈Q and ρ is a one-to-one mapping on con-
stants leaving I fixed, then 〈I, ρ(J)〉 ∈Q.

The question arises whether whilenew remains complete with respect to this ex-
tended notion of query. Surprisingly, the answer is negative. Each whilenew query is
determinate. However, we exhibit a simple determinate query that whilenew cannot ex-
press. Let q be the query with input schema R = {S}, where S is unary, and output G,
where G is binary. Let q be defined as follows: For each input I over S, if I = {a, b}
then q(I)= {〈ψ0, ψ1〉, 〈ψ1, ψ2〉, 〈ψ2, ψ3〉, 〈ψ3, ψ0〉, 〈ψ0, b〉, 〈ψ1, a〉, 〈ψ2, b〉, 〈ψ3, a〉} for
some new elements ψ0, ψ1, ψ2, ψ3, and q(I)= ∅ otherwise (Fig. 18.3).

Theorem 18.2.5 The query q is not expressible in whilenew.

Proof The proof is by contradiction. Suppose w is a whilenew program expressing q.
Consider the sequence of steps in the execution of w on an input I = {a, b}. We can
assume without loss of generality that no invented value is ever deleted from the data-
base (otherwise modify the program to keep all invented values in some new unary rela-
tion). For each invented value occurring in the computation, we define a trace that records
how the value was invented and uniquely identifies it. More precisely, trace(α) is de-
fined inductively as follows. If α is a constant, then trace(α) = 〈α〉. Suppose α is a new
value created at step i with a new statement associating it with tuple 〈x1, . . . , xk〉. Then
trace(α)= 〈i, trace(x1), . . . , trace(xk)〉. Clearly, one can extend trace to tuples and rela-

18.3 Whileuty—An Untyped Extension of while 475

tions in the natural manner. It is easily shown (Exercise 18.11) by induction on the number
of steps in a partial execution of w on I that

(†) trace(α)= trace(β) iff α = β;

(‡) for each instance J computed during the execution of w on input I , trace(J) is closed
under each automorphism ρ of I . In particular, for each α occurring in J , ρ(trace(α))
equals trace(β) for some β also occurring in J .

Consider now trace(q(I)) and the automorphism ρ of I [and therefore of trace(q(I))]
defined by ρ(a) = b, ρ(b) = a. Note that ρ2 = id (the identity) and ρ = ρ−1. Consider
ρ(trace(ψ0)). Because 〈ψ0, b〉 ∈ q(I), it follows that 〈trace(ψ0), b〉 ∈ trace(q(I)). Be-
cause ρ(b)= a, it further follows that 〈ρ(trace(ψ0)), a〉 ∈ trace(q(I)) so ρ(trace(ψ0)) is
either trace(ψ1) or trace(ψ3). Suppose ρ(trace(ψ0))= trace(ψ1) (the other case is simi-
lar). From the fact that ρ is an automorphism of trace(q(I)) it follows that ρ(trace(ψ3))=
trace(ψ0), ρ(trace(ψ2)) = trace(ψ3), and ρ(trace(ψ1)) = trace(ψ2). Consider now ρ2.
First, because ρ2 = id , ρ2(trace(ψi)) = trace(ψi), 0 ≤ i ≤ 3. On the other hand,
ρ2(trace(ψ0)) = ρ(ρ(trace(ψ0))) = ρ(trace(ψ1)) = trace(ψ2). This is a contradiction.
Hence q cannot be computed by whilenew.

The preceding example shows that the presence of new values in the answer raises
interesting questions with regard to completeness. There exist languages that express all
queries with invented values in answers (see Exercise 18.14 for a complex construct that
leads to a determinate-complete language). Value invention is common in object-oriented
languages, in the form of object creation constructs (see Chapter 21).

18.3 Whileuty—An Untyped Extension of while

We briefly describe in this section an alternative complete language obtained by relaxing
the fixed-arity requirement of the languages encountered so far. This relaxation is done
using an untyped version of relational algebra instead of the familiar typed version. We will
obtain a language allowing us to construct relations of variable, data-dependent arity in the
course of the computation. Although strictly speaking they are not needed, we also allow
integer variables and integer manipulation, as in whileN . Intuitively, it is easy to see why
this yields a complete language. Variable arities allow us to construct all enumerations of
constants in the input, represented by sufficiently long tuples containing all constants. The
ability to construct the enumerations and manipulate integers yields a complete language.

The first step in defining the untyped version of while is to define an untyped version
of relational algebra. This means that operations must be defined so that they work on
relations of arbitrary, unknown arity. Expressions in the untyped algebra are built from
relation variables and constants and can also use integer variables and constants. Let i, j
be integer variables, and for each integer k, let ∅k denote the empty relation of arity k.
Untyped algebra expressions are built up using the following operations:

• If e, e′ are expressions, then e ∩ e′ and e ∪ e′ are expressions; if arity(e)= arity(e′)
the semantics is the usual; otherwise the result is ∅0.

476 Highly Expressive Languages

• If e is an expression, then ¬e is an expression; the complement is with respect to the
active domain (not including the integers).

• If e, f are expressions, then e× f is an expression; the semantics is the usual cross-
product semantics.

• If e is an expression, then σi=j (e) is an expression, where i, j are integer variables
or constants; if arity(e)≥ max{i, j} the semantics is the usual; otherwise the result
is ∅0.

• If e is an expression, then πij(e) is an expression, where i, j are integer variables or
constants; if i ≤ j and arity(e)≥ max{i, j}, this projects e on columns i through j ;
otherwise the result is ∅|j−i|.

• If e is an expression, then exij (e) is an expression; if arity(e) ≥ max{i, j}, this
exchanges in each tuple in the result of e the i and j coordinates; otherwise the
result is ∅0.

We may also consider an untyped version of tuple relational calculus (see Exer-
cise 18.15).

We can now define whileuty programs. They are concatenations of statements of the
form

• i := j , where i is an integer variable and j an integer variable or constant.

• increment(i), decrement(i), where i is an integer variable.

• while i > 0 do t, where i is an integer variable and t a program.

• R := e, where R is a relational variable and e an untyped algebra expression; the
semantics here is that R is assigned the content and arity of e.

• while R do t, where R is a relational variable and t a program; the semantics is that
the body of the loop is repeated as long as R is nonempty.

All relational variables that are not database relations are initialized to ∅0; integer variables
are initialized to 0.

Example 18.3.1 Following is a whileuty program that computes the arity of a nonempty
relation R in the integer variable n:

S0 := {〈〉}; S1 := S0 ∪ R; S2 :=¬S1;
while S2 do

begin
n := n+ 1;
S0 := S0 ×D;
S1 := S0 ∪ R;
S2 :=¬S1;
end

where D abbreviates an algebra expression computing the active domain [e.g., π11(R) ∪
¬π11(R)]. The program tries out increasing arities for R starting from 0. Recall that

18.3 Whileuty—An Untyped Extension of while 477

whenever R and S0 have different arities, the result of S0 ∪R is ∅0. This allows us to detect
when the appropriate arity has been found.

Remark 18.3.2 There is a much simpler set of constructs that yields the same power as
whileuty. In general, programs are much harder to write in the resulting language, called QL,
than in whileuty. One can show that the set of constructs of QL is minimal. The language QL
is described next; it does not use integer variables. QL expressions are built from relational
variables and constant relations as follows (D denotes the active domain):

• equal is an expression denoting {〈a, a〉 | a ∈D}.
• e ∩ e′ and¬e are defined as for whileuty; the complement is with respect to the active

domain.

• If e is an expression, then e ↓ is an expression; this projects out the last coordinate
of the result of e (and is ∅0 if the arity is already zero).

• If e is an expression, then e ↑ is an expression; this produces the cross-product of e
with D.

• If e is an expression, then e ∼ is an expression; if arity(e)≥ 2, then this exchanges
the last two coordinates in each tuple in the result of e. Otherwise the answer is ∅0.

Programs are built by concatenations of assignment statements (R := e) and while state-
ments (while R do s). The semantics of the while is that the loop is iterated as long as R is
nonempty.

We leave it to the reader to check that QL is equivalent to whileuty (Exercise 18.17).
We briefly describe the simulation of integers by QL. Let Z denote the constant 0-ary
relation {〈〉}. We can have Z represent the integer 0 and Z ↑n represent the integer n. Then
increment(n) is simulated by one application of ↑, and decrement(n) is simulated by one
application of ↓. A test of the form x = 0 becomes e ↓= ∅, where e is the untyped algebra
expression representing the value of x. Thus we can simulate arbitrary computations on the
integers.

Recall that our definition of query requires that both the input and output be instances
over fixed schemas. On the other hand, in whileuty relation arities are variable, so in general
the arity of the answer is data dependent. This is a problem analogous to the one we
encountered with whilenew, which generally produces new values in the result. As in the
case of whilenew, we can define semantic and syntactic restrictions on whileuty programs
that guarantee that the programs compute queries. Call a whileuty program well behaved if
its answer is always of the same arity regardless of the input. Unfortunately, it can be shown
that it is undecidable if a whileuty program is well behaved (Exercise 18.19). However, there
is a simple syntactic condition that guarantees good behavior and covers all well-behaved
programs. A whileuty program with answer relation answer is syntactically well behaved if
the last instruction of the program is of the form answer := πmn(R), wherem, n are integer
constants. Clearly, syntactic good behavior guarantees good behavior and can be checked.
Furthermore, it is obvious that each well-behaved whileuty program is equivalent to some
syntactically well-behaved program (Exercise 18.19).

478 Highly Expressive Languages

We now prove the completeness of well-behaved whileuty programs.

Theorem 18.3.3 The well-behaved whileuty programs express all queries.

Crux It is easily verified that all well-behaved whileuty programs define queries. The proof
that every query can be expressed by a well-behaved whileuty program is similar to the
proof of Theorem 18.2.3. Let q be a query with input schema R. We proceed in two steps:
First construct all orderings of constants from the input. Next simulate the whileN program
computing q on the ordered database corresponding to each ordering. The main difference
with whilenew lies in how the orderings are computed. In whileuty, we use the arbitrary arity
to construct a relation R< containing sufficiently long tuples each of which provides an
enumeration of all constants. This is done by the following whileuty program, where D
stands for an algebra expression computing the active domain:

R< := ∅0;
C :=D; arityC := 1;
while C do

begin
R< := C;
C := C ×D; increment(arityC);
for i := 1 to (arityC − 1) do
C := C ∩ ¬σi=arity(C)(C);

end

Clearly, the looping construct f or i := 1 to . . . can be easily simulated. If the size of D
is n, the result of the program is the set of n-tuples with distinct entries in adom(D). Note
that each such tuple t in R< provides a complete enumeration of the constants in D. Next
one can easily construct a whileuty program that constructs, for each such tuple t in R<, the
corresponding successor relation. More precisely, one can construct

ŝucc=
⋃
t∈R<

succt × {t},

where succt = {〈t (i), t (i + 1)〉 | 1≤ i < n} (see Fig. 18.2 and Exercise 18.20).

Untyped languages allow us to relax the restriction that the output schema is fixed.
This may have a practical advantage because in some applications it may be necessary to
have the output schema depend on the input data. However, in such cases one would likely
prefer a richer type system rather than no typing at all.

The overall results on the expressiveness and complexity of relational query languages
are summarized in Figs. 18.4 and 18.5. The main classes of queries and their inclusion
structure are represented in Fig. 18.4 (solid arrows indicate strict inclusion; the dotted
arrow indicates strict inclusion if ptime �= pspace). Languages expressing each class of
queries are listed in Fig. 18.5, which also contains information on complexity (first with-
out assumptions, then with the assumption of an order on the database). In Fig. 18.5,

Bibliographic Notes 479

Conjunctive queries

Positive-existential

All queries

While

Fixpoint

Stratified datalog¬

Semipositive datalog¬

Datalog

First order

Figure 18.4: Main classes of queries

CALC(∃,∧) denotes the conjunctive calculus and CALC(∃,∧,∨) denotes the positive-
existential calculus.

Bibliographic Notes

The first complete language proposed was the language QL of Chandra and Harel [CH80b].
Chandra also considered a language equivalent to whileN , which he called LC [Cha81a].
It was shown that LC cannot compute even. Several other primitives are considered in
[Cha81a] and their power is characterized. The language whilenew was defined in [AV90],
where its completeness was also shown.

The languages considered in this chapter can be viewed as formalizing practical lan-
guages, such as C+SQL or O2C, used to develop database applications. These languages
combine standard computation (C) with database computation (SQL in the relational world
or O2 in the object-oriented world). In this direction, several computing devices were de-
fined in [AV91b], and complexity-theoretic results are obtained using the devices. First
an extension of Turing machines with a relational store, called relational machine, was
shown to be equivalent to whileN . A further extension of relational machines equivalent to
whilenew and whileuty, called generic machine, was also defined. In the generic machine,

480 Highly Expressive Languages

Class of Complexity
queries Languages Complexity with order

conjunctive CALC(∃,∧) ⊂ logspace ⊂ logspace
SPJR algebra ⊂ ac0 ⊂ ac0

positive- CALC(∃,∧,∨)
existential SPJUR algebra ⊂ logspace ⊂ logspace

nr-datalog ⊂ ac0 ⊂ ac0

datalog datalog ⊂ monotonic ⊂ monotonic
ptime ptime

semipositive semipositive datalog¬ ⊂ ptime = ptime
datalog¬ (with min, max)

first order CALC
ALG ⊂ logspace ⊂ logspace
nr-stratified datalog¬ ⊂ ac0 ⊂ ac0

stratified stratified datalog¬ ⊂ ptime = ptime
datalog¬

fixpoint CALC+µ+
while+
datalog¬ (fixpoint and

well-founded semantics) ⊂ ptime = ptime

while CALC+µ
while
datalog¬¬ (fixpoint semantics) ⊂ pspace = pspace

all queries whileuty no bound no bound
whilenew

Figure 18.5: Languages and complexity

parallelism is used to allow simultaneous computations with all possible successor rela-
tions.

Queries with new values in their answers were first considered in [AK89], in the con-
text of an object-oriented deductive language with object creation, called IQL. The notion
of determinate query [VandBGAG92] is a recasting of the essentially equivalent notion of
db transformation, formulated in [AK89]. In [AK89], the query in Theorem 18.2.5 is also
exhibited, and it is shown that IQL without duplicate elimination cannot express it. Because
IQL is more powerful than whilenew, their result implies the result of Theorem 18.2.5. The
issue of completeness of languages with object creation was further investigated in [AP92,
VandBG92, VandBGAG92, VandBP95, DV91, DV93].

Exercises 481

Finally it is easy to see that each (determinate) query can be computed in some natural
nondeterministic extension of whilenew (e.g., with the witness operator of Chapter 17)
[AV91c]. However, such programs may be nondeterministic so they do not define only
determinate queries.

Exercises

Exercise 18.1 Let G be a graph. Consider a query “Does the shortest path from a to b in G
have property P?” where G is a graph, P is a recursive property of the integers, and a, b are
two particular vertexes of the graph. Show that such a query can be expressed in whileN .

Exercise 18.2 Prove that the query in Example 18.1.1 can be expressed (a) in while; (b) in
fixpoint.

Exercise 18.3 Sketch a direct proof that even cannot be expressed by whileN by extending the
hyperplane technique used in the proof of Proposition 17.3.2.

♠Exercise 18.4 [AV94] Consider the language L augmenting whileN by allowing mixing of
integers with data. Specifically, the following instruction is allowed in addition to those of
whileN : R := {〈i1, . . . , ik〉}, where R is a k-ary relation variable and i1, . . . , ik are integer vari-
ables. It is assumed that the domain of input values is disjoint from the integers. Comple-
ment (or negation) is taken with respect to the domain formed by all values in the database or
program, including the integer values present in the database. The well-behaved L programs
are those whose outputs never contain integers. Show that well-behaved L and whileN are
equivalent.

Exercise 18.5 Complete the proof of Theorem 18.1.2.

♠Exercise 18.6 [AV90] Consider a variation of the language whilenew where the R := new(S)
instruction is replaced by the simpler instruction “R := new” where R is unary. The semantics
of this instruction is that R is assigned a singleton {〈α〉}, where α is a new value. Denote the
new language by whileunary-new.

(a) Show that each query expressible in whileN is also expressible in whileunary-new.
Hint: Use new values to represent integers. Specifically, to represent the integers up
to n, construct a relation succint containing a successor relation on n new values. The
value of rank i with respect to succ represents integer i.

(b) Show that each query expressible in whileunary-new is also expressible in whileN .
Hint: Again establish a correspondence between new values and integers. Then use
Exercise 18.4.

Exercise 18.7 Prove Lemma 18.2.1.

Exercise 18.8 Prove that it is undecidable if a given whilenew program is well behaved.

.Exercise 18.9 In this exercise we define a syntactic restriction on whilenew programs that
guarantees good behavior. Let w be a whilenew program. Without loss of generality, we can
assume that all instructions contain at most one algebraic operation among ∪,−, π,×, σ . Let
the not-well-behaved set of w, denoted Bad(w), be the smallest set of pairs of the form 〈R, i〉,
where R is a relation in w and 1≤ i ≤ arity(R), such that

482 Highly Expressive Languages

(a) if S := new(R) is an instruction in w and arity(S)= k, then 〈S, k〉 ∈ Bad(w);

(b) if S := T ∪R is inw and 〈T , i〉 ∈ Bad(w) or 〈R, i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w);

(c) if S := T − R is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w);

(d) if S := T × R is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w); and if 〈R, j〉 ∈
Bad(w), then 〈S, arity(T)+ j〉 ∈ Bad(w);

(e) if S := πi1...ik(T) is in w and 〈T , ij〉 ∈ Bad(w), then 〈S, j〉 ∈ Bad(w);

(f) if S := σcond(T) is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w).

A whilenew program w is syntactically well behaved if

{〈answer, i〉 | 1≤ i ≤ arity(answer)} ∩ Bad(w)= ∅.

(a) Outline a procedure to check that a given whilenew program is syntactically well
behaved.

(b) Show that each syntactically well-behaved whilenew program is well behaved.

(c) Show that for each well-behaved whilenew program, there exists an equivalent syn-
tactically well-behaved whilenew program.

Exercise 18.10 Prove (*) in the proof of Theorem 18.2.3.

Exercise 18.11 Prove (†) and (‡) in the proof of Theorem 18.2.5.

Exercise 18.12 Consider the query q exhibited in the proof of Theorem 18.2.5. Let q2 be the
query that, on input I = {a, b}, produces as answer two copies of q(I). More precisely, for each
ψi in q(I), let ψ ′i be a distinct new value. Let q ′(I) be obtained from q(I) by replacing ψi by
ψ ′i , and let q2(I)= q(I) ∪ q ′(I). Prove that q2 can be expressed by a whilenew program.

♠Exercise 18.13 [DV91, DV93] Consider the instances I, J of Fig. 18.6. Consider a query q
that, on input of the same pattern as I , returns J (up to an arbitrary choice of distinct β, θi) and
otherwise returns the empty instance. Show that q is not expressible in whilenew.

♠Exercise 18.14 (Choose [AK89]) Let whilechoose
new be obtained by augmenting whilenew with the

following (determinate) choose construct. A program w may contain the instruction choose(R)
for some unary relation R. On input I, when choose(R) is applied in a state J, the next state J′
is defined as follows:

(a) if for each a, b in J(R), there is an automorphism of J that is the identity over
adom(I, w) and maps a to b, J′ is obtained from J by eliminating one arbitrary
element in J(R);

(b) otherwise J′ is just J.

Show that whilechoose
new is determinate complete.

Exercise 18.15 One may consider an untyped version of tuple relational calculus. Untyped
relations are used just like typed relations, except that terms of the form t (i) are allowed, where
t is a tuple variable and i an integer variable. Equivalence of queries now means that the queries
yield the same answers given the same relations and values for the integer variables. Show that
untyped relational calculus and untyped relational algebra are equivalent.

Exercise 18.16 Show that exij is not redundant in the untyped algebra.

Exercises 483

α1 a ψ1

α1 b ψ1

α1 b ψ2

α1 c ψ2

α1 c ψ3

α1 d ψ3

α1 d ψ4

α1 a ψ4

α2 a ψ5

α2 b ψ5

α2 b ψ6

α2 c ψ6

α2 c ψ7

α2 d ψ7

α2 d ψ8

α2 a ψ8

3⇒

β a θ1

β b θ1

β b θ2

β c θ2

β c θ3

β d θ3

β d θ4

β a θ4

I J

Figure 18.6: Another query not expressible in whilenew

♠Exercise 18.17 Sketch a proof that whileuty and the language QL described in Remark 18.3.2
are equivalent.

Exercise 18.18 Write a QL program computing the transitive closure of a binary relation.

♠Exercise 18.19 This exercise concerns well-behaved whileuty programs. Show the following:

(a) It is undecidable whether a given whileuty program is well behaved.

(b) Each syntactically well-behaved whileuty program is well behaved.

(c) For each well-behaved whileuty program, there exists an equivalent syntactically
well-behaved whileuty program.

Exercise 18.20 Write a whileuty program that constructs the relation ŝucc fromR< in the proof
of Theorem 18.3.3.

♠Exercise 18.21 [AV91b] Prove that any query on a unary relation computed by a whilenew
or whileuty program in polynomial space is in FO. (For the purpose of this exercise, define the
space used in a program execution as the maximum number of occurrences of constants in some
instance produced in the execution of the program.) Note that, in particular, even cannot be
computed in polynomial space in these languages.

♠Exercise 18.22 [AV91a] Consider the following extension of datalog¬¬ with the ability to
create new values. The rules are of the same form as datalog¬¬ rules, but with a different
semantics than the active domain semantics used for datalog¬¬. The new semantics is the
following. When rules are fired, all variables that occur in heads of rules but do not occur
positively in the body are assigned distinct new values, not present in the input database,
program, or any of the other relations in the program. A distinct value is assigned for each

484 Highly Expressive Languages

applicable valuation of the variables positively bound in the body in each firing. This is similar
to the new construct in whilenew. For example, one firing of the rule

R(x, y, α)← P(x, y)

has the same effect as the R := new(P) instruction in whilenew. The resulting extension of
datalog¬¬ is denoted datalog¬¬new. The well-behaved datalog¬¬new programs are those that never
produce new values in the answer. Sketch a proof that well-behaved datalog¬¬new programs ex-
press all queries.

