
17 First Order, Fixpoint,
and While

Alice: I get it, now we’ll match languages to complexity classes.
Sergio: It’s not that easy—data independence adds some spice.

Riccardo: You can think of it as not having order.
Vittorio: It’s a lot of fun, and we’ll play some games along the way.

In Chapter 16, we laid the framework for studying the expressiveness and complexity
of query languages. In this chapter, we evaluate three of the most important classes of

languages discussed so far—CALC, fixpoint, and while—with respect to expressiveness
and complexity. We show that CALC is in logspace and ac0, that fixpoint is complete in
ptime, and that while is complete in pspace.1 We also investigate the impact of the presence
of an ordering of the constants in the input.

We first show that CALC can be evaluated in logspace. This complexity result partly
explains the success of relational database systems: Relational queries can be evaluated
efficiently. Furthermore, it implies that these queries are within nc and thus that they have a
high potential of intrinsic parallelism (not yet fully exploited in actual systems). We prove
that CALC queries can be evaluated in constant time in a particular (standard) model of
parallel computation based on circuits.

While looking at the expressive power of CALC and the other two languages, we
study their limitations by examining queries that cannot be expressed in these languages.
This leads us to introduce important tools that are useful in investigating the expressive
power of query languages. We first present an elegant characterization of CALC based on
Ehrenfeucht-Fraissé games. This is used to show limitations in the expressive power of
CALC, such as the nonexpressibility of the transitive closure query on a graph. A second
tool related to expressiveness, which applies to all languages discussed in this chapter,
consists of proving 0-1 laws for languages. This powerful approach, based on probabilities,
allows us to show that certain queries (such as even) are not expressible in while and thus
not in fixpoint or CALC.

As discussed in Section 16.3, there are simple queries that these languages cannot ex-
press (e.g., the prototypical example of even). Together with the completeness of fixpoint
and while in ptime and pspace, respectively, this suggests that there is an uneasy relation-
ship between these languages and complexity classes. As intimated in Section 16.3, the
problem can be attributed to the fact that a generic query language cannot take advantage
of the information provided by the internal representation of data used by Turing machines,

1 ac0 and nc are two parallel complexity classes defined later in this chapter.
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such as an ordering of the constants. For instance, the query even is easily expressible in
while if an order is provided.

A fundamental result of this chapter is that fixpoint expresses exactly qptime under
the assumption that queries can access an order on the constants. It is especially surprising
that a complexity class based on such a natural resource as time coincides with a logic-
based language such as fixpoint. However, this characterization depends on the order in
a crucial manner, and this highlights the importance of order in the context of generic
computation. No language is known that expresses qptime without the order assumption;
and the existence of such a language remains one of the main open problems in the theory
of query languages.

This chapter concludes with two recent developments that shed further light on the
interplay of order and expressiveness. The first shows that a while query on an unordered
database can be reduced to a while query on an ordered database via a fixpoint query. The
fixpoint query produces an ordered database from a given unordered one by grouping tuples
into a sequence of blocks that are never split in the computation of the while query; the
blocks can then be thought of as elements of an ordered database. This also allows us to
clarify the connection between fixpoint and while: They are distinct, unless ptime = pspace.

The second recent development considers nondeterminism as a means for overcoming
limitations due to the absence of ordering of the domain. Several nondeterministic exten-
sions of CALC, fixpoint, and while are shown.

The impact of order is a constant theme throughout the discussion of expressive power.
As discussed in Chapter 16, the need to consider computation without order is a conse-
quence of the data independence principle, which is considered important in the database
perspective. Therefore computation with order is viewed as a metaphor for an (at least
partial) abandonment of the data independence principle.

17.1 Complexity of First-Order Queries

This section considers the complexity of first-order queries and shows that they are in
qlogspace. This result is particularly significant given its implications about the parallel
complexity of CALC and thus of relational languages in general. Indeed, logspace ⊆ nc.
As will be seen, this means that every CALC query can be evaluated in polylogarithmic
time using a polynomial number of processors. Moreover, as described in this section, a
direct proof shows the stronger result that the first-order queries can in fact be evaluated in
ac0. Intuitively, this says that first-order queries can be evaluated in constant time with a
polynomial number of processors.

We begin by showing the connection between CALC and qlogspace.

Theorem 17.1.1 CALC is included in qlogspace.

Proof Let ϕ be a query in CALC over some database schema R. We will describe a TM
Mϕ, depending on ϕ, that solves the recognition problem for ϕ and uses a work tape with
length logarithmic in the size of the read-only input tape.

Suppose that Mϕ is started with input encα(I)#encα(u) for some instance I over R,
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some enumeration α of the constants, and some tuple u over adom(I) whose arity is the
same as that of the result of ϕ. Mϕ should accept the input iff u ∈ ϕ(I). We assume w.l.o.g.
that ϕ is in prenex normal form. We show by induction on the number of quantifiers of ϕ
that the computation can be performed using k · log(|encα(I)#encα(u)|) cells of the work
tape, for some constant k.

Basis. If ϕ has no quantifiers, then all the variables of ϕ are free. Let ν be the valuation
mapping the free variables of ϕ to u. Mϕ must determine whether I |= ϕ[ν]. To determine
the truth value of each literal L under ν occurring in ϕ, one needs only scan the input
tape looking for ν(L). This can be accomplished by considering each tuple of I in turn,
comparing it with relevant portions of u. For each such tuple, the address of the beginning
of the tuple should be stored on the tape along with the offset to the current location of the
tuple being scanned. This can be accomplished within logarithmic space.

Induction. Now suppose that each prenex normal form CALC formula with less than
n quantifiers can be evaluated in logspace, and let ϕ be a prenex normal form formula
with n quantifiers. Suppose ϕ is of the form ∃x ψ . (The case when ϕ is of the form ∀x ψ
is similar.)

All possible values of x are tried. If some value is found that makes ψ true, then
the input is accepted; otherwise it is rejected. The values used for x are all those that
appear on the input tape in the order in which they appear. To keep track of the current
value of x, one needs log(nc) work tape cells, where nc is the number of constants in I.
Because nc is less than the length of the input, the number of cells needed is no more than
log(|encα(I)#encα(u)|). The problem is now reduced to evaluating ψ for each value of x.
By the induction hypothesis, this can be done using k · log(|encα(I)#encα(u)|) work tape
cells for some k. Thus the entire computation takes (k + 1) log(|encα(I)#encα(u)|) work
tape cells; which concludes the induction.

Unfortunately, CALC does not express all of qlogspace. It will be shown in Sec-
tion 17.3 that even, although clearly in qlogspace, is not a first-order query.

We next consider informally the parallel complexity of CALC. We are concerned with
two parallel complexity classes: nc and ac0. Intuitively, nc is the class of problems that
can be solved using polynomially many processors in time polynomial in the logarithm of
the input size; ac0 also allows polynomially many processors but only constant time. The
formal definitions of nc and ac0 are based on a circuit model in which time corresponds to
the depth of the circuit and the number of gates corresponds to its size. The circuits use and,
or, and not gates and have unbounded fan-in.2 Thus ac0 is the class of problems definable
using circuits where the depth is constant and the size polynomial in the input.

The fact that the complexity of CALC is logspace implies that its parallel complexity
is nc, because it is well known that logspace ⊆ nc. However, one can prove a tighter
result, which says that the parallel complexity of CALC is in fact ac0. So only constant
time is needed to evaluate CALC queries. More than any other known complexity result on
CALC, this captures the fundamental intuition that first-order queries can be evaluated in

2 The fan-in is the number of wires going into a gate.
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parallel very efficiently and that they represent, in some sense, primitive manipulations of
relations.

We sketch only the proof and leave the details for Exercise 17.2.

Theorem 17.1.2 Every CALC query is in ac0.

Crux Let us first provide an intuition of the result independent of the circuit model. We
will use the relational algebra. We will argue that each of the operations π, σ,×,−,∪ can
be performed in constant parallel time using only polynomially many processors.

Let e be an expression in the algebra over some database schema R. Consider the
following infinite space of processors. There is one processor for each pair 〈f, u〉, where f
is a subexpression of e and u is a tuple of the same arity as the result of f , using constants
from dom. Let us denote one such processor by pf,u. Note that, in particular, for each
relation nameQ occurring in f and each u of the arity ofQ, pQ,u is one of the processors.
Each processor has two possible states, true or false, indicating whether u is in the result
of f .

At the beginning, all processors are in state false. An input instance is specified by
turning on the processors corresponding to tuples in the input relations (i.e., processors
pR,u if u is in input relation R). The result consists of the tuples u for which pe,u is in
state true at the end of the computation. For a given input, we are only concerned with the
processors formed from tuples with constants occurring in the input. Clearly, no more than
polynomially many processors will be relevant during the computation.

It remains to show that each algebra operation takes constant time. Consider, for
instance, cross product. Suppose f × g is a subexpression of e. To compute f × g, the
processors pf,u and pg,v send the message true to processor p(f×g),uv if their state is
true. Processor p(f×g),uv goes to state true when receiving two true messages. The other
operations are similar. Thus e is evaluated in constant time in our informal model of parallel
computation.

To formalize the foregoing intuition using the circuit model, one must construct,
for each n, a circuit Bn that, for each input of length n consisting of an encoding over
the alphabet {0, 1} of an instance I and a tuple u, outputs 1 iff u ∈ e(I). The idea for
constructing the circuit is similar to the informal construction in the previous paragraph
except that processors are replaced by wires (edges in the graph representing the circuit)
that carry either the value 1 or 0. Moreover, each Bn has polynomial size. Thus only wires
that can become active for some input are included. Figure 17.1 represents fragments of
circuits computing some relational operations. In the figure, f is the cross product of g
and h (i.e., g × h); f ′ is the difference g − h; and f ′′ is the projection of h on the first
coordinate. Observe that projection is the most tricky operation. In the figure, it is assumed
that the active domain consists of four constants. Note also that because of projection, the
circuits have unbounded fan-in.

We leave the details of the construction of the circuits Bn to the reader (see Exer-
cise 17.2). In particular, note that one must use a slightly more cumbersome encoding than
that used for Turing machines because the alphabet is now restricted to {0, 1}.
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[f ′, [b, c]][f, [a, b, a, b]] [f ′′, [a]]

and and or

not

[g, [a, b]] [h, [a, b]] [g, [b, c]] [h, [b, c]] [h, [a, a]] [h, [a, d]][h, [a, c]][h, [a, b]]

Figure 17.1: Some fragments of circuits

One might naturally wonder if CALC expresses all queries in ac0. It turns out that
there are queries in ac0 that are not first order. This is demonstrated in Section 17.4.

17.2 Expressiveness of First-Order Queries

We have seen that first-order queries have desirable properties with respect to complexity.
However, there is a price to pay for this in terms of expressiveness: There are many useful
queries that are not first order. Typical examples of such queries are even and transitive
closure of a graph. This section presents an elegant technique based on a two-player game
that can be used to prove that certain queries (including even and transitive closure) are
not first order. Although the game we describe is geared toward first-order queries, games
provide a general technique that is used in conjunction with many other languages.

The connection between CALC sentences and games is, intuitively, the following.
Consider as an example a CALC sentence of the form

∀x1 ∃x2 ∀x3 ψ(x1, x2, x3).

One can view the sentence as a statement about a game with two players, 1 and 2, who
alternate in picking values for x1, x2, x3. The sentence says that Player 2 can always force
a choice of values that makes ψ(x1, x2, x3) true. In other words, no matter which value
Player 1 chooses for x1, Player 2 can pick an x2 such that, no matter which x3 is chosen
next by Player 1, ψ(x1, x2, x3) is true.

The actual game we use, called the Ehrenfeucht-Fraissé game, is slightly more in-
volved, but is based on a similar intuition. It is played on two instances. Suppose that R is
a database schema. Let I and J be instances over R, with disjoint sets of constants. Let r be
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∧

∃z∃y

P(x, z)R(x, y)

∀x

Figure 17.2: A syntax tree

a positive integer. The game of length r associated with I and J is played by two players
called Spoiler and Duplicator, making r choices each. Spoiler starts by picking a constant
occurring in I or J, and Duplicator picks a constant in the opposite instance. This is re-
peated r times. At each move, Spoiler has the choice of the instance and a constant in it,
and Duplicator must respond in the opposite instance.

Let ai be the ith constant picked in I (respectively, bi in J). The set of pairs {(a1, b1),

. . . , (ar, br)} is a round of the game. The subinstance of I generated by {a1, . . . , ar},
denoted I/{a1, . . . , ar}, consists of all facts in I using only these constants, and similarly
for J, {b1, . . . , br} and J/{b1, . . . , br}.

Duplicator wins the round {(a1, b1), . . . , (ar, br)} iff the mapping ai→ bi is an iso-
morphism of the subinstances I/{a1, . . . , ar} and J/{b1, . . . , br}.

Duplicator wins the game of length r associated with I and J if he or she has a winning
strategy (i.e., Duplicator can always win any game of length r on I and J, no matter
how Spoiler plays). This is denoted by I ≡r J. Note that the relation ≡r is an equivalence
relation on instances over R (see Exercise 17.3).

Intuitively, the equivalence I≡r J says that I and J cannot be distinguished by looking
at just r constants at a time in the two instances. Recall that the quantifier depth of a CALC
formula is the maximum number of quantifiers in a path from the root to a leaf in the
representation of the sentence as a tree. The main result of Ehrenfeucht-Fraissé games is
that the ability to distinguish among instances using games of length r is equivalent to the
ability to distinguish among instances using some CALC sentence of quantifier depth r .

Example 17.2.1 Consider the sentence ∀x (∃y R(x, y) ∧ ∃z P (x, z)). Its syntax tree is
represented in Fig. 17.2. The sentence has quantifier depth 2. Note that, for a sentence in
prenex normal form, the quantifier depth is simply the number of quantifiers in the formula.

The main result of Ehrenfeucht-Fraissé games, stated in Theorem 17.2.2, is that if I
and J are two instances such that Duplicator has a winning strategy for the game of length
r on the two instances, then I and J cannot be distinguished by any CALC sentence of
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quantifier depth r . Before proving this theorem, we note that the converse of that result
also holds. Thus if two instances are undistinguishable using sentences of quantifier depth
r , then they are equivalent with respect to ≡r . Although interesting, this is of less use as a
tool for proving expressibility results, and we leave it as a (nontrivial!) exercise. The main
idea is to show that each equivalence class of ≡r is definable by a sentence of quantifier
depth r (see Exercises 17.9 and 17.10).

Theorem 17.2.2 Let I and J be two instances over a database schema R. If I≡r J, then
for each CALC sentence ϕ over R with quantifier depth r , I and J both satisfy ϕ or neither
does.

Crux Suppose that I |= ϕ and J �|= ϕ for some ϕ of quantifier depth r . We prove that
I �≡r J. We provide only a sketch of the proof in an example.

Let ϕ be the sentence ∀x1 ∃x2 ∀x3 ψ(x1, x2, x3), where ψ has no quantifiers, and let I
and J be two instances such that I |= ϕ, J �|= ϕ. Then

I |= ∀x1 ∃x2 ∀x3 ψ(x1, x2, x3) and J |= ∃x1 ∀x2 ∃x3 ¬ψ(x1, x2, x3).

We will show that Spoiler can prevent Duplicator from winning by forcing the choice
of constants a1, a2, a3 in I and b1, b2, b3 in J such that I |= ψ(a1, a2, a3) and J |=
¬ψ(b1, b2, b3). Then the mapping ai→ bi cannot be an isomorphism of the subinstances
I/{a1, a2, a3} and J/{b1, b2, b3}, contradicting the assumption that Duplicator has a win-
ning strategy. To force this choice, Spoiler always picks “witnesses” corresponding to the
existential quantifiers in ϕ and ¬ϕ (note that the quantifier for each variable is either ∀ in
ϕ and ∃ in ¬ϕ, or vice versa).

Spoiler starts by picking a constant b1 in J such that

J |= ∀x2 ∃x3 ¬ψ(b1, x2, x3).

Duplicator must respond by picking a constant a1 in I. Due to the universal quantification
in ϕ,

I |= ∃x2 ∀x3 ψ(a1, x2, x3),

regardless of which a1 was picked. Next Spoiler picks a constant a2 in I such that

I |= ∀x3 ψ(a1, a2, x3).

Regardless of which constant b2 in J Duplicator picks,

J |= ∃x3 ¬ψ(b1, b2, x3).

Finally Spoiler picks b3 in J such that J |= ¬ψ(b1, b2, b3); Duplicator picks some a3 in I,
and I |= ψ(a1, a2, a3).
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Figure 17.3: Two undistinguishable graphs

Theorem 17.2.2 provides an important tool for proving that certain properties are not
definable by CALC. It is sufficient to exhibit, for each r , two instances Ir and Jr such that
Ir has the property, Jr does not, and Ir ≡r Jr . In the next proposition, we illustrate the use
of this technique by showing that graph connectivity, and therefore transitive closure, is
not expressible in CALC.

Proposition 17.2.3 Let R be a database schema consisting of one binary relation. Then
the query conn defined by

conn(I)= true iff I is a connected graph

is not expressible in CALC.

Crux Suppose that there is a CALC sentence ϕ checking graph connectivity. Let r be
the quantifier depth of ϕ. We exhibit a connected graph Ir and a disconnected graph Jr
such that Ir ≡r Jr . Then, by Theorem 17.2.2, the two instances satisfy ϕ or none does, a
contradiction.

For a sufficiently large n (depending only on r; see Exercise 17.5), the graph Ir consists
of a cycle B of 2n nodes and the graph Jr of two disjoint cycles B1 and B2 of n nodes each
(see Fig. 17.3). We outline the winning strategy for Duplicator. The main idea is simple:
Two nodes a, a′ in Ir that are far apart behave in the same way as two nodes b, b′ in Jr that
belong to different cycles. In particular, Spoiler cannot take advantage of the fact that a, a′
are connected but b, b′ are not. To do so, Spoiler would have to exhibit a path connecting a
to a′, which Duplicator could not do for b and b′. However, Spoiler cannot construct such
a path because it requires choosing more than r nodes.

For example, if Spoiler picks an element a1 in Ir , then Duplicator picks an arbitrary
element b1, say in B1. Now if Spoiler picks an element b2 in B2, then Duplicator picks an
element a2 in Ir far from a1. Next, if Spoiler picks a b3 in B1 close to b1, then Duplicator
picks an element a3 in Ir close to a1. The graphs are sufficiently large that this can proceed
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for r moves with the resulting subgraphs isomorphic. The full proof requires a complete
case analysis on the moves that Spoiler can make.

The preceding technique can be used to show that many other properties are not
expressible in CALC—for instance, even, 2-colorability of graphs, or Eulerian graphs
(i.e., graphs for which there is a cycle that passes through each edge exactly once) (see
Exercise 17.7).

17.3 Fixpoint and While Queries

That transitive closure is not expressible in CALC has been the driving force behind ex-
tending relational calculus and algebra with recursion. In this section we discuss the ex-
pressiveness and complexity of the two main extensions of these languages with recursion:
the fixpoint and while queries.

It is relatively easy to place an upper bound on the complexity of fixpoint and while
queries. Recall that the main distinction between languages defining fixpoint queries and
those defining while queries is that the first are inflationary and the second are not (see
Chapter 14). It follows that fixpoint queries can be implemented in polynomial time and
while queries in polynomial space. Moreover, these bounds are tight, as shown next.

Theorem 17.3.1

(a) The fixpoint queries are complete in ptime.

(b) The while queries are complete in pspace.

Crux The fact that each fixpoint query is in ptime follows immediately from the infla-
tionary nature of languages defining the fixpoint queries and the fact that the total number
of tuples that can be built from constants in a given instance is polynomial in the size of
the instance (see Chapter 14). For while, inclusion in pspace follows similarly (see Ex-
ercise 17.11). The completeness follows from an important result that will be shown in
Section 17.4. The result, Theorem 17.4.2, states that if an order on the constants of the do-
main is available, fixpoint expresses exactly qptime and while expresses exactly qpspace.
The completeness then follows from the fact that there exist problems that are complete in
ptime and problems that are complete in pspace (see Exercise 17.11).

The Parity Query

As was the case for the first-order queries, fixpoint and while do not match precisely with
complexity classes of queries. Although they are powerful, neither fixpoint nor while can
express certain simple queries. The typical example is the parity query even on a unary
relation. We next provide a direct proof that while (and therefore fixpoint) cannot express
even. The result also follows using 0-1 laws, which are presented later. We present the
direct proof here to illustrate the proof technique of hyperplanes.



438 First Order, Fixpoint, and While

Proposition 17.3.2 The query even is not a while query.

Proof Let R be a unary relation. Suppose that there exists a while program w that
computes the query even on input R. We can assume, w.l.o.g., that R contains a unary
relation ans so that, on input I, w(I)(ans)= ∅ if |I| is even, and w(I)= I otherwise. Let R
be the schema of w (so R contains R and ans). We will reach a contradiction by showing
that the computation of w on a given input is essentially independent of its size. More
precisely, for n large enough, the computations of w on all inputs of size greater than n
will in some sense be identical. This contradicts the fact that ans should be empty at the
end of some computations but not others.

To show this, we need a short digression related to computations on unary relations.
We assume here that w does not use constants, but the construction can be generalized to
that case (see Exercise 17.14). Let I be an input instance and k an integer. We consider a
partition of the set of k-tuples with entries in adom(I) into hyperplanes based on patterns of
equalities and inequalities between components as follows. For each equivalence relation
' over {1, . . . , k}, the corresponding hyperplane is defined by3

H'(I)= {〈u1, . . . , uk〉 | for each i, j ∈ [1, k],

ui, uj ∈ adom(I) and ui = uj ⇔ i ' j}.

For instance, let adom(I)= {a, b, c}, k = 3 and

'= {〈1, 1〉, 〈2, 2〉, 〈1, 2〉, 〈2, 1〉, 〈3, 3〉}.

Then

H'(I)= {〈a, a, b〉, 〈a, a, c〉, 〈b, b, a〉, 〈b, b, c〉, 〈c, c, a〉, 〈c, c, b〉}.

Finally there are two 0-ary hyperplanes, denoted true and false, that evaluate to {〈〉} and {},
respectively.

We will see that a while computation cannot distinguish between two k-tuples in the
same hyperplane, and so intermediate relations of arity k will always consist of a union of
hyperplanes.

Now consider the while programw. We assume that the condition guarding each while
loop has the form R �= ∅ for some R ∈ R, and that in each assignment R := E, E involves
a single application of some unary or binary algebra operator. We label the statements of
the program so we can talk about the program state (i.e., the label) after some number of
computation steps on input I. We include two labels in a while statement in the following
manner:

label1 while 〈condition〉 do label2 〈statement〉.

3 Note that, in logic terminology, ' corresponds to the notion of equality type, and hyperplanes
correspond to realizations of equality types.
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LetN be the maximum arity of any relation in R. To conclude the proof, we will show
by induction on the steps of the computation that there is a number bw such that for each
input I with size ≥N , w terminates on I after exactly bw steps. Furthermore,

(*) for each step m ≤ bw, there exists a label jm and for each relation T of arity k a set
ET,m of equivalence relations over {1, . . . , k} such that for each input I of size greater
than N

1. the control is at label jm after m steps of the computation; and
2. each T then contains ∪{H'(I) | ' in ET,m}.

To see that this yields the result, suppose that it is true. Then for each I with size ≥ N , w
terminates with ans always empty or always nonempty, regardless of whether the size of I
is even or odd (a contradiction).

The claim follows from an inductive proof of (*). It is clear that this holds at the
0th step. At the start of the computation, all T are empty except for the input unary
relation R, which contains all constants and so consists of the hyperplane H', where
'= {〈1, 1〉}. Suppose now that (*) holds for each step less than m and that the program
has not terminated on any I with size ≥ N . We prove that (*) also holds for m. There are
two cases to consider:

• Label jm−1 occurs before the keyword while. By induction, the relation controlling
the loop is empty after the (m− 1)st step, for all inputs large enough, or nonempty for
all such inputs. Thus at step m, the control will be at the same label for all instances
large enough, so (*1) holds. No relations have been modified, so (*2) also holds.

• Otherwise jm−1 labels an assignment statement. Then after the (m− 1)st step, the
control will clearly be at the label of the next statement for all instances large enough,
so (*1) holds. With regard to (*2), we consider the case where the assignment is
T :=Q1 ×Q2 for some variables T , Q1, and Q2; the other relation operators are
handled in a similar fashion (see Exercise 17.12). By induction, (*2) holds for all
relations distinct from T because they are not modified. Consider T . After step m,
T contains

⋃
{H'1(I) | '1 in EQ1,m−1} ×

⋃
{H'2(I) | '2 in EQ2,m−1} =⋃

{H'1(I)×H'2(I) | '1 in EQ1,m−1,'2 in EQ2,m−1}.

Let k, l be the arities of Q1,Q2, respectively, and for each '2 in EQ2,m−1, let

'+k2 = {(x + k, y + k) | (x, y) ∈ '2}.

For an arbitrary binary relation γ ⊆ [1, k+ l]× [1, k+ l], let γ ∗ denote the reflexive,
symmetric, and transitive closure of γ . For '1,'2 in EQ1,m−1, EQ2,m−1, respec-
tively, set
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'1 ⊗'2 = {('1 ∪ '+k2 ∪A)∗ |A⊆ [1, k]× [k + 1, k + l],
and for all i, i′, j, j ′ such that [i, j ] ∈A
and [i′, j ′] ∈A, i '1 i

′ iff j '+k2 j ′}.

It is straightforward to verify that for each pair'1,'2 inEQ1,m−1, EQ2,m−1, respec-
tively, and I with size ≥N ,

H'1(I)×H'2(I)=H'1⊗'2(I).

Note that this uses the assumption that the size of I is greater than N , the maximum
arity of relations in w. It follows that

ET,m =
⋃
{'1 ⊗'2 | '1 in EQ1,m−1 and '2 in EQ2,m−1}.

Thus (*2) also holds for T at step m, and the induction is completed.

The hyperplane technique used in the preceding proof is based on the fact that in the
context of a (sufficiently large) unary relation input, there are families of tuples (in this
case the different hyperplanes) that “travel together” and hence that the intermediate and
final results are unions of these families of tuples. Although there are other cases in which
the technique of hyperplanes can be applied (see Exercise 17.15), in the general case the
input is not a union of hyperplanes, and so the members of a hyperplane do not travel
together. However, there is a generalization of hyperplanes based on automorphisms that
yields the same effect. Recall that an automorphism of I is a one-to-one mapping ρ on
adom(I) such that ρ(I)= I. For fixed I, consider the following equivalence relation ≡I

k on
k-tuples of adom(I): u ≡I

k v iff there exists an automorphism ρ of I such that ρ(u)= v.
(See Exercises 16.6 and 16.7 in the previous chapter.) It can be shown that if w is a while
query (without constants), then the members of equivalence classes ≡I

k travel together
when w is executed on input I. More precisely, suppose that J is an instance obtained at
some point in the computation of w on input I. The genericity of while programs implies
that if ρ is an automorphism of I, it is also an automorphism of J. Thus for each k-tuple u in
some relation of J and each v such that u ≡I

k v, v also belongs to that relation. Thus each
relation in J of arity k is a union of equivalence classes of ≡I

k. The equivalence relation ≡I
k

will be used in our development of 0-1 laws, presented next.

0-1 Laws

We now develop a powerful tool that provides a uniform approach to resolving in the
negative a large spectrum of expressibility problems. It is based on the probability that a
property is true in instances of a given size. We shall prove a surprising fact: All properties
expressible by a while query are “almost surely” true, or “almost surely” false. More
precisely, we prove the result for while sentences:
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Definition 17.3.3 A sentence is a total query that is Boolean (i.e., returns as answer
either true or false).

Let q be a sentence over some schema R. For each n, let µn(q) denote the fraction of
instances over R with entries in {1, . . . , n} that satisfy q. That is,

µn(q)= |{I | q(I)= true and adom(I)= {1, . . . , n}}|
|{I | adom(I)= {1, . . . , n}}| .

Definition 17.3.4 A sentence q is almost surely true (false) if limn→∞µn(q) exists and
equals 1 (0). If every sentence in a language L is almost surely true or almost surely false,
the language L has a 0-1 law.

To simplify the discussion of 0-1 laws, we continue to focus exclusively on constant-
free queries (see Exercise 17.19).

We will show that CALC, fixpoint, and while sentences have 0-1 laws. This provides
substantial insight into limitations of the expressive power of these languages and can
be used to show that they cannot express a variety of properties. For example, it follows
immediately that even is not expressible in either of these languages. Indeed, µn(even) is 1
if n is even and 0 if n is odd. Thus µn(even) does not converge, so even is not expressible
in a language that has a 0-1 law.

While 0-1 laws provide an elegant and powerful tool, they require the development
of some nontrivial machinery. Interestingly, this is one of the rare occasions when we will
need to consider infinite instances even though we aim to prove something about finite
instances only.

We start by proving that CALC has a 0-1 law and then extend the result to fixpoint
and while. For simplicity, we consider only the case when the input to the query is a binary
relation G (representing edges in a directed graph with no edges of the form 〈a, a〉). It is
straightforward to generalize the development to arbitrary inputs (see Exercise 17.19).

We will use an infinite set A of CALC sentences called extension axioms, which refer
to graphs. They say, intuitively, that every subgraph can be extended by one node in all
possible ways. More precisely, A contains, for each k, all sentences of the form

∀x1 . . .∀xk((
∧
i �=j
(xi �= xj))⇒∃y(

∧
i

(xi �= y) ∧ connections(x1, . . . , xk; y))),

where connections(x1, . . . , xk; y) is some conjunction of literals containing, for each xi,
one of G(xi, y) or ¬G(xi, y), and one of G(y, xi) or ¬G(y, xi). For example, for k = 3,
one of the 26 extension axioms is

∀x1, x2, x3 ((x1 �= x2 ∧ x2 �= x3 ∧ x3 �= x1)⇒
∃y (x1 �= y ∧ x2 �= y ∧ x3 �= y ∧
G(x1, y) ∧ ¬G(y, x1) ∧ ¬G(x2, y) ∧ ¬G(y, x2) ∧G(x3, y) ∧G(y, x3)))

specifying the pattern of connections represented in Fig. 17.4.
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x1 x2 x3

y

Figure 17.4: A connection pattern

A graph G satisfies this particular extension axiom if for each triple x1, x2, x3 of
distinct vertexes inG, there exists a vertex y connected to x1, x2, x3, as shown in Fig. 17.4.

Note that A consists of an infinite set of sentences and that each finite subset of A is
satisfied by some infinite instance. (The instance is obtained by starting from one node and
repeatedly adding nodes required by the extension axioms in the subset.) Then by the com-
pactness theorem there is an infinite instance satisfying all of A, and by the Löwenheim-
Skolem theorem (see Chapter 2) there is a countably infinite instanceR satisfying A.

The following lemma shows thatR is unique up to isomorphism.

Lemma 17.3.5 If R and P are two countably infinite instances over G satisfying all
sentences in A, thenR and P are isomorphic.

Proof Suppose that a1a2 . . . is an enumeration of all constants in R, and b1b2 . . . is an
enumeration of those in P . We construct an isomorphism between R and P by alternat-
ingly picking constants from R and from P . We construct sequences ai1 . . . aik . . . and
bi1 . . . bik . . . such that aik → bik is an isomorphism from R to P . The procedure for pick-
ing the kth constants aik and bik in these sequences is defined inductively as follows. For the
base case, let ai1 = a1 and bi1 = b1. Suppose that sequences ai1 . . . aik and bi1 . . . bik have
been defined. If k is even, let aik+1 be the first constant in a1, a2, . . . that does not occur so
far in the sequence. Let σk be the sentence in A describing the way aik+1 extends the sub-
graph with nodes ai1 . . . aik. Because P also satisfies σk, there exists a constant b in P that
extends the subgraph bi1 . . . bik in the same manner. Let bik+1 = b. If k is odd, the procedure
is reversed (i.e., it starts by choosing first a new constant from b1, b2, . . .). This back-and-
forth procedure ensures that (1) all constants from both R and P occur eventually among
the chosen constants, and (2) the mapping aik → bik is an isomorphism.

Thus the foregoing proof shows that there exists a unique (up to isomorphism) count-
able graph R satisfying A. This graph, studied extensively by Rado [Rad64] and others,
is usually referred to as the Rado graph. We can now prove the following crucial lemma.
The key point is the equivalence between (a) and (c), called the transfer property: It relates
satisfaction of a sentence by the Rado graph to the property of being almost surely true.

Lemma 17.3.6 Let R be the Rado graph and σ a CALC sentence. The following are
equivalent:

(a) R satisfies σ ;
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(b) A implies σ ; and

(c) σ is almost surely true.

Proof (a)⇒ (b): Suppose (a) holds but (b) does not. Then there exists some instance P
satisfying A but not σ . Because P satisfies A, P must be infinite. By the Lowënheim-
Skolem theorem (see Chapter 2), we can assume that P is countable. But then, by
Lemma 17.3.5, P is isomorphic to R. This is a contradiction, because R satisfies σ but P
does not.

(b)⇒ (c): It is sufficient to show that each sentence in A is almost surely true.
Suppose this is the case and A implies σ . By the compactness theorem, σ is implied
by some finite subset A′ of A. Because every sentence in A′ is almost surely true, the
conjunction

∧
A′ of these sentences is almost surely true. Because σ is true in every

instance where
∧
A′ is true, µn(σ)≥ µn(

∧
A′), so µn(σ) converges to 1 and σ is almost

surely true.
It remains to show that each sentence inA is almost surely true. Consider the following

sentence σk in A:

∀x1 . . .∀xk((
∧
i �=j
(xi �= xj))→∃y(

∧
i

(xi �= y) ∧ connections(x1, . . . , xk; y))).

Then ¬σk is the sentence

∃x1 . . . ∃xk((
∧
i �=j
(xi �= xj)) ∧

∀y(
∧
i

(xi �= y)→¬connections(x1, . . . , xk; y))).

We will show the following property on the probability that an instance with n constants
does not satisfy σk:

(**) µn(¬σk)≤ n · (n− 1) · . . . · (n− k) · (1− 1

22k
)(n−k).

Because limn→∞[n · (n− 1) · . . . · (n− k) · (1− 1
22k )

(n−k)]= 0, it follows that limn→∞µn
(¬σk)= 0, so ¬σk is almost surely false, and σk is almost surely true.

Let N be the number of instances with constants in {1, . . . , n}. To prove (**), observe
the following:

1. For some fixed distinct a1, . . . , ak, b in {1, . . . , n}, the number of I satisfying some
fixed literal in connections(a1, . . . , ak; b) is 1

2 ·N .

2. For some fixed distinct a1, . . . , ak, b in {1, . . . , n}, the number of I satisfying
connections(a1, . . . , ak; b) is 1

22k ·N (because there are 2k literals in connections).

3. The number of I not satisfying connections(a1, . . . , ak; b) is therefore
N − 1

22k ·N = (1− 1
22k ) ·N .
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4. For some fixed a1, . . . , ak in {1, . . . , n}, the number of I satisfying

∀y(
∧
i

(ai �= y)→¬connections(a1, . . . , ak; y))

is (1 − 1
22k )

n−k · N [because there are (n − k) ways of picking b distinct from
a1, . . . , ak)].

5. The number of I satisfying ¬σk is thus at most

n · (n− 1) · . . . · (n− k) · (1− 1

22k
)(n−k) ·N

(from the choices of a1, . . . , ak). Hence (**) is proven.

(See Exercise 17.16.)
(c)⇒ (a): Suppose thatR does not satisfy σ (i.e.,R |= ¬σ ). Because (a)⇒ (c), ¬σ

is almost surely true. Then σ cannot be almost surely true (a contradiction).

The 0-1 law for CALC follows immediately.

Theorem 17.3.7 Each sentence in CALC is almost surely true or almost surely false.

Proof Let σ be a CALC sentence. The Rado graph R satisfies either σ or ¬σ . By the
transfer property [(a)⇒ (c) in Lemma 17.3.6], σ is almost surely true or ¬σ is almost
surely true. Thus σ is almost surely true or almost surely false.

The 0-1 law for CALC can be extended to fixpoint and while. We prove it next for
while (and therefore fixpoint). Once again the proof uses the Rado graph and extends the
transfer property to the while sentences.

Theorem 17.3.8 Every while sentence is almost surely true or almost surely false.

Proof We use as a language for the while queries the partial fixpoint logic CALC+µ.
The main idea of the proof is to show that every CALC+µ sentence that is defined on all
instances is in fact equivalent almost surely to a CALC sentence, and so by the previous
result is almost surely true or almost surely false. We show this for CALC+µ sentences.
By Theorem 14.4.7, we can consider w.l.o.g. only sentences involving one application of
the partial fixpoint operator µ. Thus consider a CALC+µ sentence ξ of the form

ξ = ∃,x (µT (ϕ(T ))(,t))

over schema R, where

(a) ϕ is a CALC formula, and

(b) ,t is a tuple of variables or constants of appropriate arity, and ,x is the tuple of
distinct free variables in ,t .
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(We need the existential quantification for binding the free variables. An alternative is to
have constants in ,t but, as mentioned earlier we do not consider constants when discussing
0-1 laws.)

Essentially, a computation of a query ξ consists of iterating the CALC formula ϕ until
convergence occurs (if ever). Consider the sequence {ϕi(I)}i>0, where I is an input. If I
is finite, the sequence is periodic [i.e., there exist N and p such that, for each n ≥ N ,
ϕn(I) = ϕn+p(I)]. If p = 1, then the sequence converges (it becomes constant at some
point); otherwise it does not. Now consider the sequence {ϕi(R)}i>0, whereR is the Rado
graph. Because the set of constants involved is no longer finite, the sequence may or may
not be periodic. A key point in our proof is the observation that the sequence {ϕi(R)}i>0 is
indeed periodic, just as in the finite case.

To see this, we use a technique similar to the hyperplane technique in the proof of
Lemma 17.3.5. Let k be some integer. We argue next that for each k, there is a finite number
of equivalence classes of k-tuples induced by automorphisms ofR. For each pair u, v of k-
tuples with entries in adom(R), let u ≡Rk v iff there exists an automorphism ρ ofR such
that ρ(u)= v.

Let u'Rk v if both the patterns of equality and the patterns of connection within u and
v are identical. More formally, for each u= 〈a1, . . . , ak〉, v = 〈b1, . . . , bk〉 (where ai and
bi are constants inR), u'Rk v if

• for each i, j , ai = aj iff bi = bj , and

• for each i, j , 〈ai, aj〉 is an edge inR iff 〈bi, bj〉 is an edge inR.

We claim that

u ≡Rk v iff u'Rk v.

The “only if” part follows immediately from the definitions. For the “if” part, suppose that
u'Rk v. To show that u≡Rk v, we must build an automorphism ρ ofR such that ρ(u)= v.
This is done by a back-and-forth construction, as in Lemma 17.3.5, using the extension
axioms satisfied byR (see Exercise 17.18).

Because there are finitely many patterns of connection and equality among k vertexes,
there are finitely many equivalence classes of'Rk , so of≡Rk . Due to genericity of the while
computation, each ϕi(R) is a union of such equivalence classes (see Exercise 16.6 in the
previous chapter). Thus there must exist m, l, 0 ≤ m < l, such that ϕm(R) = ϕl(R). Let
N =m and p = l −m. Then for each n≥N , ϕn(R)= ϕn+p(R). It follows that:

(1) {ϕi(R)}i>0 is periodic.

Using this fact, we show the following:

(2) The sequence {ϕi(R)}i>0 converges.

(3) The sentence ξ is equivalent almost surely to some CALC sentence σ .

Before proving these, we argue that (2) and (3) will imply the statement of the theorem.
Suppose that (2) and (3) holds. Suppose also that σ is false in R. By Lemma 17.3.6, σ is
almost surely false. Then µn(ξ) ≤ µn(ξ �≡ σ) + µn(σ) and both µn(ξ �≡ σ) and µn(σ)
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converge to 0, so limn→∞(µn(ξ)) = 0. Thus ξ is also almost surely false. By a similar
argument, ξ is almost surely true if σ is true inR.

We now prove (2). Let$ij be the CALC sentence stating that ϕi and ϕj are equivalent.
Suppose {ϕi(R)}i>0 does not converge. Thus the period of the sequence is greater than 1,
so there exist m, j, l,m < j < l, such that

ϕm(R)= ϕl(R) �= ϕj(R).

ThusR satisfies the CALC sentence

χ =$ml ∧ ¬$mj.

Let I range over finite databases. Because ξ is defined on all finite inputs, {ϕi(I)}i≥0

converges. On the other hand, by the transfer property (Lemma 17.3.6), χ is almost surely
true. It follows that the sequence {ϕi(I)}i>0 diverges almost surely. In particular, there exist
finite I for which {ϕi(I)}i>0 diverges (a contradiction).

The proof of (3) is similar. By (1) and (2), the sequence {ϕi(R)}i>0 becomes constant
after finitely many iterations, say N . Then ξ is equivalent onR to the CALC sentence σ =
∃,x(ϕN(,t)). Suppose R satisfies ξ . Thus R satisfies σ . Furthermore, R satisfies $N(N+1)

because {ϕi(R)}i>0 becomes constant at the N th iteration. Thus R satisfies σ ∧$N(N+1).
By the transfer property for CALC, σ ∧ $N(N+1) is almost surely true. For each finite
instance I where $N(N+1) holds, {ϕi(I)}i>0 converges after N iterations, so ξ is equiva-
lent to σ . It follows that ξ is almost surely equivalent to σ . The case where R does not
satisfy ξ is similar.

Thus we have shown that while sentences have a 0-1 law. It follows immediately
that many queries, including even, are not while sentences. The technique of 0-1 laws has
been extended successfully to languages beyond while. Many languages that do not have
0-1 laws are also known, such as existential second-order logic (see Exercise 17.21). The
precise border that separates languages that have 0-1 laws from those that do not has yet to
be determined and remains an interesting and active area of research.

17.4 The Impact of Order

In this section, we consider in detail the impact of order on the expressive power of query
languages. As mentioned at the beginning of this chapter, we view the assumption of order
as, in some sense, suspending the data independence principle in a database. Because
data independence is one of the main guiding principles of the pure relational model, it
is important to understand its consequences in the expressiveness and complexity of query
languages.

As illustrated by the even query, order can considerably affect the expressiveness of a
language and the difficulty of computing some queries. Without the order assumption, no
expressiveness results are known for the complexity classes of ptime and below; that is, no
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P succ

b a c a b

b b d b c

c a d c d

d b a

Figure 17.5: An ordered instance

languages are known that express precisely the queries of those complexity classes. With
order, there are numerous such results. We present two of the most prominent ones.

At the end of this section, we present two recent developments that further explore
the interplay of order and expressiveness. The first is a normal form for while queries that,
speaking intuitively, separates a while query into two components: one unordered and the
second ordered. The second development increases expressive power on unordered input
by introducing nondeterminism in queries.

We begin by making the notion of an ordered database more precise. A database is
said to be ordered if it includes a designated binary relation succ that provides a successor
relation on the constants occurring in the database. A query on an ordered database is a
query whose input database schema contains succ and that ranges only over the ordered
instances of the input database schema.

Example 17.4.1 Consider the database schema R = {P, succ}, where P is ternary. An
ordered instance of R is represented in Fig. 17.5. According to succ, a is the first constant,
b is the successor of a, c is the successor of b, and d is the successor of c. Thus a, b, c, d
can be identified with the integers 1, 2, 3, 4, respectively.

We now consider the power of fixpoint and while on ordered databases. In particular,
we prove the fundamental result that fixpoint expresses precisely qptime on ordered data-
bases, and while expresses precisely qpspace on ordered databases. This shows that order
has a far-reaching impact on expressiveness, well beyond isolated cases such as the even
query. More broadly, the characterization of qptime by fixpoint (with the order assump-
tion) provides an elegant logical description of what have traditionally been considered
the tractable problems. Beyond databases, this is significant to both logic and complexity
theory.

Theorem 17.4.2

(a) Fixpoint expresses qptime on ordered databases.

(b) While expresses qpspace on ordered databases.

Proof Consider (a). We have already seen that fixpoint ⊆ qptime (see Exercise 17.11),
and so it remains to show that all qptime queries on ordered databases are expressible in
fixpoint. Let q be a query on a database with schema R that includes succ, such that q is
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in qptime on the ordered instances of R. Thus there is a polynomial p and Turing machine
M ′ that, on input enc(I)#enc(u), terminates in time p(|enc(I)#enc(u)|) and accepts the
input iff u ∈ q(I). (In this section, encodings of ordered instances are with respect to the
enumeration of constants provided by succ; see also Chapter 16.) Because q(I) has size
polynomial in I, a TMM can be constructed that runs in polynomial time and that, on input
enc(I), produces as output enc(q(I)). We now describe the construction of a CALC+µ+
query qM that is equivalent to q on ordered instances of R.

The fixpoint query qM we construct, when given ordered input I, will operate in three
phases: (α) construct an encoding of I that can be used to simulate M; (β) simulate M;
and (γ ) decode the output of M . A key point throughout the construction is that qM is
inflationary, and so it must compute without ever deleting anything from a relation. Note
that this restriction does not apply to (b), which simplifies the simulation in that case.

We next describe the encoding used in the simulation of M . The encoding is centered
around a relation that holds the different configurations reached by M .

Representing a tape. Because the tape is infinite, we only represent the finite portion,
polynomial in length, that is potentially used. We need a way to identify each cell of the
tape. Let nc be the number of constants in I. Because M runs in polynomial time, there
is some k such that M on input enc(I) takes time ≤ nkc, and thus ≤ nkc tape cells (see also
Exercise 16.12 in the previous chapter). Consider the world of k-tuples with entries in the
constants from I. Note that there are nkc such tuples and that they can be lexicographically
ordered using succ. Thus each cell can be uniquely identified by a k-tuple of constants
from I. One can define by a fixpoint query a 2k-ary relation succk providing the successor
relation on k-tuples, in the lexicographic order induced by succ (see Exercise 17.23a). The
ordered k-tuples thus allow us to represent a sequence of cells and hence M’s tape.

Representing all the configurations. Note that one cannot remove the tuples represent-
ing old configurations of M due to the inflationary nature of fixpoint computations. Thus
one represents all the configurations in a single relation. To distinguish a particular config-
uration (e.g., that at time i, i ≤ nkc), k-columns are used as timestamp. Thus to keep track of
the sequence of configurations in a computation of M , one can use a (2k + 2)-ary relation
RM where

1. the first k columns serve as a timestamp for the configuration,

2. the next k identify the tape cells,

3. column (2k + 1) holds the content of the cell, and

4. column (2k + 2) indicates the state and position of the head.

Note that now we are dealing with a double encoding: The database is encoded on the tape,
and then the tape is encoded back into RM .

To illustrate this simple but potentially confusing situation, we consider an example.
Let R = {P, succ}, and let I be the ordered instance of R represented in Fig. 17.5. Then
enc(I) is represented in Fig. 17.6. We assume, without loss of generality, that symbols
in the tape alphabet and the states of M are in dom. Parts of the first two configurations
are represented in the relation shown in Fig. 17.7. The representation assumes that k = 4,
so the arity of the relation is 10. Because this is a single-volume book, only part of the
relation is shown. More precisely, we show the first tuples from the representation of the
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P[1#0#10][1#1#11][10#0#11][11#1#0]succ[0#1][1#10][10#11]

Figure 17.6: Encoding of I and u on a TM tape

first two configurations. It is assumed that the original state is s and the head points to
the first cell of the tape; and that in that state, the head moves to the right, changing P to
0, and the machine goes to state r . Observe that the timestamp for the first configuration
is 〈a, a, a, a〉, and 〈a, a, a, b〉 for the second. Observe also the numbering of tape cells:
〈a, a, a, a〉, . . . , 〈a, a, c, d〉, etc.

We can now describe the three phases of the operation of qM more precisely: For a
given ordered instance I, qM

(α) computes, in RM , a representation of the initial configuration of M on input enc(I);

(β) computes, also in RM , the sequence of consecutive configurations of M until termina-
tion; and

(γ ) decodes the final tape contents of M , as represented in RM , into the output
relation.

We sketch the construction of the fixpoint queries realizing (α) and (β) here, and we leave
(γ ) as an exercise (17.23).

Consider phase (α). Recall that each constant is encoded on the tape of M as the
binary representation of its rank in the successor relation succ (e.g., c as 10). To perform
the encoding of the initial configuration, it is useful first to construct an auxiliary relation
that provides the encoding of each constant. Because there are nc constants, the code of
each constant requires ≤ #log(nc)$ bits, and thus less than nc bits. We can therefore use a
ternary relation constant_coding to record the encoding. A tuple 〈x, y, z〉 in that relation
indicates that the kth bit of the encoding of constant x is z, where k is the rank of constant y
in the succ relation. For instance, the relation constant_coding corresponding to the succ in
Fig. 17.5 is represented in Fig. 17.8. The tuples 〈c, a, 1〉 and 〈c, b, 0〉 indicate, for instance,
that c is encoded as 10. It is easily seen that constant_coding is definable from succ by a
fixpoint query (see Exercise 17.23b).

With relation constant_coding constructed, the task of computing the encoding of
I and u into RM is straightforward. We will illustrate this using again the example in
Fig. 17.5. To encode relation P , one steps through all 3-tuples of constants and checks if a
tuple in P has been reached. To step through the 3-tuples, one first constructs the successor
relation succ3 on 3-tuples. The first tuple in P that is reached is 〈b, a, c〉. Because this
is the first tuple encoded, one first inserts into RM the identifying information for P (the
first tuple in Fig. 17.7). This proceeds, yielding the next tuples in Fig. 17.7. The binary
representation for each of b, a, c is obtained from relation constant_coding. This proceeds
by moving to the next 3-tuple. It is left to the reader to complete the details of the fixpoint
query constructing RM (see Exercise 17.23c). Several additional relations have to be used
for bookkeeping purposes. For instance, when stepping through the tuples in succ3, one
must keep track of the last tuple that has been processed.

We next outline the construction for (β). One must simulate the computation of M
starting from the initial configuration represented in RM . To construct a new configuration
from the current one, one must simulate a move of M . This is repeated until M reaches
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RM
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Figure 17.7: Coding of part of the (first two) configurations

a final state (accepting or rejecting), which, as we assumed earlier, happens after at most
nkc steps. The iteration can be performed using the fixpoint operator in CALC + µ+. Each
step consists of defining the new configuration from the current one, timestamping it, and
adding it to RM . This can be done with a CALC formula. For instance, suppose the current
state of M is q, the content of the current cell is 0, and the corresponding move of M is to
change 0 to 1, move right, and change states from q to r . Suppose also that
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constant_coding

a a 0

b a 1

c a 1

c b 0

d a 1

d b 1

Figure 17.8: The relation constant_coding corresponding to a,b,c,d

• ,t is the timestamp (in the example this is a 4-tuple) identifying the current configu-
ration,

• RM contains the tuple 〈,t, ,j, 0, q〉, where ,j specifies a tape cell (in the example again
with a 4-tuple), and

• ,t ′ is the next timestamp and ,j ′ the next cell [i.e., succk(,t, ,t ′) and succk(,j, ,j ′)].
The tuples describing the new configuration of M are

(a) 〈,t ′,,i, x, y〉 if ,i �= ,j , ,i �= ,j ′ and 〈,t,,i, x, y〉 ∈ RM ;

(b) 〈,t ′, ,j, 1, 0〉;
(c) 〈,t ′, ,j ′, x, r〉 if 〈,t, ,j ′, x, 0〉 ∈ RM .

In other words, (a) says that the cells other than the j th cell and the next cell remain
unchanged; (b) says that the content of cell j changes from 0 to 1, and the head no longer
points to the j th cell; finally, (c) says that the head points to the right adjacent cell, the
new state is r , and the content of that cell is unchanged. Clearly, (a) through (c) can be
expressed by a CALC formula (Exercise 17.23d). One such formula is needed for each
move of M , and the formula corresponding to the finite set of possible moves is obtained
by their disjunction.

We have outlined queries that realize (α) and (β) (i.e., perform the encoding needed
to runM and then simulate the run ofM). Using these fixpoint queries and their analog for
phase (γ ), it is now easy to construct the fixpoint query qM that carries out the complete
computation of q. This completes the proof of (a).

The construction for (b) is similar. The difference lies in the fact that a while computa-
tion need not be inflationary, unlike fixpoint computations. This simplifies the simulation.
For instance, only the tuples corresponding to the current configuration of M are kept in
RM (Exercise 17.24).

Although ptime is considered synonymous with tractability in many circumstances,
complexity classes lower than ptime are most useful in practice in the context of potentially
large databases. There are numerous results that extend the logical characterization of
qptime to lower complexity classes for ordered databases. For instance, by limiting the
fixpoint operator in fixpoint to simpler operators based on various forms of transitive
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closure, one can obtain languages expressing qlogspace and qnlogspace on ordered
databases.

Theorem 17.4.2 implies that the presence of order results in increased expressive
power for the fixpoint and while queries. For these languages, this is easily seen (for in-
stance, even can be expressed by fixpoint when an order is provided). For weaker lan-
guages, the impact of order may be harder to see. For instance, it is not obvious whether
the presence of order results in increased expressive power for CALC. The query even is of
no immediate help, because it cannot be expressed by CALC even in the presence of order
(Exercise 17.8). However, a more complicated query based on even can be used to show
that CALC does indeed become more expressive with an order (Exercise 17.27). Because
the CALC queries on ordered instances remain in ac0, this shows in particular that there
are queries in ac0 that CALC cannot express.

From Chaos to Order: A Normal Form for While

We next discuss informally a normal form for the while queries that provides a bridge be-
tween computations without order and computations with order. This helps us understand
the impact of order and the cost of computation without order.

The normal form says, intuitively, that each while query on an unordered instance can
be reduced to a while query over an ordered instance via a fixpoint query. More precisely,
a while program in the normal form consists of two phases. The first is a fixpoint query
that performs an analysis of the input. It computes an equivalence relation on tuples that
is a congruence with respect to the rest of the computation, in that equivalent tuples are
treated identically throughout the computation. Thus each equivalence class is treated as
an indivisible block of tuples that is never split later in the computation. The fixpoint
query outputs the equivalence classes in some order, so that each class can be thought of
abstractly as an integer. The second phase consists of a while query that can be viewed as
computing on an ordered database obtained by replacing each equivalence class produced
in the analysis phase by its corresponding integer.

The normal form also allows the clarification of the relationship between fixpoint
and while. Because on ordered databases the two languages express qptime and qpspace,
respectively, the languages are equivalent on ordered databases iff ptime = pspace. What
about the relationship of these languages without the order assumption? It turns out that the
normal form can be used to extend this result to the general case when no order is present.

We do not describe the normal form in detail, but we provide some intuition on how a
query on an unordered database reduces to a query on an ordered database.

Consider a while program q and a particular instance. There are only finitely many
CALC queries that are used in q, and the number of their variables is bounded by some
integer, say k. To simplify, assume that the input instance consists of a single relation I
of arity k and that all relations used in q also have arity k. We can further assume that all
queries used in assignment statements are either conjunctive queries or the single algebra
operations −,∪, and that no relation name occurs twice in a query. For a query ϕ in q,
ϕ(R1, . . . , Rn) indicates that R1, . . . , Rn are the relation names occurring in ϕ.

Consider the set J of k-tuples formed with the constants from I . First we can distin-
guish between tuples based on their presence in (or absence from) I . This yields a first par-
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tition of J . Now using the conjunctive queries occurring in q, we can iteratively refine this
partition in the following way: If for some conjunctive query ϕ(R1, . . . , Rn) occurring in
q and some blocks B1, . . . , Bn of the current partition ϕ(B1, . . . , Bn) and ¬ϕ(B1, . . . , Bn)

have nonempty intersection with some block B ′ of the current partition, we refine the par-
tition by splitting the block B ′ into B ′ ∩ ϕ(B1, . . . , Bn) and B ′ ∩ ¬ϕ(B1, . . . , Bn). This is
repeated until no further refinement occurs, yielding a final partition of J . Furthermore, the
blocks can be numbered as they are produced, which provides an ordering 〈J1, . . . , Jm〉 of
the blocks of the partition. The entire computation can be performed by a fixpoint query
constructed from q.

It is important to note that two tuples u, v in one block of the final partition cannot be
separated by the computation of q on input I (i.e., at each step of this computation, each
relation either contains both u and v or none). In other words, each relation contains a union
of blocks of the final partition. Then one can reduce the original computation to an abstract
computation q ′ on the integers by replacing the ith block of the partition by integer i. Thus
the original query q can be rewritten as the composition of a fixpoint query f followed by
a while query q ′ that essentially operates on an ordered input.

Using this normal form, one can show the following:

Theorem 17.4.3 While = fixpoint iff ptime = pspace.

Crux The “only if” part follows from Theorem 17.4.2. The normal form is used for the
“if” part as follows. Suppose ptime = pspace. Then qptime = qpspace. Let q be a while
query. By the normal form, q = f q ′, where f is a fixpoint query and q ′ is a while query
whose computation is isomorphic to that of a while query on an ordered domain. Because
q ′ is in pspace and pspace = ptime, q ′ is in ptime. By Theorem 17.4.2(a), there exists a
fixpoint query f ′ equivalent to q ′ on the ordered domain. Thus q is equivalent to ff ′ and
is a fixpoint query.

An Alternative to Order: Nondeterminism

Results such as Theorem 17.4.2 show that the presence of order can solve some of the
problems of expressiveness of query languages. This can be interpreted as a trade-off
between expressiveness and the data independence provided by the abstract interface to
the database system. We conclude this section by considering an alternative to order for
increasing expressive power. It is based on the use of nondeterminism.

We will use the following terminology. A deterministic query is a classical query that
always produces at most one output for each input instance. A nondeterministic query is a
query that may have more than one possible outcome on a given input instance. Generally
we assume that all possible outcomes are acceptable as answers to the query. For example,
the query “Find one cinema showing Casablanca” is nondeterministic.

Consider again the query even, which is not expressible by fixpoint or while. The query
even is easily computed by fixpoint in the presence of order (see Exercise 17.25). Another
way to circumvent the difficulty of computing even is to relax the determinism of the query
language. If one could choose, whenever desired, an arbitrary element from the set, this
would provide another way of enumerating the elements of the set and computing even.



454 First Order, Fixpoint, and While
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Figure 17.9: An application of witness

The drawback is that, with such a nondeterministic construct in the language, determinism
of queries can no longer be guaranteed.

The trade-offs based on order and nondeterminism are not unrelated, as it may seem
at first. Suppose that an order is given. As argued earlier, this comes down to suspending
the data independence principle and accessing the internal representation. In general, the
computation may depend on the particular order accessed. Then at the conceptual level,
where the order is not visible, the mapping defined by the query appears as nondeterminis-
tic. Different outcomes are possible for the same conceptual-level view of the input. Thus
the trade-offs based on order and on relaxing determinism are intimately connected.

To illustrate this, we exhibit nondeterministic versions of the while(+) and
CALC+µ(+) queries. In both cases we obtain exactly the (deterministic and nondeter-
ministic) queries computable in polynomial space (time). Analogous results can be shown
for lower complexity classes of queries.

Consider first the algebraic setting. We introduce a new operator called witness that
provides the nondeterminism. To illustrate the use of this operator, consider the relation I
in Fig. 17.9. An application of witnessB to I may lead to several results [i.e., witnessB(I)
is either I1, I2, I3 or I4]. Intuitively, for each x occurring in the A column, witnessB
selects some tuple 〈x, y〉 in I , thus choosing nondeterministically a B value y for x.
More generally, for each relation J over some schema U = XY , X ∩ Y = ∅, witnessY (I )
selects one tuple 〈,x, ,y〉 for each 〈,x〉 occurring inGX(J ). Observe that from this definition,
witnessU(J ) selects one tuple in J (if any).

It is also possible to describe the semantics of the witness operator using functional
dependencies: For each instance J over some schema XY , X ∩ Y = ∅, a possible result
of witnessY (J ) is a maximal subinstance J ′ of J satisfying X→ Y (i.e., such that the
attributes in X form a key).

The witness operator provides, more generally, a uniform way of obtaining nondeter-
ministic counterparts for traditional deterministic languages.

The extension of while(+) with witness is denoted by while(+)+W . Following is a
useful example that shows that an arbitrary order can be constructed using the witness
operator.

Example 17.4.4 Consider an input instance over some unary relation schema R. The
following while+W query defines all possible successor relations on the constants from
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R succ max

b c a a

d

(a)

R succ max

b c a d

a d

(b)

R succ A B max

c a b

a d

d b

(c)

Figure 17.10: Some steps in the computation of an ordering

the input (i.e., each run constructs some ordering of the constants from the input; we use
the unnamed perspective):

succ := witness12(σ1�=2(R × R));
max := π2(succ); R := R − (π1(succ) ∪ π2(succ));
while change do

begin
succ := succ ∪ witness12(max × R);
max := π2(succ)− π1(succ);
R := R − max
end

The result is constructed in a binary relation succ. A unary relation max contains the current
maximum element in succ. Some steps of a possible computation on input R = {a, b, c, d}
are shown in Fig. 17.10: (a) shows the state before the loop is first entered, (b) the state
after the first execution of the loop, and (c) the final state. Note that the output is empty if
R contains fewer than two constants. It is of interest to observe that the program uses only
the ability of witness to pick an arbitrary tuple from a relation.

This query can also be expressed in while++W . (See Exercise 17.31.)

To continue with the nondeterministic languages, we next consider the language
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CALC+µ(+). The nondeterminism is again provided by a logical operator called wit-
ness4 and denoted W . Suppose ϕ(,x, ,y) is a formula with free variables ,x, ,y. Intuitively,
W ,yϕ(,x, ,y) indicates that one “witness” ,yx is chosen for each ,x satisfying ∃ ,y ϕ(,x, ,y).
For example, if R consists of the relation I in Fig. 17.9, the formula WyR(x, y) defines
the possible answers I1, I2, I3, I4 in the same figure. [Thus WyR(x, y) is equivalent to
witnessB(R).] More precisely, for each formula ϕ(,x, ,y) (where ,x and ,y are vectors of the
variables that are free in ϕ),W ,yϕ(,x, ,y) is a formula (where the ,y remain free) defining the
set of relations I such that for some J defined by ϕ: I⊆ J; and for each ,x for which 〈,x, ,y〉
is in J for some ,y, there exists a unique ,yx such that 〈,x, ,yx〉 is in I.

The extension of CALC+µ(+) with the witness operator is denoted by
CALC+µ(+)+W . Following is a useful example that shows that an arbitrary order
can be constructed using CALC+µ++W .

Example 17.4.5 Consider the (unary) relation schemaR of Example 17.4.4. The follow-
ing CALC+µ++W query defines, on each instance I of R, all possible successor relations
on the constants in I . (The output is empty if I contains fewer than two constants.) The
query uses a binary relation schema succ, which is used to construct the successor relation
iteratively. The query is µ+succ(ϕ(succ))(x, y), where ϕ = ϕ1 ∨ ϕ2 and

ϕ1(x, y)=¬∃x∃y(succ(xy)) ∧ Wxy(R(x) ∧ R(y) ∧ x �= y),
ϕ2(x, y)=Wy(R(y) ∧ ¬∃z(succ(yz) ∨ succ(zy))) ∧ ∃z(succ(zx)) ∧ ¬∃z(succ(xz)).

The formula ϕ1 initializes the iteration when succ is empty; ϕ2 adds to succ a tuple
〈x, y〉, where y is an arbitrarily chosen element of I(R) not yet in succ and x is the current
maximum element in succ.

The ability of while++W and CALC+µ++W to define nondeterministically a suc-
cessor relation on the constants suggests that the impact of nondeterminism on expressive
power is similar to that of order. This is confirmed by the following result.

Theorem 17.4.6 The set of deterministic queries that are expressed by while++W or
CALC+µ++W is qptime.

Proof It is easy to verify that each deterministic query expressed by while+ +W is in
qptime. Conversely, let q be a query in qptime. By Theorem 17.4.2, there exists a while+
query w that expresses q if a successor relation succ on the constants is given. Then the
while++W query expressing q consists of the following:

(i) construct a successor relation succ on the constants, as in Example 17.4.5;

(ii) apply query w to the input instance together with succ.

4 The witness operator is related to Hilbert’s ε-symbol [Lei69], but its semantics is different. In
particular, the ε-symbol does not yield nondeterminism.
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An analogous result holds for while+W and CALC+µ+W . Specifically, the set of
deterministic queries expressible by these languages is precisely qpspace.

Note that Theorem 17.4.6 does not provide a language that expresses precisely
qptime, because nondeterministic queries can also be expressed and it is undecidable if
a while++W or CALC+µ++W query defines a deterministic query (Exercise 17.32). In-
stead the result shows the power of nondeterministic constructs and so points to a trade-off
between expressive power and determinism.
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Figure 17.11: Encoding of an instance and tuple
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was proven in [Fag72, Fag76] and independently by Glebskiĭ et al. [GKLT69]. The 0-
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Exercises

Exercise 17.1 Consider the CALC query on a database schema with one binary relation G:

ϕ = {x | ∃y∀z(G(x, y) ∧ ¬G(z, x))}.

Consider the instance I overG and tuple encoded on a Turing input tape, as shown in Fig. 17.11.
Describe in detail the computation of the Turing machine Mϕ, outlined in the proof of Theo-
rem 17.1.1, on this input.

♠Exercise 17.2 Prove Theorem 17.1.2.

Exercise 17.3 Prove that ≡r is an equivalence relation on instances.

Exercise 17.4 Outline the crux of Theorem 17.2.2 for the case where

ϕ = ∀x (∃y (R(xy)) ∨ ∀z (R(zx))).

(Note that the quantifier depth of ϕ is 2, so this case involves games with two moves.)

.Exercise 17.5 Provide a complete description of the winning strategy outlined in the crux of
Proposition 17.2.3. Hint: For the game with r moves, choose cycles of size at least r(2r+1− 1).
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Exercise 17.6 Extend Proposition 17.2.3 by showing that connectivity of graphs is not first-
order definable even if an order ≤ on the constants is provided. More precisely, let R be the
database schema consisting of two binary relations G and ≤. Let I≤ be the family of instances
I over R such that I(≤) provides a total order on the constants of I(G). Outline a proof that there
is no CALC sentence σ such that, for each I ∈ I≤,

σ(I) is true iff I(G) is a connected graph.

♠Exercise 17.7 [Kol83] Use Ehrenfeucht-Fraissé games to show that the following properties
of graphs are not first-order definable:

(i) the number of vertexes is even;

(ii) the graph is 2-colorable;

(iii) the graph is Eulerian (i.e., there exists a cycle that passes through each edge exactly
once).

.Exercise 17.8 Show that the property that the number of elements in a unary relation is even
is not first-order definable even if an order on the constants is provided.

The following two exercises lead to a proof of the converse of Theorem 17.2.2. It states that
instances that are undistinguishable by CALC sentences of quantifier depth r are equivalent
with respect to ≡r . This is shown by proving that each equivalence class of ≡r is definable
by a special CALC sentence of quantifier depth r , called the r-type of the equivalence class.
Intuitively, the r-type sentence describes all patterns that can be detected by playing games of
length r on pairs of instances in the equivalence class.

To define the r-types, one first defines formulas with m free variables, called (m, r)-types.
An r-type is defined as a (0, r)-type. The set of (m, r)-types is defined by backward induction
on m as follows.

An (r, r)-type consists of all satisfiable formulas ϕ with variables x1, . . . , xr such that ϕ is
a conjunction of literals overR and for each i1, . . . , ik, either R(xi1, . . . , xik) or ¬R(xi1, . . . , xik)
is in ϕ. Suppose the set of (m+ 1, r)-types has been defined. Each set S of (m+ 1, r)-types
gives rise to one (m, r)-type defined by

∨
{ ∃xm+1 ϕ | ϕ ∈ S} ∨

∨
{∀xm+1 (¬(ϕ)) | ϕ �∈ S}.

♠Exercise 17.9 [Kol83] Let r and m be positive integers such that 0 ≤m≤ r . Prove that

(a) every (m, r)-type is a CALC formula with free variables x1, . . . , xm and quantifier
depth (r −m);

(b) there are only finitely many distinct (m, r)-types; and

(c) for every instance I and sequence a1, . . . , am of constants in I, there is exactly one
(m, r)-type ϕ such that I satisfies ϕ(a1, . . . , am).

♠Exercise 17.10 [Kol83] Prove that each equivalence class of ≡r is definable by a CALC
sentence of quantifier depth r . Hint: For a given equivalence class of ≡r , consider an instance
in the class and the unique r-type satisfied by the instance.

Exercise 17.11 Complete the proof of Theorem 17.3.1; specifically show that

(a) fixpoint ⊆ qptime and while ⊆ qpspace, and
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(b) fixpoint is complete in ptime and while is complete in pspace.

Exercise 17.12 In the proof of Proposition 17.3.2, the case of assignments of the form T :=
Q1×Q2 was discussed. Describe the constructions needed for the other algebra operators. Point
out where the assumption that the size of I is greater than N is used.

.Exercise 17.13 Prove that the while queries collapse to CALC on unary relation inputs. More
precisely, let R be a database schema consisting of unary relations. Show that for each while
query w on R there exists a CALC query ϕ equivalent to it. Hint: Use the same approach as in
the proof of Proposition 17.3.2 to show that there is a constant bound on the length of runs of a
given while program on unary inputs.

.Exercise 17.14 Describe how to generalize the proof of Proposition 17.3.2 so that it handles
while queries that have constants. In particular, describe how the notion of hyperplanes needs
to be generalized.

Exercise 17.15 Recall the technique of hyperplanes used in the proof of Proposition 17.3.2.

(a) LetD ⊆ dom be finite. For a relation schemaR, the cross-product instance ofR over
D is IR×D =D × · · · ×D (arity of R times). The cross-product instance of database
schema R over D is the instance IR

×D, where IR
×D(R)= IR×D for each R ∈ R. Let P

be a datalog¬ program with no constants, input schema R, and output schema S with
arity k. Prove that there is an N > 0 and a set EP of equivalence relations over [1, k]
such that for each set D ⊆ dom: if |D| ≥N then

P(IR
×D)=

⋃
{H'(D) |' ∈ EP }.

(b) Prove (a) for datalog¬¬ programs.

(c) Generalize your proofs to permit constants in P .

Exercise 17.16 In the proof of Lemma 17.3.6, prove more formally the bound on µn(¬σk).
Prove that its limit is 0 when n goes to∞.

Exercise 17.17 Determine whether the following properties of graphs are almost surely true
or whether they are almost surely false.

(a) Existence of a cycle of length three

(b) Connectivity

(c) Being a tree

Exercise 17.18 Prove that there is a finite number of equivalence classes of k-tuples induced
by automorphisms of the Rado graph. Hint: Each class is completely characterized by the
pattern of connection and equality among the coordinates of the k-tuple. To see this, show that
for all tuples u and v satisfying this property, one can construct an automorphism ρ of the Rado
graph such that ρ(u)= v. The automorphism is constructed using the extension axioms, similar
to the proof of Lemma 17.3.5.

♠Exercise 17.19 Describe how to generalize the development of 0-1 laws for arbitrary input
and for queries involving constants.

Exercise 17.20 Prove or disprove: The properties expressible in fixpoint are exactly the ptime
properties that have a 0-1 law.
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Exercise 17.21 The language existential second-order logic, denoted (∃SO), consists of sen-
tences of the form ∃Qi . . . ∃Qkσ , whereQi are relations and σ is a first-order sentence using the
relations Qi (among others). Show that ∃SO does not have a 0-1 law. Hint: Exhibit a property
expressible in ∃SO that is neither almost surely true nor almost surely false.

.Exercise 17.22 Infinitary logic with finitely many variables, denoted Lω∞ω, is an extension of
CALC that allows formulas with infinitely long conjunctions and disjunctions but using only
a finite number of variables. Show that each while query can be expressed in Lω∞ω. Hint: Start
with a specific example, such as transitive closure.

Exercise 17.23 The following refer to the proof of Theorem 17.4.2.

(a) Describe a fixpoint query that, given a successor relation succ on constants, con-
structs a 2k-ary successor relation succk on k-tuples of constants, in the lexicograph-
ical order induced on k-tuples by succ.

(b) Show that the relation constant_coding can be defined from succ using a fixpoint
query.

(c) Complete the details of the construction of RM by a fixpoint query.

(d) Describe in detail the CALC formula corresponding to the move of M considered in
the proof of Theorem 17.4.2.

(e) Describe in detail the CALC formula used to perform phase γ in the computation of
qM .

(f) Show where the proof of Theorem 17.4.2 breaks down if it is not assumed that the
input instance is ordered.

Exercise 17.24 Spell out the differences in the proofs of (a) and (b) in Theorem 17.4.2.

Exercise 17.25 Write a fixpoint query that computes the parity query even on ordered data-
bases.

Exercise 17.26 Consider queries of the form

Does the diameter of G have property P?

where P is an exptime property of the integers (i.e., a property that can be checked, for integer
n, in time exponential in log n, or polynomial in n). Show that each query as above is a fixpoint
query.

♠Exercise 17.27 [Gur] This exercise shows that there is a query expressible in CALC in the
presence of order that is not expressible in CALC without order. Let R = {D, S}, where D is
unary and S is binary. Consider an instance I of R. Suppose the second column of I(S) contains
only constants from I(D). Then one can view each constant s in the first column of I(S) as
denoting a subset of I(D), namely {x | S(s, x)}. Call an instance I of R good if for each subset
of I(D), there exists a constant representing it. In other words, for each subset T of I(D), there
exists a constant s such that

T = {x | S(s, x)}.

Consider the query q defined by q(I) = true iff I is a good input and |I(D)| is even.

(a) Show that q is not expressible by CALC.
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(b) Show that q is expressible on instances extended with an order relation ≤ on the
constants.

(c) Note that in (b), an order is used instead of the usual successor relation on constants.
Explain the difficulty of proving (b) if a successor relation is used instead of ≤.

Hint: For (a), use Ehrenfeucht-Fraissé games. Consider (b). To check that the input is good,
check that (1) all singleton subsets of I(D) are represented, and (2) if T1 and T2 are represented,
so is T1 ∪ T2. To check evenness of |I(D)| on good inputs, define first from ≤ a successor
relation succD on the constants in I(D); then check that there exists a subset T of I(D) consisting
of the even constants according to succD and that the last element in succD is in T .

♠Exercise 17.28 (Expression complexity [Var82a])

(a) Show that the expression complexity of CALC is within pspace. That is, consider a
fixed instance I and tuple u, and a TMMI,u depending on I and u that, given as input
some standard encoding of a query ϕ in CALC, decides if u ∈ ϕ(I). Show that there
is such a TMMI,u whose complexity is within pspace with respect to |enc(ϕ)|, when
ϕ ranges over CALC.

(b) Prove that in terms of expression complexity, CALC is complete in pspace. Hint:
Use a reduction to quantified propositional calculus (see Chapter 2 and [GJ79]).

(c) Let CALC− consist of the quantifier-free queries in CALC. Show that the expression
complexity of CALC− is within logspace.

Exercise 17.29 Show that

(a) Wx(WyR(x, y)) is not equivalent5 to Wxyϕ(x, y);

(b) Wx(WyR(x, y)) is not equivalent to Wy(WxR(x, y)).

Exercise 17.30 Write a CALC+µ++W formula defining the query even.

Exercise 17.31 Express the query of Example 17.4.4 in while++W .

♠Exercise 17.32 [ASV90] Show that it is undecidable whether a given CALC+µ++W formula
defines a deterministic query. Hint: Use the undecidability of satisfiability of CALC sentences.

♠Exercise 17.33 [AV91a, AV91c]. As seen, the witness operator can be used to obtain nonde-
terministic versions of while(+) and CALC+µ(+). One can obtain nondeterministic versions of
datalog¬(¬) as follows. The syntax is the same, except that heads of rules may contain several
literals, and equality may be used in bodies of rules. The rules of the program are fired one rule
at a time and one instantiation at a time. The nondeterminism is due to the choice of rule and
instantiation used in each firing. The languages thus obtained are denoted N -datalog¬(¬).

(a) Prove that N-datalog¬¬ is equivalent to CALC+µ+W and while+W and expresses
all nondeterministic queries computable in polynomial space.6

(b) Show that N-datalog¬ cannot compute the query P − πA(Q), whereQ is of sort AB
and P of sort A.

5 Two formulas are equivalent iff they define the same set of relations for each given instance.
6 This includes qpspace, the deterministic queries computable in polynomial space.
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(c) Let N-datalog¬∀ be the language obtained by extending N-datalog¬ with universal
quantification in bodies of rules. For example, the program

answer(x) ← ∀y[P(x),¬Q(x, y)]

computes the query P − πA(Q). Prove that N-datalog¬∀ is equivalent to
CALC+µ++W and while++W and expresses all nondeterministic queries com-
putable in polynomial time.

(d) Prove that N-datalog¬ and N-datalog¬∀ are equivalent on ordered databases.

♠Exercise 17.34 (Dynamic choice operator [CGP93]) The following extension of datalog �=
with a variation of the choice operator (see Bibliographic Notes) is introduced in [CGP93].
Datalog �= programs are extended by allowing atoms of the form choice(X,Y) in rules of bodies,
where X and Y are disjoint sets of variables occurring in regular atoms of the rule. Several
choice atoms can appear in one rule. The language obtained is called datalog �=+choice. The
semantics is the following. The choice atoms render the immediate consequence operator of
a datalog �=+choice program P nondeterministic. In each application of TP , a subset of the
applicable valuations is chosen so that for each rule containing an occurrence choice(X,Y), the
functional dependency X→ Y holds. That is, one instantiation for the Y variables is chosen
for each instantiation of the X variables. Moreover, the nondeterministic choices operated at
each application of TP for a given occurrence of a choose atom extend the choices made in
previous applications of TP for that atom. (Thus choose has a more global nature than the
witness operator.) Although negation is not used in datalog�=+choice, it can be simulated. The
following datalog �=+choice program computes in P̄ the complement of a nonempty relation P
with respect to a universal relation T of the same arity [CGP93]:

TAG(X, 0) ← P(X)

TAG(X, 1) ← T (X),COMP(Y, 0)

COMP(X, I)← TAG(X, I), choose(X, I)

P̄ (X) ← COMP(X, 1)

The role of choose in the preceding program is simple. When first applied, it associates with
each X in P the tag I = 0. At the second application, it chooses a tag of 0 or 1 for all tuples in
T . However, tuples in P have already been tagged by 0 in the previous application of choose,
so the tuples tagged by 1 are precisely those in the complement.

(a) Exhibit a datalog�=+choice program that, given as input a unary relation P , defines
nondeterministically the successor relations on the constants in P .

(b) Show that every N-datalog¬ query is expressible in datalog �=+choice (see Exer-
cise 17.33).

(c) Prove that datalog �=+choice expresses exactly the nondeterministic queries com-
putable in polynomial time.

♠Exercise 17.35 [Daw93, Hel92] As shown in this chapter, the fixpoint queries fall short of
expressing all of qptime. For example, they cannot express even. A natural idea is to enrich
the fixpoint queries with additional constructs in the hope of obtaining a language expressing
exactly qptime. This exercise explores one (unsuccessful) possibility, which consists of adding
some finite set of ptime oracles to the fixpoint queries.
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A property of instances over some database schema R is a subset of inst(R) closed under
isomorphisms of dom. Let Q be a finite set of properties, each of which can be checked in ptime.
Let while+(Q) be the extension of while+ allowing loops of the form while q(R1, . . . , Rn) do,
where q ∈Q and R1, . . . , Rn are relation variables compatible with the schema of q. Intuitively,
this allows us to ask whether R1, . . . , Rn have property q. Clearly, while+(Q) generally has
more power than while+. For example, the query even is trivially expressible in while+({even}).
One might wonder if there is choice of Q such that while+(Q) expresses exactly qptime.

(a) Show that for every finite set Q of ptime properties, there exists a single ptime
property q such that while+(Q)≡ while+({q}).

(b) Let while+1 ({q}) denote all while+({q}) programs whose input is one unary relation.
Let ptime[k] denote the set of properties whose time complexity is bounded by some
polynomial of degree k. Show that, for each ptime property q, the properties of unary
relations definable in while+1 ({q}) are in ptime[k] for some k depending only on
q. Hint: Show that for each while+1 ({q}) program there exist N > 0 and properties
q1, . . . , qm of integers where each qi(n) can be checked in time polynomial in n, such
that the program is equivalent to a Boolean combination of tests n≥ j, n= j, qi(n),
where n is the size of the input, 0 ≤ j ≤ N and 1 ≤ i ≤ m. Use the hyperplane
technique developed in the proof of Proposition 17.3.2.

(c) Prove that there is no finite set Q of ptime properties such that while+(Q) expresses
qptime. Hint: Use (a), (b), and the fact that ptime[k] ⊂ ptime by the time hierarchy
theorem.




