
P A R T

E Expressiveness and
Complexity

Various query languages were presented in Parts B and D. Simple languages like
conjunctive queries were successively augmented with various constructs such as

union, negation, and recursion. The primary motivation for defining increasingly powerful
languages was the need to express useful queries not captured by the simpler languages. In
the presentation, the process was primarily example driven. The following chapters present
a more advanced and global perspective on query languages. In addition to their ability to
express specific queries, we consider more broadly the capability of languages to express
queries of a given complexity. This leads to establishing formal connections between
languages and complexity classes of queries. This approach lies on the border between
databases, complexity theory, and logic. It is related to characterizations of complexity
classes in terms of various logics.

The basic framework for the formal development is presented in Chapter 16, in which
we discuss the notion of a query and produce a formal definition. It turns out that it
is relatively easy to define languages expressing all queries. Such languages are called
complete. However, the real challenge for the language designer is not simply to define
increasingly powerful languages. Instead an important aspect of language design is to
achieve a good balance between expressiveness and the complexity of evaluating queries.
The ideal language would allow expression of most useful queries while guaranteeing that
all queries expressible in the language can be evaluated with reasonable complexity. To
formalize this, we raise the following basic question: How does one evaluate a query
language with respect to expressiveness and complexity? In an attempt to answer this
question, we discuss the issue of sizing up languages in Chapter 16.

Chapter 17 considers some of the classes of queries discussed in Part B from the
viewpoint of expressiveness and complexity. The focus is on the relational calculus of
Chapter 5 and on its extensions fixpoint and while defined in Chapter 14. We show the
connection of these languages to complexity classes. Several techniques for showing the
nonexpressibility of queries are also presented, including games and 0-1 laws.

Chapter 17 also explores the intriguing theoretical implications of one of the basic as-
sumptions of the pure relational model—namely, that the underlying domain dom consists
of uninterpreted, unordered elements. This assumption can be viewed as a metaphor for
the data independence principle, because it implies using only logical properties of data as

415

416 Expressiveness and Complexity

opposed to the underlying implementation (which would provide additional information,
such as an order).

Chapter 18 presents highly expressive (and complex) languages, all the way up to com-
plete languages. In particular, we discuss constructs for value invention, which are similar
to the object creation mechanisms encountered in object languages (see Chapter 21).

For easy reference, the expressiveness and complexity of relational query languages
are summarized at the end of Chapter 18.

16 Sizing Up Languages

Alice: Do you ever worry about how hard it is to answer queries?
Riccardo: Sure—my laptop can only do conjunctive queries.

Sergio: I can do the while queries on my Sun.
Vittorio: I don’t worry about it—I have a Cray in my office.

This chapter lays the groundwork for the study of the complexity and expressiveness
of query languages. First the notion of query is carefully reconsidered and formally

defined. Then, the complexity of individual queries is considered. Finally definitions that
allow comparison of query languages and complexity classes are developed.

16.1 Queries

The goal of Part E is to develop a general understanding of query languages and their
capabilities. The first step is to formulate a precise definition of what constitutes a query.
The focus is on a fairly high level of abstraction and thus on the mappings expressible by
queries rather than on the syntax used to specify them. Thus, unlike Part B, in this part we
use the term query primarily to refer to mappings from instances to instances rather than to
syntactic objects. Although there are several correct definitions for the set of permissible
queries, the one presented here is based on three fundamental assumptions: well-typedness,
computability, and genericity.

The first assumption involves the schemas of the input and the answer to a query. A
query is over a particular database schema, say R. It takes as input an instance over R
and returns as answer a relation over some schema S. In principle, it is conceivable that
the schema of the result may be data dependent. However, to simplify, it is assumed here
(as in most query languages) that the schema of the result is fixed for a given query. This
assumption is referred to as well-typedness. Thus, for us, a query is a partial mapping from
inst(R) to inst(S) for fixed R and S. By allowing partially defined mappings, we account
for queries expressed by programs that may not always terminate.

Because we are only interested in effective queries, we also make the natural assump-
tion that query mappings are computable. Query computability is defined using classical
models of computation, such as Turing machines (TM). The basic idea is that the query
must be “implementable” by a TM. Thus there must exist a TM that, given as input a nat-
ural encoding of a database instance on the tape, produces an encoding of the output. The
formalization of these notions requires some care and is done next.

417

418 Sizing Up Languages

P Q

a b c c

b a

(a)

P[0#1][1#0]Q[10#10]

(b)

Figure 16.1: An instance I and its TM encoding with respect to α = abc

The first question in developing the formalization is, How can input and output in-
stances be represented on a TM tape that has finite alphabet when the underlying domain
dom is infinite? We resolve this by using standard encodings for dom. As we shall see later
on, although this permits us to use conventional complexity theory in our study of query
language expressiveness, it also takes us a bit outside of the pure relational model.

We focus on encodings of both dom and of subsets of dom, and we use the symbols 0
and 1. Let d⊆ dom and let α = {d0, d1, . . . , di, . . .} be an enumeration of d. The encoding
of d relative to α is the function encα, which maps di to the binary representation of i (with
no leading zeros) for each di ∈ d. Note that |encα(di)| ≤ #log i$ for each i.

We can now describe the encoding of instances. Suppose that a set d ⊆ dom, enu-
meration α for d, source schema R = {R1, . . . , Rm}, and target schema S are given. The
encoding of instances of R uses the alphabet {0, 1, [,], #} ∪R ∪ {S}. An instance I over R
with adom(I)⊆ d is encoded relative to α as follows:

1. encα(〈a1, . . . , ak〉) is [encα(a1)# . . . #encα(ak)].

2. encα(I(R)), for R ∈ R, is R encα(t1) . . . encα(tl), where t1, . . . , tl are the tuples in
I(R) in the lexicographic order induced by the enumeration α.

3. encα(I)= encα(I(R1)) . . . encα(I(Rm)).

Example 16.1.1 Let R = {P,Q}, I be the instance over R in Fig. 16.1(a), and let α =
abc. Then encα(I) is shown in Fig. 16.1(b).

Let α be a fixed enumeration of dom. In this case the encoding encα described earlier
is one-to-one on instances and thus has an inverse enc−1

α when considered as a mapping
on instances. We are now ready to formalize the notion of computability relative to an
encoding of dom.

Definition 16.1.2 Let α be an enumeration of dom. A mapping q from inst(R) to
inst(S) is computable relative to α if there exists a TM M such that for each instance I
over R

16.1 Queries 419

(a) if q(I) is undefined, then M does not terminate on input encα(I), and

(b) if q(I) is defined, M halts on input encα(I) with output encα(q(I)) on the tape.

As will be seen shortly, the third assumption about queries (namely, genericity) will
permit us to reformulate the preceding definition to be independent of the encoding of
dom used. Before introducing that notion, we consider more carefully the representation
of database instances on TM tapes. In some sense, TM encodings on the tape are similar
to the internal representation of the database on some physical storage. In both cases, the
representation contains more information than the database itself. In the case of the TM
representation, the extra information consists primarily of the enumeration α of constants
necessary to define encα. In the pure relational model, this kind of information is not part of
the database. Instead, the database is an abstraction of its internal (or TM) representation.
This additional information can be viewed as noise associated with the internal representa-
tion and thus should not have any visible impact for the user at the conceptual level. This is
captured by the data independence principle in databases, which postulates that a database
provides an abstract interface that hides the internal representation of data.

We can now state the intuition behind the third and last requirement of queries, which
formalizes the data independence principle. Although computations performed on the in-
ternal representation may take advantage of all information provided at this level, it is ex-
plicitly prohibited, in the definition of a query, that the result depend on such information.
(In some cases this restriction may be relaxed; see Exercise 16.4.)

For example, consider a database that consists of a binary relation specifying the edges
of a directed graph. Consider a query that returns as answer a subset of the vertexes in the
graph. One can imagine queries that extract (1) all vertexes with positive in-degree, or (2)
all vertexes belonging to some cycle, or (3) the first vertex of the graph as presented in the
TM tape representation. Speaking intuitively, (1) and (2) are independent of the internal
representation used, whereas (3) depends on it. Queries such as (3) will be excluded from
the class of queries.

The property that a query depends only on information provided by the input instance
is called genericity and is formalized next. The idea is that the constants in the database
have no properties other than the relationships with each other specified by the database.
(In particular, their internal representation is irrelevant.) Thus the database is essentially un-
changed if all constants are consistently renamed. Of course, a query can always explicitly
name a finite set of constants, which can then be treated differently from other constants.
(The set of such constants is the set C in Definition 16.1.3.)

A permutation of dom is a one-to-one, onto mapping from dom to dom. As done
before, each mapping ρ over dom is extended to tuples and database instances in the
obvious way.

Definition 16.1.3 Let R and S be database schemas, and let C be a finite set of con-
stants. A mapping q from inst(R) to inst(S) is C-generic iff for each I over R and each
permutation ρ of dom that is the identity on C, ρ(q(I))= q(ρ(I)). When C is empty, we
simply say that the query is generic.

420 Sizing Up Languages

The previous definition is best visualized using the following commuting diagram:

I
q−→ q(I)�ρ �ρ

ρ(I)
q−→ ρ(q(I))= q(ρ(I)).

In other words, a query is C-generic if it commutes with permutations (that leave C fixed).
Genericity states that the query is insensitive to renaming of the constants in the

database (using the permutation ρ). It uses only the relationships among constants provided
by the database and is independent of any other information about the constants. The set C
specifies the exceptional constants named explicitly in the query. These cannot be renamed
without changing the effect of the query.

Permutations ρ for which ρ(I)= I are of special interest. Such ρ are called automor-
phisms for I. If ρ is an automorphism for I and ρ(a)= b, this says intuitively that a and
b cannot be distinguished using the structure of I. Let q be a generic query, I an instance,
and ρ an automorphism for I. Then, by genericity,

ρ(q(I))= q(ρ(I))= q(I),

so ρ is also an automorphism for q(I). In particular, a generic query cannot distinguish
between constants that are undistinguishable in the input (see Exercise 16.5). Of course,
this is not the case if the query explicitly names some constants.

We illustrate these various aspects of genericity in an example.

Example 16.1.4 Consider a database over a binary relation G holding the edges of a
directed graph. Let I be the instance {〈a, b〉, 〈b, a〉, 〈a, c〉, 〈b, c〉}.

Let σ be the CALC query

{〈x〉 | ∃yG(x, y)}.

Note that σ(I)= {〈a〉, 〈b〉}. Let ρ be the permutation defined by ρ(a)= b, ρ(b)= c, and
ρ(c) = d . Then ρ(I) = {〈b, c〉, 〈c, b〉, 〈b, d〉, 〈c, d〉}. Genericity requires that σ(ρ(I)) =
{〈b〉, 〈c〉}. This is true in this case.

Note also that a and b are undistinguishable in I. Formally, the renaming ρ defined by
ρ(a)= b, ρ(b)= a, and ρ(c)= c has the property that ρ(I)= I and thus is an automor-
phism of I. Let q be a generic query onG. By genericity of q, either a and b both belong to
q(I), or neither does. Thus a generic query cannot distinguish between a and b. Of course,
this is not true forC-generic queries (forC nonempty). For instance, let qb = π1(σ2=b(G)).
Now qb is {b}-generic, and qb(I)= {〈a〉}. Thus qb distinguishes between a and b.

It is easily verified that if a database mapping q is C-generic, then for each input
instance I, adom(q(I))⊆ C ∪ adom(I) (see Exercise 16.1).

16.1 Queries 421

In most cases we will ignore the issue of constants in queries because it is not central.
Note that a C-generic query can be viewed as a generic query by including the constants in
C in the input, using one relation for each constant. For instance, the {b}-generic query qb
overG in Example 16.1.4 is reduced to a generic query q ′ over {G,Rb}, where Rb = {〈b〉},
defined as follows:

q ′ = π1(σ2=3(G× Rb)).

In the following, we will usually assume that queries have no constants unless explicitly
stated.

Suppose now that α and β are two enumerations of dom and that a generic mapping
q from R to S is computed by a TM M using encα. It is easily verified that the same query
is computed by M if encβ is used in place of encα (see Exercise 16.2). This permits us to
adopt the following notion of computable, which is equivalent to “computable relative to
enumeration α” in the case of generic queries. This definition has the advantage of relying
on finite rather than infinite enumerations.

Definition 16.1.5 A generic mapping q from inst(R) to inst(S) is computable if there
exists a TM M such that for each instance I over R and each enumeration α of adom(I),

(a) if q(I) is undefined, then M does not terminate on input encα(I), and

(b) if q(I) is defined, M halts on input encα(I) with output encα(q(I)) on the tape.

We are now ready to define queries formally.

Definition 16.1.6 Let R be a database schema and S a relation schema. A query from
R to S is a partial mapping from inst(R) to inst(S) that is generic and computable.

Note that all queries discussed in previous chapters satisfy the preceding definition
(modulo constants in queries).

Queries and Query Languages

We are usually interested in queries specified by the expressions (i.e., syntactic queries
or programs) of a given query language. Given an expression E in query language L, the
mapping between instances thatE describes is called the effect ofE. Depending on the lan-
guage, there may be several alternative semantics (e.g., inflationary versus noninflationary)
for defining the query expressed by an expression. A related issue concerns the specifica-
tion of the output schema of an expression. In calculus-based languages, the output schema
is unambiguously specified by the form of the expression. The situation is more ambigu-
ous for other languages, such as datalog and while. Programs in these languages typically
manipulate several relations and may not specify explicitly which is to be taken as the an-
swer to the query. In such cases, the concepts of input, output, and temporary relations
may become important. Thus, in addition to semantically significant input and output re-
lations, the programs may use temporary relations whose content is immaterial outside the

422 Sizing Up Languages

computation. We will state explicitly which relations are temporary and which constitute
the output whenever this is not clear from the context.

A query language or computing device is called complete if it expresses all queries.
We will discuss such languages in Chapter 18.

16.2 Complexity of Queries

We now develop a framework for measuring the complexity of queries. This is done by
reference to TMs and classical complexity classes defined using the TM model.

There are several ways to look at the complexity of queries. They differ in the param-
eters with respect to which the complexity is measured. The two main possibilities are as
follows:

• data complexity: the complexity of evaluating a fixed query for variable database
inputs; and

• expression complexity: the complexity of evaluating, on a fixed database instance,
the various queries specifiable in a given query language.

Thus in the data complexity perspective, the complexity is with respect to the database
input and the query is considered constant. Conversely, with expression complexity, the
database input is fixed and the complexity is with respect to the size of the query expression.
Clearly, the measures provide different information about the complexity of evaluating
queries. The usual situation is that the size of the database input dominates by far the size
of the query, and so data complexity is typically most relevant. This is the primary focus of
Part E, and we use the term complexity to refer to data complexity unless otherwise stated.

The complexity of queries is defined based on the recognition problem associated with
the query. For a query q, the recognition problem is as follows: Given an instance I and a
tuple u, determine if u belongs to the answer q(I). To be more precise, the recognition
problem of a query q is the language

{encα(I)#encα(u) | u ∈ q(I), α an enumeration of adom(I)}.

The (data) complexity of q is the (conventional) complexity of its recognition problem.
Technically, the complexity is with respect to the size of the input [i.e., the length of the
word encα(I)#encα(u)]. Because for an instance I the size (number of tuples) in I is closely
related to the length of encα(I) (see Exercise 16.12), the size of I is usually taken as the
measure of the input.

For each Turing time or space complexity class c, one can define a corresponding
complexity class of queries, denoted by qc . The class of queries qc consists of all queries
whose recognition problem is in c. For example, the class qptime consists of all queries
for which the recognition problem is in ptime.

There is another way to define the complexity of queries that is based on the com-
plexity of actually constructing the result of the query rather than the recognition problem
for individual tuples. The two definitions are in most cases interchangeable (see Exer-
cise 16.13). In particular, for complexity classes insensitive to a polynomial factor, the

16.3 Languages and Complexity 423

definitions are equivalent. In general, the definition based on constructing the result dis-
tinguishes between a query with a large answer and one with a small answer, which is
irrelevant to the definition based on recognition. On the other hand, the definition based
on constructing the result may not distinguish between easy and hard queries with large
results.

Example 16.2.1 Consider a database consisting of one binary relation G and the three
queries cross, path, and self on G defined as follows:

cross(G)= π1(G)× π2(G),

path(G) = {〈x, y〉 | x and y are connected by a path in G},
self (G) =G.

Consider first cross and path. Both have potentially large answers, but cross is clearly
easier than path, even though the time complexity of constructing the result is O(n2) for
both cross and path. The time complexity of the recognition problem is O(n) for cross
and O(n2) for path. Thus the measure based on constructing the result does not detect
a difference between cross and path, whereas this is detected by the complexity of the
recognition problem. Next consider cross and self . The time complexity of the recognition
problem is in both cases O(n), but the complexity of computing the result is O(n) for self
whereas it is O(n2) for cross. Thus the complexity of the recognition problem does not
distinguish between cross and self , although cross can potentially generate a much larger
answer. This difference is detected by the complexity of constructing the result.

In Part E, we will use the definition of query complexity based on the associated
recognition problem.

16.3 Languages and Complexity

In the previous section we studied a definition of the complexity of an individual query.
To measure the complexity of a query language L, we need to establish a correspondence
between

• the class of queries expressible in L, and

• a complexity class qc of queries.

Expressiveness with Respect to Complexity Classes

The most straightforward connection between L and a class of queries qc is when L and
qc are precisely the same.1 In this case, it is said that L expresses qc. In every case, each
query in L has complexity c, and conversely L can express every query of complexity c.

1 By abuse of notation, we also denote by L the set of queries expressible in L.

424 Sizing Up Languages

Ideally, one would be able to perform complexity-tailored language design; that is,
for a desired complexity c, one would design a language expressing precisely qc. Unfor-
tunately, we will see that this is not always possible. In fact, there are no such results for
the pure relational model for complexity classes of polynomial time and below, that are of
most interest. We consider this phenomenon at length in the next chapter. Intuitively, the
shapes of classes of queries of low complexity do not match those of classes of queries de-
fined by any known language. Therefore we are led to consider a less straightforward way
to match languages to complexity classes.

Completeness with Respect to Complexity Classes

Consider a language L that does not correspond precisely to any natural complexity class
of queries. Nonetheless we would like to say something about the complexity of queries in
L. For instance, we may wish to guarantee that all queries in L lie within some complexity
class c, even though L may not express all of qc. For the bound to be meaningful, we
would also like that c is, in some sense, a tight upper bound for the complexity of queries
in L. In other words, L should be able to express at least some queries that are among
the hardest in qc. The property of a problem being hardest in a complexity class c is
captured, in complexity theory, by the notion of completeness of the problem in the class
(see Chapter 2). By extension to a language, this leads to the following:

Definition 16.3.1 A language L is complete with respect to a complexity class c if

(a) each query in L is also in qc, and

(b) there exists a query in L for which the associated recognition problem is com-
plete with respect to the complexity class c.

As in the classical definition of completeness of a problem in a complexity class,
we qualify, when necessary, the notion of a completeness in a complexity class by the
complexity of the reduction. For instance, L is logspace complete with respect to c qualifies
(b) by stating that the query expressible in L whose recognition problem is complete in c
is in fact logspace complete in c.

In some sense, completeness without expressiveness says something negative about
the language L. L can express some queries that are as hard as any query in qc; on the
other hand, there may be easy queries in qc that are not expressible in L. This may at first
appear contradictory because L expresses some queries that are complete in c, and any
problem in c can be reduced to the complete problem. However, there is no contradiction.
The reduction of the “easy” query to the complete query may be computationally easy but
nevertheless not expressible in L. Examples of this situation involve the familiar languages
fixpoint and while. As will be shown in Section 17.3, these languages are complete in ptime
and pspace, respectively. However, neither can express the simple parity query on a unary
relation R:

even(R)= true if |R| is even, and false otherwise.

Bibliographic Notes 425

Complexity and Genericity

To conclude this chapter, we consider the delicate impact of genericity on complexity.
The foregoing query even illustrates a fundamental phenomenon relating genericity to the
complexity of queries. As stated earlier, even cannot be computed by fixpoint or by while,
both of which are powerful languages. The difficulty in computing even is due to the lack
of information about the elements of the set. Because the database only provides a set
of undifferentiated elements, genericity implies that they are treated uniformly in queries.
This rules out the straightforward solution of repeatedly extracting one arbitrary element
from the set until the set is empty while keeping a binary counter: How does one specify
the first element to be extracted?

On the other hand, consider the problem of computing even with a TM. The additional
information provided by the encoding of the input on the tape makes the problem trivial
and allows a linear-time solution.

This highlights the interesting fact that genericity may complicate the task of com-
puting a query, whereas access to the internal representation may simplify this task con-
siderably. Thus this suggests a trade-off between genericity and complexity. This can be
formalized by defining complexity classes based on a computing device that is generic by
definition in place of a TM. Such a device cannot take advantage of the representation of
data in the same manner as a TM, and it treats data generically at all points in the com-
putation. It can be shown that even is hard with respect to complexity measures based on
such a device. The query even will be used repeatedly to illustrate various aspects of the
complexity of queries.

Bibliographic Notes

The study of computable queries originated in the work of Chandra and Harel [CH80b,
Cha81a, CH82]. In addition to well-typed languages, they also considered languages defin-
ing queries with data-dependent output schemas. The data and expression complexity
of queries were introduced and studied in [CH80a, CH82] and further investigated in
[Var82a]. Data complexity is most widely used and is based on the associated recogni-
tion problem. Data complexity based on constructing the result of the query is discussed in
[AV90].

The notion of genericity was formalized in [AU79, CH80b] with different terminology.
The term C-genericity was first used in [HY84]. Other notions related in spirit to genericity
are studied in [Hul86]. The definition of genericity is extended in [AK89] to object-oriented
queries that can produce new constants in the result (arising from new object identifiers);
see also [VandBGAG92, HY90]. This is further discussed in Chapters 18 and 21.

A modified notion of Turing machine is introduced in [HS93] that permits domain el-
ements to appear on the Turing tape, thus obviating the need to encode them. However, this
device still uses an ordered representation of the input instance. A device operating directly
on relations is the on-site acceptor of [Lei89a]. This extends the formal algorithmic pro-
cedure (FAP) proposed in [Fri71] in the context of recursion theory. Another variation of
this device is presented in [Lei89b]. Further generalizations of TMs, which do not assume
an ordered input, are introduced in [AV91b, AV94]. These are used to define nonstandard

426 Sizing Up Languages

complexity classes of queries and to investigate the trade-off between genericity and com-
plexity.

Informative discussions of the connection between query languages and complexity
classes are provided in [Gur84, Gur88, Imm87b, Lei89a].

Exercises

Exercise 16.1 Let q be a C-generic mapping. Show that, for each input instance I, adom(q(I))
⊆ C ∪ adom(I).

Exercise 16.2 (Genericity) Let q be a generic database mapping from R to S.

(a) Let α and β be enumerations of dom, and suppose that M computes q using encα.
Prove that for each instance I over R,

encα ◦M ◦ enc−1
α = encβ ◦M ◦ enc−1

β .

Conclude that M computes q using encβ .

(b) Verify that the definitions of computable relative to α and computable are equivalent
for generic database mappings.

.Exercise 16.3 Let R be a database schema and S a relation schema.

(a) Prove that it is undecidable to determine, given TM M that computes a mapping q
from inst(R) to inst(S) relative to enumeration α of dom, whether q is generic.

(b) Show that the set of TMs that compute queries from R to S is co-r.e.

Exercise 16.4 In many practical situations the underlying domains used (e.g., strings, inte-
gers) have some structure (e.g., an ordering relationship that is visible to both user and imple-
mentation). For each of the following, develop a natural definition for generic and exhibit a
nongeneric query, if there is one.

(a) dom is partitioned into several sorts dom1, . . . ,domn.

(b) dom has a dense total order ≤. [A total order ≤ is dense if ∀x, y(x < y→∃z(x <
z ∧ z < y)).]

(c) dom has a discrete total order ≤. [A total order ≤ is discrete if ∀x[∃y(x < y→
∃z(x < z ∧ ¬∃w(x < w ∧ w < z))) ∧ ∃y(y < x→∃z(z < x ∧ ¬∃w(z < w ∧ w <
x)))].]

(d) dom is the set of nonnegative integers and has the usual ordering ≤.

Exercise 16.5 Let q be a C-generic query, and let I be an input instance. Let ρ be an automor-
phism of I that is the identity on C, and let a, b be constants in I, such that ρ(a)= b. Show that
a occurs in q(I) iff b occurs in q(I).

The next several exercises use the following notions. Let R be a database schema. Let k be
a positive integer and I an instance over R. 8I

k denotes the set of k-tuples that can be formed
using just constants in I. Define the following relation ≡I

k on 8I
k: u ≡I

k v iff there exists an
automorphism ρ of I such that ρ(u)= v. The k-type index of I, denoted #k(I), is the number of
equivalence classes of ≡I

k.

Exercises 427

Exercise 16.6 (Equivalence induced by automorphisms) Let R be a database schema and I an
instance of R.

(a) Show that ≡I
k is an equivalence relation on 8I

k.

(b) Let q be a generic query on R, whose output is a k-ary relation. Show that q(I) is a
union of equivalence classes of ≡I

k.

♠Exercise 16.7 (Type index) Let G be a binary relation schema corresponding to the edges of
a directed graph. Show the following:

(a) The k-type index of a complete graph is a constant independent of the size of the
graph, as long as it has at least k vertexes.

(b) The k-type index of graphs consisting of a simple path is polynomial in the size of
the graph.

(c) [Lin90, Lin91] The k-type index of a complete binary tree is polynomial in the depth
of the tree.

Exercise 16.8 Let k, n be integers, 0< n < k, and I an instance over schema R.

(a) Show how to compute ≡I
n from ≡I

k.

(b) Prove that #n(I) < #k(I), unless I has just one constant.

.Exercise 16.9 (Fixpoint queries and type index) Let ϕ be a fixpoint query on database schema
R. Show that there exists a polynomial p such that, for each instance I over R, ϕ on input I
terminates after at most p(#k(I)) steps, for some k > 0.

♠Exercise 16.10 (Fixpoint queries on special graphs) Show that every fixpoint query terminates
in

(a) constant number of steps on complete graphs;

(b) [Lin90, Lin91] p(log(|I|)) number of steps on complete binary trees I, for some
polynomial p. Hint: Use Exercises 16.7 and 16.9.

♠Exercise 16.11 [Ban78, Par78] Let R be a schema, I a fixed instance over R, and a1, . . . , an
an enumeration of adom(I). For each automorphism ρ on I, let tρ = 〈ρ(a1), . . . , ρ(an)〉, and let

auto(I)= {tρ | ρ an automorphism of I}.

(a) Prove that there is a CALC query q with no constants (depending on I) such that
q(I)= auto(I).

(b) Prove that for each relation schema S and instance J over S with adom(J) ⊆
adom(I),

there is a CALC query q with no constants
(depending on I and J)

such that q(I)= J
iff

for each automorphism ρ of I, ρ(J)= J .

A query language is called bp-complete if it satisfies the “if” direction of part (b).

428 Sizing Up Languages

Exercise 16.12 (Tape encoding of instances) Let I be a nonempty instance of a database
schema R. Let nc be the number of constants in I, nt the number of tuples, and α an enumeration
of the constants in I. Show that there exist integers k1, k2, k3 depending only on R such that

(a) nc ≤ k1nt ≤ |encα(I)|,
(b) |encα(I)| ≤ k2nt log(nt),

(c) |encα(I)| ≤ (nc)
k3.

Exercise 16.13 (Recognition versus construction complexity) Let f be a time or space bound
for a TM, and let q be a query. The notation r-complexity abbreviates the complexity based on
recognition, and a-complexity stands for complexity based on constructing the answer. Show
the following:

(a) If the time r-complexity of q is bounded by f , then there exists k, k > 0, such that
the time a-complexity of q is bounded by nkf , where n is the number of constants
in the input instance.

(b) If the space r-complexity of q is bounded by f , then there exists k, k > 0, such that
the space a-complexity of q is bounded by nk+ f , where n is the number of constants
in the input instance.

(c) If the time a-complexity of q is bounded by f , then there exists k, k > 0, such that
the time r-complexity of q is bounded by kf .

(d) If the space a-complexity of q is bounded by f , then the space r-complexity of q is
bounded by f .

Exercise 16.14 (Data complexity of algebra) Determine the time and space complexity of
each of the relational algebra operations (show the lowest complexity you can).

.Exercise 16.15

(a) Develop an algorithm for computing the transitive closure of a graph that uses only
the information provided by the graph (i.e., a generic algorithm).

(b) Develop algorithms for a TM to compute the transitive closure of a graph (starting
from a standard encoding of the graph on the tape) that use as little time (space) as
you can manage.

(c) Write a datalog program defining the transitive closure of a graph so that the number
of stages in the bottom-up evaluation is as small as you can manage.

