
15 Negation in Datalog

Alice: I thought we already talked about negation.
Sergio: Yes, but they say you don’t think by fixpoint.

Alice: Humbug, I just got used to it!
Riccardo: So we have to tell you how you really think.

Vittorio: And convince you that our explanation is well founded!

As originally introduced in Chapter 12, datalog is a toy language that expresses many
interesting recursive queries but has serious shortcomings concerning expressive

power. Because it is monotonic, it cannot express simple relational algebra queries such
as the difference of two relations. In the previous chapter, we considered one approach
for adding negation to datalog that led to two procedural languages—namely, inflationary
datalog¬ and datalog¬¬. In this chapter, we take a different point of view inspired by non-
monotonic reasoning that attempts to view the semantics of such programs in terms of a
natural reasoning process.

This chapter begins with illustrations of how the various semantics for datalog do not
naturally extend to datalog¬. Two semantics for datalog¬ are then considered. The first,
called stratified, involves a syntactic restriction on programs but provides a semantics that
is natural and relatively easy to understand. The second, called well founded, requires
no syntactic restriction on programs, but the meaning associated with some programs
is expressed using a 3-valued logic. (In this logic, facts are true, false, or unknown.)
With respect to expressive power, well-founded semantics is equivalent to the fixpoint
queries, whereas the stratified semantics is strictly weaker. A proof-theoretic semantics
for datalog¬, based on negation as failure, is discussed briefly at the end of this chapter.

15.1 The Basic Problem

Suppose that we want to compute the pairs of disconnected nodes in a graph G (i.e., we
are interested in the complement of the transitive closure of a graph whose edges are given
by a binary relation G). We already know how to define the transitive closure of G in a
relation T using the datalog program PTC of Chapter 12:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

To define the complement CT of T , we are naturally tempted to use negation as we
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did in Chapter 5. Let PTCcomp be the result of adding the following rule to PTC:

CT (x, y)←¬T (x, y).

To simplify the discussion, we generally assume an active domain interpretation of
datalog¬ rules.

In this example, negation appears to be an appealing addition to the datalog syntax.
The language datalog¬ is defined by allowing, in bodies of rules, literals of the form
¬Ri(ui), where Ri is a relation name and ui is a free tuple. In addition, the equality
predicate is allowed, and ¬= (x, y) is denoted by x �= y.

One might hope to extend the model-theoretic, fixpoint, and proof-theoretic semantics
of datalog just as smoothly as the syntax. Unfortunately, things are less straightforward
when negation is present. We illustrate informally the problems that arise if one tries to
extend the least-fixpoint and minimal-model semantics of datalog. We shall discuss the
proof-theoretic aspect later.

Fixpoint Semantics: Problems

Recall that, for a datalog program P , the fixpoint semantics of P on input I is the unique
minimal fixpoint of the immediate consequence operator TP containing I. The immediate
consequence operator can be naturally extended to a datalog¬ program P . For a program
P , TP is defined as follows1: For each K over sch(P ), A is TP (K) if A ∈ K|edb(P ) or
if there exists some instantiation A← A1, . . . , An of a rule in P for which (1) if Ai is a
positive literal, thenAi ∈ K; and (2) ifAi =¬Bi where Bi is a positive literal, then Bi �∈ K.
[Note the difference from the immediate consequence operator  P defined for datalog¬ in
Section 14.3:  P is inflationary by definition, (that is, K ⊆  P(K) for each K over sch(P ),
whereas TP is not.] The following example illustrates several unexpected properties that
TP might have.

Example 15.1.1

(a) TP may not have any fixpoint. For the propositional program P1 = {p←¬p},
TP1 has no fixpoint.

(b) TP may have several minimal fixpoints containing a given input. For example,
the propositional program P2 = {p←¬q, q←¬p} has two minimal fixpoints
(containing the empty instance): {p} and {q}.

(c) Consider the sequence {T iP (∅)}i>0 for a given datalog¬ program P . Recall that
for datalog, the sequence is increasing and converges to the least fixpoint of TP .
In the case of datalog¬ , the situation is more intricate:

1. The sequence does not generally converge, even if TP has a least fix-
point. For example, let P3 = {p←¬r; r ←¬p;p←¬p, r}. Then

1 Given an instance J over a database schema R with S ⊆ R, J|S denotes the restriction of J to S.
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TP3 has a least fixpoint {p} but {T iP3
(∅)}i>0 alternates between ∅ and

{p, r} and so does not converge (Exercise 15.2).
2. Even if {T iP (∅)}i>0 converges, its limit is not necessarily a minimal

fixpoint of TP , even if such fixpoints exist. To see this, let P4 = {p←
p, q ← q, p←¬p, q ←¬p}. Now {T iP4

(∅)}i>0 converges to {p, q}
but the least fixpoint of TP4 equals {p}.

Remark 15.1.2 (Inflationary fixpoint semantics) The program P4 of the preceding ex-
ample contains two rules of a rather strange form: p← p and q← q. In some sense, such
rules may appear meaningless. Indeed, their logical forms [e.g., (p ∨¬p)] are tautologies.
However, rules of the form R(x1, . . . , xn)← R(x1, . . . , xn) have a nontrivial impact on
the immediate consequence operator TP . If such rules are added for each idb relation R,
this results in making TP inflationary [i.e., K ⊆ TP (K) for each K], because each fact
is an immediate consequence of itself. It is worth noting that in this case, {T iP (I)}i>0 al-
ways converges and the semantics given by its limit coincides with the inflationary fixpoint
semantics for datalog¬ programs exhibited in Chapter 14.

To see the difference between the two semantics, consider again program PTCcomp.
The sequence {T iPTCcomp

(I )}i>0 on input I over G converges to the desired answer (the
complement of transitive closure). With the inflationary fixpoint semantics, CT becomes
a complete graph at the first iteration (because T is initially empty) and PTCcomp does not
compute the complement of transitive closure. Nonetheless, it was shown in Chapter 14 that
there is a different (more complicated) datalog¬ program that computes the complement of
transitive closure with the inflationary fixpoint semantics.

Model-Theoretic Semantics: Problems

As with datalog, we can associate with a datalog¬ program P the set �P of CALC
sentences corresponding to the rules of P . Note first that, as with datalog,�P always has at
least one model containing any given input I. B(P, I) is such a model. [Recall that B(P, I),
introduced in Chapter 12, is the instance in which the idb relations contain all tuples with
values in I or P .]

For datalog, the model-theoretic semantics of a program P was given by the unique
minimal model of �P containing the input. Unfortunately, this simple solution no longer
works for datalog¬, because uniqueness of a minimal model containing the input is not
guaranteed. Program P2 in Example 15.1.1(b) provides one example of this: {p} and {q}
are distinct minimal models of P2. As another example, consider the program PTCcomp

and an input I for predicate G. Let J over sch(PTCcomp) be such that J(G)= I , J(T )⊇ I ,
J(T ) is transitively closed, and J(CT )= {〈x, y〉 | x, y occur in I, 〈x, y〉 �∈ J(T )}. Clearly,
there may be more than one such J, but one can verify that each one is a minimal model of
�PTCcomp satisfying J(G)= I .

It is worth noting the connection between TP and models of �P : An instance K over
sch(P ) is a model of �P iff TP (K)⊆ K. In particular, every fixpoint of TP is a model of
�P . The converse is false (Exercise 15.3).

When for a program P , �P has several minimal models, one must specify which
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among them is the model intended to be the solution. To this end, various criteria of
“niceness” of models have been proposed that can distinguish the intended model from
other candidates. We shall discuss several such criteria as we go along. Unfortunately, none
of these criteria suffices to do the job. Moreover, upon reflection it is clear that no criteria
can exist that would always permit identification of a unique intended model among several
minimal models. This is because, as in the case of program P2 of Example 15.1.1(b), the
minimal models can be completely symmetric; in such cases there is no property that would
separate one from the others using just the information in the input or the program.

In summary, the approach we used for datalog, based on equivalent least-fixpoint
or minimum-model semantics, breaks down when negation is present. We shall describe
several solutions to the problem of giving semantics to datalog¬ programs. We begin with
the simplest case and build up from there.

15.2 Stratified Semantics

This section begins with the restricted case in which negation is applied only to edb rela-
tions. The semantics for negation is straightforward in this case. We then turn to stratified
semantics, which extends this simple case in an extremely natural fashion.

Semipositive Datalog¬

We consider now semipositive datalog¬ programs, which only apply negation to edb rela-
tions. For example, the difference of R and R′ can be defined by the one-rule program

Diff (x)← R(x),¬R′(x).

To give semantics to ¬R′(x), we simply use the closed world assumption (see Chapter 2):
¬R′(x) holds iff x is in the active domain and x �∈ R′. Because R′ is an edb relation, its
content is given by the database and the semantics of the program is clear. We elaborate on
this next.

Definition 15.2.1 A datalog¬ program P is semipositive if, whenever a negative literal
¬R′(x) occurs in the body of a rule in P , R′ ∈ edb(P ).

As their name suggests, semipositive programs are almost positive. One could elimi-
nate negation from semipositive programs by adding, for each edb relation R′, a new edb
relation R′ holding the complement of R′ (with respect to the active domain) and replacing
¬R′(x) by R′(x). Thus it is not surprising that semipositive programs behave much like
datalog programs. The next result is shown easily and is left for the reader (Exercise 15.7).

Theorem 15.2.2 Let P be a semipositive datalog¬ program. For every instance I over
edb(P ),

(i) �P has a unique minimal model J satisfying J|edb(P )= I.

(ii) TP has a unique minimal fixpoint J satisfying J|edb(P )= I.
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(iii) The minimum model in (i) and the least fixpoint in (ii) are identical and equal to
the limit of the sequence {T iP (I)}i>0.

Remark 15.2.3 Observe that in the theorem, we use the formulation “minimal model
satisfying J|edb(P ) = I,” whereas in the analogous result for datalog we used “minimal
model containing I.” Both formulations would be equivalent in the datalog setting because
adding tuples to the edb predicates would result in larger models because of monotonicity.
This is not the case here because negation destroys monotonicity.

Given a semipositive datalog¬ program P and an input I, we denote by P semi−pos(I)
the minimum model of �P (or equivalently, the least fixpoint of TP ) whose restriction to
edb(P ) equals I.

An example of a semipositive program that is neither in datalog nor in CALC is given
by

T (x, y)←¬G(x, y)
T (x, y)←¬G(x, z), T (z, y).

This program computes the transitive closure of the complement of G. On the other hand,
the foregoing program for the complement of transitive closure is not a semipositive pro-
gram. However, it can naturally be viewed as the composition of two semipositive pro-
grams: the program computing the transitive closure followed by the program computing
its complement. Stratification, which is studied next, may be viewed as the closure of semi-
positive programs under composition. It will allow us to specify, for instance, the compo-
sition just described, computing the complement of transitive closure.

Syntactic Restriction for Stratification

We now consider a natural extension of semipositive programs. In semipositive programs,
the use of negation is restricted to edb relations. Now suppose that we use some defined
relations, much like views. Once a relation has been defined by some program, other
programs can subsequently treat it as an edb relation and apply negation to it. This simple
idea underlies an important extension to semipositive programs, called stratified programs.

Suppose we have a datalog¬ program P . Each idb relation is defined by one or more
rules of P . If we are able to “read” the program so that, for each idb relation R′, the portion
of P defining R′ comes before the negation of R′ is used, then we can simply compute
R′ before its negation is used, and we are done. For example, consider program PTCcomp

introduced at the beginning of this chapter. Clearly, we intended for T to be defined by the
first two rules before its negation is used in the rule defining CT . Thus the first two rules
are applied before the third. Such a way of “reading” P is called a stratification of P and
is defined next.

Definition 15.2.4 A stratification of a datalog¬ program P is a sequence of datalog¬
programs P 1, . . . , P n such that for some mapping σ from idb(P ) to [1..n],

(i) {P 1, . . . , P n} is a partition of P .
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(ii) For each predicate R, all the rules in P defining R are in Pσ(R) (i.e., in the same
program of the partition).

(iii) If R(u)← . . . R′(v) . . . is a rule in P , and R′ is an idb relation, then σ(R′) ≤
σ(R).

(iv) If R(u)← . . .¬R′(v) . . . is a rule in P , and R′ is an idb relation, then σ(R′) <
σ(R).

Given a stratification P 1, . . . , P n of P , each P i is called a stratum of the stratification, and
σ is called the stratification mapping.

Intuitively, a stratification of a program P provides a way of parsing P as a sequence of
subprograms P 1, . . . , P n, each defining one or several idb relations. By (iii), if a relationR′
is used positively in the definition of R, then R′ must be defined earlier or simultaneously
with R (this allows recursion!). If the negation of R′ is used in the definition of R, then by
(iv) the definition of R′ must come strictly before that of R.

Unfortunately, not every datalog¬ program has a stratification. For example, there is
no way to “read” program P2 of Example 15.1.1 so that p is defined before q and q before
p. Programs that have a stratification are called stratifiable. Thus P2 is not stratifiable. On
the other hand, PTCcomp is clearly stratifiable: The first stratum consists of the first two
rules (defining T ), and the second stratum consists of the third rule (defining CT using T ).

Example 15.2.5 Consider the program P7 defined by

r1 S(x)← R′
1(x),¬R(x)

r2 T (x)← R′
2(x),¬R(x)

r3 U(x)← R′
3(x),¬T (x)

r4 V (x)← R′
4(x),¬S(x),¬U(x).

Then P7 has 5 distinct stratifications, namely,

{r1}, {r2}, {r3}, {r4}
{r2}, {r1}, {r3}, {r4}
{r2}, {r3}, {r1}, {r4}
{r1, r2}, {r3}, {r4}
{r2}, {r1, r3}, {r4}.

These lead to five different ways of reading the program P7. As will be seen, each of these
yields the same semantics.

There is a simple test for checking if a program is stratifiable. Not surprisingly, it
involves testing for an acyclicity condition in definitions of relations using negation. Let P
be a datalog¬ program. The precedence graph GP of P is the labeled graph whose nodes
are the idb relations of P . Its edges are the following:
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PTCcomp: T CT

+

– P2: P Q

–

–

P7: S U

–
V

T

–

–

Figure 15.1: Precedence graphs for PCT , P2, and P7

• If R(u)← . . . R′(v) . . . is a rule in P , then 〈R′, R〉 is an edge in GP with label +
(called a positive edge).

• If R(u)← . . .¬R′(v) . . . is a rule in P , then 〈R′, R〉 is an edge in GP with label −
(called a negative edge).

For example, the precedence graphs for program PTCcomp, P2, and P7 are represented
in Fig. 15.1. It is straightforward to show the following (proof omitted):

Lemma 15.2.6 Let P be a program with stratification σ . If there is a path from R′ to R in
GP, then σ(R′)≤ σ(R); and if there is a path from R′ to R in GP containing some negative
edge, then σ(R′) < σ(R).

We now show how the precedence graph of a program can be used to test the stratifia-
bility of the program.

Proposition 15.2.7 A datalog¬ program P is stratifiable iff its precedence graph GP

has no cycle containing a negative edge.

Proof Consider the “only if” part. Suppose P is a datalog¬ program whose precedence
graph has a cycle R1, . . . Rm,R1 containing a negative edge, say from Rm to R1. Suppose,
toward a contradiction, that σ is a stratification mapping for P . By Lemma 15.2.6, σ(R1) <

σ(R1), because there is a path from R1 to R1 with a negative edge. This is a contradiction,
so no stratification mapping σ exists for P .

Conversely, suppose P is a program whose precedence graph GP has no cycle with
negative edges. Let ≺ be the binary relation among the strongly connected components of
GP defined as follows: C ≺ C′ if C �= C′ and there is a (positive or negative) edge in GP

from some node of C to some node of C′.
We first show that

(*) ≺ is acyclic.

Suppose there is a cycle in ≺. Then by construction of ≺, this cycle must traverse two
distinct strongly connected components, say C,C′. Let A be in C. It is easy to deduce
that there is a path in GP from some vertex in C′ to A and from A to some vertex in C′.
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Because C′ is a strongly connected component of GP, A is in C′. Thus C ⊆ C′, so C = C′,
a contradiction. Hence (*) holds.

In view of (*), the binary relation ≺ induces a partial order among the strongly
connected components of GP, which we also denote by ≺, by abuse of notation. Let
C1, . . . , Cn be a topographic sort with respect to ≺ of the strongly connected components
of GP; that is, C1 . . . Cn is the set of strongly connected components of GP and if Ci ≺ Cj ,
then i ≤ j . Finally, for each i, 1 ≤ i ≤ n, let Qi consist of all rules defining some rela-
tion in Ci. Then Q1, . . . ,Qn is a stratification of P . Indeed, (i) and (ii) in the definition
of stratification are clearly satisfied. Conditions (iii) and (iv) follow immediately from the
construction of GP and ≺ and from the hypothesis that GP has no cycle with negative edge.

Clearly, the stratifiability test provided by Proposition 15.2.7 takes time polynomial in
the size of the program P .

Verification of the following observation is left to the reader (Exercise 15.4).

Lemma 15.2.8 Let P 1, . . . , P n be a stratification of P , and let Q1, . . . ,Qm be ob-
tained as in Proposition 15.2.7. If Qj ∩ P i �= ∅, then Qj ⊆ P i. In particular, the partition
Q1, . . . ,Qm of P refines all other partitions given by stratifications of P .

Semantics of Stratified Programs

Consider a stratifiable program P with a stratification σ = P 1, . . . , P n. Using the strat-
ification σ , we can now easily give a semantics to P using the well-understood semi-
positive programs. Notice that for each program P i in the stratification, if P i uses the
negation of R′, then R′ ∈ edb(P i) [note that edb(P i) may contain some of the idb rela-
tions of P ]. Furthermore, R′ is either in edb(P ) or is defined by some P j preceding P i

[i.e., R′ ∈ ∪j<iidb(P j)]. Thus each program P i is semipositive relative to previously de-
fined relations. Then the semantics of P is obtained by applying, in order, the programs
P i. More precisely, let I be an instance over edb(P ). Define the sequence of instances

I0 = I

Ii = Ii−1 ∪ P i(Ii−1|edb(P i)), 0 < i ≤ n.

Note that Ii extends Ii−1 by providing values to the relations defined by P i; and that
P i(Ii−1|edb(P i)), or equivalently, P i(Ii−1), is the semantics of the semipositive program
P i applied to the values of its edb relations provided by Ii−1. Let us denote the final
instance In thus obtained by σ(I). This provides the semantics of a datalog¬ program under
a stratification σ .

Independence of Stratification

As shown in Example 15.2.5, a datalog¬ program can have more than one stratification.
Will the different stratifications yield the same semantics? Fortunately, the answer is yes.
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To demonstrate this, we use the following simple lemma, whose proof is left to the reader
(Exercise 15.10).

Lemma 15.2.9 Let P be a semipositive datalog¬ program and σ a stratification for P .
Then P semi−pos(I)= σ(I) for each instance I over edb(P ).

Two stratifications of a datalog¬ program are equivalent if they yield the same seman-
tics on all inputs.

Theorem 15.2.10 Let P be a stratifiable datalog¬ program. All stratifications of P are
equivalent.

Proof Let GP be the precedence graph of P and σGP
=Q1, . . . ,Qn be a stratification

constructed from GP as in the proof of Theorem 15.2.7. Let σ = P 1, . . . , P k be a stratifi-
cation of P . It clearly suffices to show that σ is equivalent to σGP

. The stratification σGP

is used as a reference because, as shown in Lemma 15.2.8, its strata are the finest possible
among all stratifications for P .

As in the proof of Theorem 15.2.7, we use the partial order ≺ among the strongly
connected components of GP and the notation introduced there. Clearly, the relation ≺ on
the Ci induces a partial order on theQi, which we also denote by ≺ (Qi ≺Qj if Ci ≺ Cj ).
We say that a sequence Qi1, . . . ,Qir of some of the Qi is compatible with ≺ if for every
l < m it is not the case that Qim ≺Qil .

We shall prove that

1. If σ ′ and σ ′′ are permutations of σGP
that are compatible with ≺, then σ ′ and σ ′′

are equivalent stratifications of P .

2. For each P i, 1 ≤ i ≤ k, there exists σi =Qi1, . . . ,Qir such that σi is a stratifica-
tion of P i, and the sequence Qi1, . . . ,Qir is compatible with ≺.

3. σ1, . . . , σk is a permutation of Q1, . . . ,Qn compatible with ≺.

Before demonstrating these, we argue that the foregoing statements (1 through 3) are
sufficient to show that σ and σGP

are equivalent. By statement 2, each σi is a stratification
of P i. Lemma 15.2.9 implies that P i is equivalent to σi. It follows that σ = P 1, . . . , P k is
equivalent to σ1, . . . , σk which, by statement 3, is a permutation of σGP

compatible with
≺. Then σ1, . . . , σk and σGP

are equivalent by statement 1, so σ and σGP
are equivalent.

Consider statement 1. Note first that one can obtain σ ′′ from σ ′ by a sequence of
exchanges of adjacent Qi,Qj such that Qi �≺Qj and Qj �≺Qi (Exercise 15.9). Thus it
is sufficient to show that for every such pair, Qi,Qj is equivalent to Qj,Qi. Because
Qi �≺Qj and Qj �≺Qi, it follows that no idb relation of Qi occurs in Qj and conversely.
Then Qi ∪Qj is a semipositive program [with respect to edb(Qi ∪Qj)] and both Qi,Qj

and Qj,Qi are stratifications of Qi ∪Qj . By Lemma 15.2.9, Qi,Qj and Qj,Qi are both
equivalent to Qi ∪Qj (as a semipositive program), so Qi,Qj and Qj,Qi are equivalent.

Statement 2 follows immediately from Lemma 15.2.8.
Finally, consider statement 3. By statement 2, each σi is compatible with ≺. Thus it

remains to be shown that, if Qm occurs in σi, Ql occurs in σj , and i < j , then Ql �≺Qm.
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Note that Ql is included in P j , and Qm is included in P i. It follows that for all relations R
defined by Qm and R′ defined by Ql, σ(R) < σ(R′), where σ is the stratification function
of P 1, . . . , P k. Hence R′ �≺ R so Ql �≺Qm.

Thus all stratifications of a given stratifiable program are equivalent. This means
that we can speak about the semantics of such a program independently of a particular
stratification. Given a stratifiable datalog¬ program P and an input I over edb(P ), we
shall take as the semantics of P on I the semantics σ(I) of any stratification σ of P . This
semantics, well defined by Theorem 15.2.10, is denoted by P strat(I). Clearly, P strat(I) can
be computed in time polynomial with respect to I.

Now that we have a well-defined semantics for stratified programs, we can verify that
for semipositive programs, the semantics coincides with the semantics already introduced.
If P is a semipositive datalog¬ program, then P is also stratifiable. By Lemma 15.2.9,
P semi−pos and P strat are equivalent.

Properties of Stratified Semantics

Stratified semantics has a procedural flavor because it is the result of an ordering of the
rules, albeit implicit. What can we say about P strat(I) from a model-theoretic point of
view? Rather pleasantly, P strat(I) is a minimal model of �P containing I. However, no
precise characterization of stratified semantics in model-theoretic terms has emerged. Some
model-theoretic properties of stratified semantics are established next.

Proposition 15.2.11 For each stratifiable datalog¬ program P and instance I over
edb(I),

(a) P strat(I) is a minimal model of �P whose restriction to edb(P ) equals I.

(b) P strat(I) is a minimal fixpoint of TP whose restriction to edb(P ) equals I.

Proof For part (a), let σ = P 1, . . . , P n be a stratification of P and I an instance over
edb(P ). We have to show that P strat(I) is a minimal model of �P whose restriction to
edb(P ) equals I. Clearly, P strat(I) is a model of �P whose restriction to edb(P ) equals I.
To prove its minimality, it is sufficient to show that, for each model J of �P ,

(**) if I ⊆ J ⊆ P strat(I) then J = P strat(I).

Thus suppose I ⊆ J ⊆ P strat(I). We prove by induction on k that

(†) P strat(I)|sch(∪i≤kP i)= J|sch(∪i≤kP i)

for each k, 1 ≤ k ≤ n. The equality of P strat(I) and J then follows from (†) with k = n.
For k = 1, edb(P 1)⊆ edb(P ) so

P strat(I)|edb(P 1)= I|edb(P 1)= J|edb(P 1).

By the definition of stratified semantics and Theorem 15.2.2, P strat(I)|sch(P 1) is the
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minimum model of �P 1 whose restriction to edb(P 1) equals P strat(I)|edb(P 1). On the
other hand, J|sch(P 1) is also a model of �P 1 whose restriction to edb(P 1) equals
P strat(I)|edb(P 1). From the minimality of P strat(I)|sch(P 1), it follows that

P strat(I)|sch(P 1)⊆ J|sch(P 1).

From (**) it then follows that P strat(I)|sch(P 1) = J|sch(P 1), which establishes (†) for
k = 1. For the induction step, suppose (†) is true for k, 1 ≤ k < n. Then (†) for k + 1 is
shown in the same manner as for the case k = 1. This proves (†) for 1 ≤ k ≤ n. It follows
that P strat(I) is a minimal model of �P whose restriction to edb(P ) equals I.

The proof of part (b) is left for Exercise 15.12.

There is another appealing property of stratified semantics that takes into account the
syntax of the program in addition to purely model-theoretic considerations. This property
is illustrated next.

Consider the two programs

P5 = {p←¬q}
P6 = {q←¬p}

From the perspective of classical logic, �P5 and �P6 are equivalent to each other and to
{p ∨ q}. However, TP5 and TP6 have different behavior: The unique fixpoint of TP5 is {p},
whereas that of TP6 is {q}. This is partially captured by the notion of “supported” as follows.

Let datalog¬ program P and input I be given. As with pure datalog, J is a model of
P iff J ⊇ TP (J). We say that J is a supported model if J ⊆ TP (J) (i.e., if each fact in J is
“justified” or supported by being the head of a ground instantiation of a rule in P whose
body is all true in J). (In the context of some input I, we say that J is supported relative
to I and the definition is modified accordingly.) This condition, which has both syntactic
and semantic aspects, captures at least some of the spirit of the immediate consequence
operator TP . As suggested in Remark 15.1.2, its impact can be annulled by adding rules of
the form p← p.

The proof of the following is left to the reader (Exercise 15.13).

Proposition 15.2.12 For each stratifiable program P and instance I over edb(P ),
P strat(I) is a supported model of P relative to I.

We have seen that stratification provides an elegant and simple approach to defining
semantics of datalog¬ programs. Nonetheless, it has two major limitations. First, it does
not provide semantics to all datalog¬ programs. Second, stratified datalog¬ programs are
not entirely satisfactory with regard to expressive power. From a computational point of
view, they provide recursion and negation and are inflationary. Therefore, as discussed
in Chapter 14, one might expect that they express the fixpoint queries. Unfortunately,
stratified datalog¬ programs fall short of expressing all such queries, as will be shown
in Section 15.4. Intuitively, this is because the stratification condition prohibits recursive
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application of negation, whereas in other languages expressing fixpoint this computational
restriction does not exist.

For these reasons, we consider another semantics for datalog¬ programs called well
founded. As we shall see, this provides semantics to all datalog¬ programs and expresses
all fixpoint queries. Furthermore, well-founded and stratified semantics agree on stratified
datalog¬ programs.

15.3 Well-Founded Semantics

Well-founded semantics relies on a fundamental revision of our expectations of the answer
to a datalog¬ program. So far, we required that the answer must provide information on the
truth or falsehood of every fact. Well-founded semantics is based on the idea that a given
program may not necessarily provide such information on all facts. Instead some facts may
simply be indifferent to it, and the answer should be allowed to say that the truth value
of those facts is unknown. As it turns out, relaxing expectations about the answer in this
fashion allows us to provide a natural semantics for all datalog¬ programs. The price is
that the answer is no longer guaranteed to provide total information.

Another aspect of this approach is that it puts negative and positive facts on a more
equal footing. One can no longer assume that ¬R(u) is true simply because R(u) is not
in the answer. Instead, both negative and positive facts must be inferred. To formalize this,
we shall introduce 3-valued instances, in which the truth value of facts can be true, false,
or unknown.

This section begins by introducing a largely declarative semantics for datalog¬ pro-
grams. Next an equivalent fixpoint semantics is developed. Finally it is shown that stratified
and well-founded semantics agree on the family of stratified datalog¬ programs.

A Declarative Semantics for Datalog¬

The aim of giving semantics to a datalog¬ program P will be to find an appropriate
3-valued model I of �P . In considering what appropriate might mean, it is useful to
recall the basic motivation underlying the logic-programming approach to negation as
opposed to the purely computational approach. An important goal is to model some form
of natural reasoning process. In particular, consistency in the reasoning process is required.
Specifically, one cannot use a fact and later infer its negation. This should be captured in
the notion of appropriateness of a 3-valued model I, and it has two intuitive aspects:

• the positive facts of I must be inferred from P assuming the negative facts in I; and

• all negative facts that can be inferred from I must already be in I.

A 3-valued model satisfying the aforementioned notion of appropriateness will be
called a 3-stable model of P . It turns out that, generally, programs have several 3-stable
models. Then it is natural to take as an answer the certain (positive and negative) facts that
belong to all such models, which turns out to yield, in some sense, the smallest 3-stable
model. This is indeed how the well-founded semantics of P will be defined.
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Example 15.3.1 The example concerns a game with states, a, b, . . . . The game is be-
tween two players. The possible moves of the games are held in a binary relation moves. A
tuple 〈a, b〉 in moves indicates that when in state a, one can choose to move to state b. A
player loses if he or she is in a state from which there are no moves. The goal is to compute
the set of winning states (i.e., the set of states such that there exists a winning strategy for
a player in this state). These are obtained in a unary predicate win.

Consider the input K with the following value for moves:

K(moves)= {〈b, c〉, 〈c, a〉, 〈a, b〉, 〈a, d〉, 〈d, e〉, 〈d, f 〉, 〈f, g〉}

Graphically, the input is represented as

b c

a d f g

e

It is seen easily that there are indeed winning strategies from states d (move to e) and
f (move to g). Slightly more subtle is the fact that there is no winning strategy from any of
states a, b, or c. A given player can prevent the other from winning, essentially by forcing
a nonterminating sequence of moves.

Now consider the following nonstratifiable program Pwin:

win(x)← moves(x, y),¬win(y)

Intuitively, Pwin states that a state x is in win if there is at least one state y that one can
move to from x, for which the opposing player loses. We now exhibit a 3-valued model J
of Pwin that agrees with K on moves. As will be seen, this will in fact be the well-founded
semantics of Pwin on input K. Instance J is such that J(moves)= K(moves) and the values
of win-atoms are given as follows:

true win(d),win(f )

false win(e),win(g)

unknown win(a),win(b),win(c)

We now embark on defining formally the well-founded semantics. We do this in three
steps. First we define the notion of 3-valued instance and extend the notion of truth value
and satisfaction. Then we consider datalog and show the existence of a minimum 3-valued
model for each datalog program. Finally we consider datalog¬ and the notion of 3-stable
model, which is the basis of well-founded semantics.

3-valued Instances Dealing with three truth values instead of the usual two requires
extending some of the basic notions like instance and model. As we shall see, this is
straightforward. We will denote true by 1, false by 0, and unknown by 1/2.
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Consider a datalog¬ program P and a classical 2-valued instance I. As was done in the
discussion of SLD resolution in Chapter 12, we shall denote by PI the program obtained
from P by adding to P unit clauses stating that the facts in I are true. Then P(I)= PI(∅).
For the moment, we shall deal with datalog¬ programs such as these, whose input is
included in the program. Recall that B(P ) denotes all facts of the form R(a1, . . . , ak),
where R is a relation and a1, . . . , ak constants occurring in P . In particular, B(PI) =
B(P, I).

Let P be a datalog¬ program. A 3-valued instance I over sch(P ) is a total mapping
from B(P ) to {0, 1/2, 1}. We denote by I1, I1/2, and I0 the set of atoms in B(P )whose truth
value is 1, 1/2, and 0, respectively. A 3-valued instance I is total, or 2-valued, if I1/2 = ∅.
There is a natural ordering ≺ among 3-valued instances over sch(P ), defined by

I ≺ J iff for each A ∈ B(P ), I(A)≤ J(A).

Note that this is equivalent to I1 ⊆ J1 and I0 ⊇ J0 and that it generalizes containment for
2-valued instances.

Occasionally, we will represent a 3-valued instance by listing the positive and negative
facts and omitting the undefined ones. For example, the 3-valued instance I, where I(p)=
1, I(q)= 1, I(r)= 1/2, I(s)= 0, will also be written as I = {p, q,¬s}.

Given a 3-valued instance I, we next define the truth value of Boolean combinations
of facts using the connectives ∨,∧,¬,←. The truth value of a Boolean combination α of
facts is denoted by Î(α), defined by

Î(β ∧ γ ) = min{Î(β), Î(γ )}
Î(β ∨ γ ) = max{Î(β), Î(γ )}
Î(¬β) = 1 − Î(β)

Î(β← γ )= 1 if Î(γ )≤ Î(β), and 0 otherwise.

The reader should be careful: Known facts about Boolean operators in the 2-valued
context may not hold in this more complex one. For instance, note that the truth value of
p← q may be different from that of p ∨¬q (see Exercise 15.15). To see that the preceding
definition matches the intuition, one might want to verify that with the specific semantics
of ← used here, the instance J of Example 15.3.1 does satisfy (the ground instantiation
of) Pwin,K. That would not be the case if we define the semantics of ← in a more standard
way; by using p← q ≡ p ∨ ¬q.

A 3-valued instance I over sch(P ) satisfies a Boolean combination α of atoms in B(P )
iff Î(α)= 1. Given a datalog(¬) program P , a 3-valued model of �P is a 3-valued instance
over sch(P ) satisfying the set of implications corresponding to the rules in ground(P ).

Example 15.3.2 Recall the program Pwin of Example 15.3.1 and the input instance K
and output instance J presented there. Consider these ground sentences:

win(a)← moves(a, d),¬win(d)

win(a)← moves(a, b),¬win(b).
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The first is true for J, because Ĵ(¬win(d))= 0, Ĵ(moves(a, d))= 1, Ĵ(win(a))= 1/2, and
1/2 ≥ 0. The second is true because Ĵ(¬win(b))= 1/2, Ĵ(moves(a, b))= 1, Ĵ(win(a))=
1/2, and 1/2 ≥ 1/2.

Observe that, on the other hand,

Ĵ(win(a) ∨ ¬(moves(a, b) ∧ ¬win(b)))= 1/2.

3-valued Minimal Model for Datalog We next extend the definition and semantics of
datalog programs to the context of 3-valued instances. Although datalog programs do not
contain negation, they will now be allowed to infer positive, unknown, and false facts.
The syntax of a 3-extended datalog program is the same as for datalog, except that the
truth values 0, 1/2, and 1 can occur as literals in bodies of rules. Given a 3-extended
datalog program P , the 3-valued immediate consequence operator 3-TP of P is a mapping
on 3-valued instances over sch(P ) defined as follows. Given a 3-valued instance I and
A ∈ B(P ), 3-TP (I)(A) is

1 if there is a rule A← body in ground(P ) such that Î(body)= 1,

0 if for each rule A← body in ground(P ), Î(body)= 0 (and, in particular, if there is
no rule with A in head),

1/2 otherwise.

Example 15.3.3 Consider the 3-extended datalog program P = {p← 1/2; p← q, 1/2;
q← p, r; q← p, s; s← q; r ← 1}. Then

3-TP ({¬p,¬q,¬r,¬s})= {¬q, r,¬s}
3-TP ({¬q, r,¬s}) = {r,¬s}
3-TP ({r,¬s}) = {r}
3-TP ({r}) = {r}.

In the following, 3-valued instances are compared with respect to ≺. Thus “least,”
“minimal,” and “monotonic” are with respect to ≺ rather than the set inclusion used for
classical 2-valued instances. In particular, note that the minimum 3-valued instance with
respect to ≺ is that where all atoms are false. Let ⊥ denote this particular instance.

With the preceding definitions, extended datalog programs on 3-valued instances
behave similarly to classical programs. The next lemma can be verified easily (Exer-
cise 15.16):

Lemma 15.3.4 Let P be a 3-extended datalog program. Then

1. 3−TP is monotonic and the sequence {3-T iP (⊥)}i>0 is increasing and converges
to the least fixpoint of 3-TP ;
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2. P has a unique minimal 3-valued model that equals the least fixpoint of 3-TP .

The semantics of an extended datalog program is the minimum 3-valued model of P .
Analogous to conventional datalog, we denote this by P(⊥).

3-stable Models of Datalog¬
We are now ready to look at datalog¬ programs and formally define 3-stable models of a
datalog¬ program P . We “bootstrap” to the semantics of programs with negation, using the
semantics for 3-extended datalog programs described earlier. Let I be a 3-valued instance
over sch(P ). We reduce the problem to that of applying a positive datalog program, as
follows. The positivized ground version of P given I, denoted pg(P, I), is the 3-extended
datalog program obtained from ground(P ) by replacing each negative premise ¬A by
Î(¬A) (i.e., 0, 1, or 1/2). Because all negative literals in ground(P ) have been replaced by
their truth value in I, pg(P, I) is now a 3-extended datalog program (i.e, a program without
negation). Its least fixpoint pg(P, I)(⊥) contains all the facts that are consequences of P
by assuming the values for the negative premises as given by I. We denote pg(P, I)(⊥)
by conseqP (I). Thus the intuitive conditions required of 3-stable models now amount to
conseqP (I)= I.

Definition 15.3.5 Let P be a datalog¬ program. A 3-valued instance I over sch(P ) is
a 3-stable model of P iff conseqP (I) = I.

Observe an important distinction between conseqP and the immediate consequence
operator used for inflationary datalog¬. For inflationary datalog¬, we assumed that ¬Awas
true as long as A was not inferred. Here we just assume in such a case that A is unknown
and try to prove new facts. Of course, doing so requires the 3-valued approach.

Example 15.3.6 Consider the following datalog¬ program P :

p←¬r
q←¬r, p
s←¬t
t ← q,¬s
u←¬t, p, s

The program has three 3-stable models (represented by listing the positive and negative
facts and leaving out the unknown facts):

I1 = {p, q, t,¬r,¬s,¬u}
I2 = {p, q, s,¬r,¬t,¬u}
I3 = {p, q,¬r}

Let us check that I3 is a 3-stable model of P . The program P ′ = pg(P, I3) is
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p← 1

q← 1, p

s← 1/2

t ← q, 1/2

u← 1/2, p, s

The minimum 3-valued model of pg(P, I3) is obtained by iterating 3-TP ′(⊥) up to
a fixpoint. Thus we start with ⊥ = {¬p,¬q,¬r,¬s,¬t,¬u}. The first application of
3-TP ′ yields 3-TP ′(⊥)= {p,¬q,¬r,¬t,¬u}. Next (3-TP ′)2(⊥)= {p, q,¬r,¬t}. Finally
(3-TP ′)3(⊥)= (3-TP ′)4(⊥)= {p, q,¬r}. Thus

conseqP (I3)= pg(P, I3)(⊥)= (3-TP ′)3(⊥)= I3,

and I3 is a 3-stable model of P .
The reader is invited to verify that in Example 15.3.1, the instance J is a 3-stable model

of the program Pwin,K for the input instance K presented there.

As seen from the example, datalog¬ programs generally have several 3-stable models.
We will show later that each datalog¬ program has at least one 3-stable model. Therefore
it makes sense to let the final answer consist of the positive and negative facts belonging
to all 3-stable models of the program. As we shall see, the 3-valued instance so obtained is
itself a 3-stable model of the program.

Definition 15.3.7 Let P be a datalog¬ program. The well-founded semantics of P is
the 3-valued instance consisting of all positive and negative facts belonging to all 3-stable
models of P . This is denoted by Pwf (∅),or simply, Pwf . Given datalog¬ program P and
input instance I, Pwf

I (∅) is denoted Pwf (I).

Thus the well-founded semantics of the program P in Example 15.3.6 is Pwf (∅) =
{p, q,¬r}. We shall see later that in Example 15.3.1, Pwf

win(K)= J.

A Fixpoint Definition

Note that the preceding description of the well-founded semantics, although effective, is
inefficient. The straightforward algorithm yielded by this description involves checking
all possible 3-valued instances of a program, determining which are 3-stable models, and
then taking their intersection. We next provide a simpler, efficient way of computing the
well-founded semantics. It is based on an “alternating fixpoint” computation that converges
to the well-founded semantics. As a side-effect, the proof will show that each datalog¬
program has at least one 3-stable model (and therefore the well-founded semantics is
always defined), something we have not proven. It will also show that the well-founded
model is itself a 3-stable model, in some sense the smallest.

The idea of the computation is as follows. We define an alternating sequence {Ii}i≥0 of
3-valued instances that are underestimates and overestimates of the facts known in every
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3-stable model of P . The sequence is as follows:

I0 =⊥
Ii+1 = conseqP (Ii).

Recall that ⊥ is the least 3-valued instance and that all facts have value 0 in ⊥. Also note
that each of the Ii just defined is a total instance. This follows easily from the following
facts (Exercise 15.17):

• if I is total, then conseqP (I) is total; and

• the Ii are constructed starting from the total instance ⊥ by repeated applications of
conseqP .

The intuition behind the construction of the sequence {Ii}i≥0 is the following. The
sequence starts with ⊥, which is an overestimate of the negative facts in the answer (it
contains all negative facts). From this overestimate we compute I1 = conseqP (⊥), which
includes all positive facts that can be inferred from ⊥. This is clearly an overestimate of
the positive facts in the answer, so the set of negative facts in I1 is an underestimate of the
negative facts in the answer. Using this underestimate of the negative facts, we compute
I2 = conseqP (I1), whose positive facts will now be an underestimate of the positive facts
in the answer. By continuing the process, we see that the even-indexed instances provide
underestimates of the positive facts in the answer and the odd-indexed ones provide under-
estimates of the negative facts in the answer. Then the limit of the even-indexed instances
provides the positive facts in the answer and the limit of the odd-indexed instances provides
the negative facts in the answer. This intuition will be made formal later in this section.

It is easy to see that conseqP (I) is antimonotonic. That is, if I ≺ J, then conseqP (J)≺
conseqP (I) (Exercise 15.17). From this and the facts that ⊥ ≺ I1 and ⊥ ≺ I2, it immedi-
ately follows that, for all i > 0,

I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1.

Thus the even subsequence is increasing and the odd one is decreasing. Because there
are finitely many 3-valued instances relative to a given program P , each of these se-
quences becomes constant at some point. Let I∗ denote the limit of the increasing sequence
{I2i}i≥0, and let I∗ denote the limit of the decreasing sequence {I2i+1}i≥0. From the afore-
mentioned inequalities, it follows that I∗ ≺ I∗. Moreover, note that conseqP (I∗)= I∗ and
conseqP (I

∗)= I∗. Finally let I∗∗ denote the 3-valued instance consisting of the facts known
in both I∗ and I∗; that is,

I∗∗(A)=
{ 1 if I∗(A)= I∗(A)= 1

0 if I∗(A)= I∗(A)= 0 and
1/2 otherwise.

Equivalently, I∗∗ = (I∗)1 ∪ (I∗)0. As will be seen shortly, I∗∗ = Pwf (∅). Before proving this,
we illustrate the alternating fixpoint computation with several examples.
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Example 15.3.8

(a) Consider again the program in Example 15.3.6. Let us perform the alternat-
ing fixpoint computation described earlier. We start with I0 = ⊥ = {¬p,¬q,
¬r,¬s,¬t,¬u}. By applying conseqP , we obtain the following sequence of
instances:

I1 = {p, q,¬r, s, t, u},
I2 = {p, q,¬r,¬s,¬t,¬u},
I3 = {p, q,¬r, s, t, u},
I4 = {p, q,¬r,¬s,¬t,¬u}.

Thus I∗ = I4 = {p, q,¬r,¬s,¬t,¬u} and I∗ = I3 = {p, q,¬r, s, t, u}. Finally
I∗∗ = {p, q,¬r}, which coincides with the well-founded semantics of P com-
puted in Example 15.3.6.

(b) Recall now Pwin and input K of Example 15.3.1. We compute I∗∗ for the program
Pwin,I. Note that for I0 the value of all move atoms is false, and for each j ≥ 1,
Ij agrees with the input K on the predicate moves; thus we do not show the move
atoms here. For the win predicate, then, we have

I1 = {win(a),win(b),win(c),win(d),¬win(e),win(f ),¬win(g)}
I2 = {¬win(a),¬win(b),¬win(c),win(d),¬win(e),win(f ),¬win(g)}
I3 = I1

I4 = I2.

Thus

I∗ = I2 = {¬win(a),¬win(b),¬win(c),win(d),¬win(e),win(f ),¬win(g)}
I∗ = I1 = {win(a),win(b),win(c),win(d),¬win(e),win(f ),¬win(g)}
I∗∗ = {win(d),¬win(e),win(f ),¬win(g)},

which is the instance J of Example 15.3.1.

(c) Consider the database schema consisting of a binary relation G and a unary
relation good and the following program defining bad and answer:

bad(x) ←G(y, x),¬good(y)

answer(x)←¬bad(x)

Consider the instance K over G and good, where

K(G) = {〈b, c〉, 〈c, b〉, 〈c, d〉, 〈a, d〉, 〈a, e〉}, and

K(good)= {〈a〉}.
We assume that the facts of the database are added as unit clauses to P , yielding
PK. Again we perform the alternating fixpoint computation for PK. We start with
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I0 =⊥ (containing all negated atoms). Applying conseqPK
yields the following

sequence {Ii}i>0:

bad answer

I0 ∅ ∅
I1 {¬a, b, c, d, e} {a, b, c, d, e}
I2 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d,¬e}
I3 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d, e}
I4 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d, e}

We have omitted [as in (b)] the facts relating to the edb predicates G and good,
which do not change after step 1.

Thus I∗∗ = I∗ = I∗ = I3 = I4. Note that P is stratified and its well-founded
semantics coincides with its stratified semantics. As we shall see, this is not
accidental.

We now show that the fixpoint construction yields the well-founded semantics for
datalog¬ programs.

Theorem 15.3.9 For each datalog¬ program P ,

1. I∗∗ is a 3-stable model of P .

2. Pwf (∅)= I∗∗.

Proof For statement 1, we need to show that conseqP (I
∗∗)= I∗∗. We show that for every

fact A, if I∗∗(A)= ε ∈ {0, 1/2, 1}, then conseqP (I
∗∗)(A)= ε. From the antimonotonicity of

conseqP , the fact that I∗ ≺ I∗∗ ≺ I∗ and conseqP (I∗)= I∗, conseqP (I
∗)= I∗, it follows that

I∗ ≺ conseqP (I
∗∗)≺ I∗. If I∗∗(A)= 0, then I∗(A)= 0 so conseqP (I

∗∗)(A)= 0; similarly for
I∗∗(A)= 1. Now suppose that I∗∗(A)= 1/2. It is sufficient to prove that conseqP (I

∗∗)(A)≥
1/2. [It is not possible that conseqP (I

∗∗)(A) = 1. If this were the case, the rules used to
infer A involve only facts whose value is 0 or 1. Because those facts have the same value
in I∗ and I∗, the same rules can be used in both pg(P, I∗) and pg(P, I∗) to infer A, so
I∗(A)= I∗(A)= I∗∗(A)= 1, which contradicts the hypothesis that I∗∗(A)= 1/2.]

We now prove that conseqP (I
∗∗)(A) ≥ 1/2. By the definition of I∗∗, I∗(A) = 0 and

I∗(A)= 1. Recall that conseqP (I∗)= I∗, so conseqP (I∗)(A)= 1. In addition, conseqP (I∗)
is the limit of the sequence {3-T ipg(P,I∗)}i>0. Let stage(A) be the minimum i such that
3-T ipg(P,I∗)(A)= 1. We prove by induction on stage(A) that conseqP (I

∗∗)(A) ≥ 1/2. Sup-
pose that stage(A) = 1. Then there exists in ground(P ) a rule of the form A←, or
one of the form A←¬B1, . . . ,¬Bn, where I∗(Bj) = 0, 1 ≤ j ≤ n. However, the first
case cannot occur, for otherwise conseqP (I

∗)(A) must also equal 1 so I∗(A) = 1 and
therefore I∗∗(A) = 1, contradicting the fact that I∗∗(A) = 1/2. By the same argument,
I∗(Bj) = 1, so I∗∗(Bj) = 1/2, 1 ≤ j ≤ n. Consider now pg(P, I∗∗). Because I∗∗(Bj) =
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1/2, 1 ≤ j ≤ n, the second rule yields conseqP (I
∗∗)(A)≥ 1/2. Now suppose that the state-

ment is true for stage(A)= i and suppose that stage(A)= i + 1. Then there exists a rule
A← A1 . . . Am¬B1 . . .¬Bn such that I∗(Bj)= 0 and 3-T ipg(P,I∗)(Ak)= 1 for each j and
k. Because I∗(Bj)= 0, I∗∗(Bj)≤ 1/2 so I∗∗(¬Bj)≥ 1/2. In addition, by the induction hy-
pothesis, conseqP (I

∗∗)(Ak)≥ 1/2. It follows that conseqP (I
∗∗)(A)≥ 1/2, and the induction

is complete. Thus conseqP (I
∗∗)= I∗∗ and I∗∗ is a 3-stable model of P .

Consider statement 2. We have to show that the positive and negative facts in I∗∗ are
those belonging to every 3-stable model M of P . Because I∗∗ is itself a 3-stable model of
P , it contains the positive and negative facts belonging to every 3-stable model of P . It
remains to show the converse (i.e., that the positive and negative facts in I∗∗ belong to every
3-stable model of P ). To this end, we first show that for each 3-stable model M of P and
i ≥ 0,

(‡) I2i ≺ M ≺ I2i+1.

The proof is by induction on i. For i = 0, we have

I0 =⊥≺ M.

Because conseqP is antimonotonic, conseqP (M) ≺ conseqP (I0). Now conseqP (I0) = I1

and because M is 3-stable, conseqP (M)= M. Thus we have

I0 ≺ M ≺ I1.

The induction step is similar and is omitted.
By (‡), I∗ ≺ M ≺ I∗. Now a positive fact in I∗∗ is in I∗ and so is in M because I∗ ≺ M.

Similarly, a negative fact in I∗∗ is in I∗ and so is in M because M ≺ I∗.

Note that the proof of statement 2 above formalizes the intuition that the I2i provide
underestimates of the positive facts in all acceptable answers (3-stable models) and the
I2i+1 provide underestimates of the negative facts in those answers. The fact that Pwf (∅)
is a minimal model of P is left for Exercise 15.19.

Variations of the alternating fixpoint computation can be obtained by starting with
initial instances different from ⊥. For example, it may make sense to start with the content
of the edb relations as an initial instance. Such variations are sometimes useful for technical
reasons. It turns out that the resulting sequences still compute the well-founded semantics.
We show the following:

Proposition 15.3.10 Let P be a datalog¬ program. Let {Ii}i≥0 be defined in the same
way as the sequence {Ii}i≥0, except that I0 is some total instance such that

⊥≺ I0 ≺ Pwf (∅).

Then
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I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1

and (using the same notation as before),

I
∗
∗ = Pwf (∅).

Proof Let us compare the sequences {Ii}i≥0 and {Ii}i≥0. Because I0 ≺ Pwf (∅) and I0 is
total, it easily follows that I0 ≺ I∗. Thus ⊥= I0 ≺ I0 ≺ I∗. From the antimonotonicity of
the conseqP operator and the fact that conseq2

P (I∗)= I∗, it follows that I2i ≺ I2i ≺ I∗ for
all i, i ≥ 0. Thus I∗ = I∗. Then

I
∗ = conseqP (I∗)= conseqP (I∗)= I∗

so I
∗
∗ = I∗∗ = Pwf (∅).

As noted earlier, the instances in the sequence {Ii}i≥0 are total. A slightly different
alternating fixpoint computation formulated only in terms of positive and negative facts
can be defined. This is explored in Exercise 15.25.

Finally, the alternating fixpoint computation of the well-founded semantics involves
looking at the ground rules of the given program. However, one can clearly compute the
semantics without having to explicitly look at the ground rules. We show in Section 15.4
how the well-founded semantics can be computed by a fixpoint query.

Well-Founded and Stratified Semantics Agree

Because the well-founded semantics provides semantics to all datalog¬ programs, it does
so in particular for stratified programs. Example 15.3.8(c) showed one stratified program
for which stratified and well-founded semantics coincide. Fortunately, as shown next,
stratified and well-founded semantics are always compatible. Thus if a program is stratified,
then the stratified and well-founded semantics agree.

A datalog¬ program P is said to be total if Pwf (I) is total for each input I over edb(P ).

Theorem 15.3.11 If P is a stratified datalog¬ program, then P is total under the well-
founded semantics, and for each 2-valued instance I over edb(P ), Pwf (I)= P strat(I).

Proof Let P be stratified, and let input I0 over edb(P ) be fixed. The idea of the proof is
the following. Let J be a 3-stable model of PI0. We shall show that J = P strat(I0). This will
imply that P strat(I0) is the unique 3-stable model for PI0. In particular, it contains only the
positive and negative facts in all 3-stable models of PI0 and is thus Pwf (I0).

For the proof, we will need to develop some notation.

Notation for the stratification: Let P 1, . . . , P n be a stratification of P . Let P 0 = ∅I0 (i.e.,
the program corresponding to all of the facts in I0). For each k in [0, n],

let Sk = idb(P k) (S0 is edb(P ));
S[0,k] = ∪i∈[0,k]Si; and
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Ik = (P 1 ∪ · · · ∪ P k)strat(I0)= In|S[0,k] (and, in particular, P strat(I0)= In).

Notation for the 3-stable model: Let P̂ = pg(PI0, J). Recall that because J is 3-stable for
PI0,

J = conseq
P̂
(J)= lim

i≥0
3-T i

P̂
(∅).

For each k in [0, n],

• let Jk = J|S[0,k]; and

• P̂ k+1 = pg(P k+1
Jk

, Jk)= pg(P k+1
Jk

, J).

[Note that pg(P k+1
Jk

, Jk)= pg(P k+1
Jk

, J) because all the negations in P k+1 are over predi-
cates in S[0,k].]

To demonstrate the result, we will show by induction on k ∈ [0, n] that

(*) ∃lk ≥ 0 such that ∀i ≥ 0, Jk = 3-T lk+i
P̂

(∅) | S[0,k] = Ik.

Clearly, for k = n, (*) demonstrates the result.
The case where k = 0 is satisfied by setting l0 = 1, because J0 = 3-T 1+i

P̂
(∅)|S0 = I0

for each i ≥ 0.
Suppose now that (*) is true for some k ∈ [0, n− 1]. Then for each i ≥ 0, by the choice

of P̂ k+1, the form of P k+1, and (*),

(1) T i
P k+1(Ik)|Sk+1 ⊆ 3-T i+1

P̂ k+1(∅)|Sk+1 ⊆ T i+1
Pk+1(Ik)|Sk+1.

(Here and later, ⊆ denotes the usual 2-valued containment between instances; this is well
defined because all instances considered are total, even if J is not.) In (1), the 3-T i+1

P̂ k+1

and T i+1
Pk+1 terms may not be equal, because the positive atoms of Ik = Jk are available

when applying TPk+1 the first time but are available only during the second application of
3-T

P̂ k+1. On the other hand, the T i
P k+1 and 3-T i+1

P̂ k+1 terms may not be equal (e.g., if there is

a rule of the form A← in P k+1).
By (1) and finiteness of the input, there is some m≥ 0 such that for each i ≥ 0,

(2) In|Sk+1 = T m+i
P k+1(Ik)|Sk+1 = 3-T m+i

P̂ k+1(∅)|Sk+1.

This is almost what is needed to complete the induction, except that P̂ k+1 is used instead
of P̂ . However, observe that for each i ≥ 0,

(3) 3-T i
P̂
(∅)|Sk+1 ⊆ 3-T i

P̂ k+1(∅)|Sk+1

because 3-T i
P̂
(∅)|S[0,k] ⊆ Jk for each i ≥ 0 by the induction hypothesis. Finally observe

that for each i ≥ 0,

(4) 3-T i
P̂ k+1(∅)|Sk+1 ⊆ 3-T i+lk

P̂
(∅)|Sk+1
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because 3-T lk
P̂
(∅)|S[0,k] contains all of the positive atoms of Jk.

Then for each i ≥ 0 we have

3-T m+i
P̂ k+1(∅)|Sk+1 ⊆ 3-T m+i+lk

P̂
(∅)|Sk+1 by (4)

⊆ 3-T m+i+lk
P̂ k+1 (∅)|Sk+1 by (3)

⊆ 3-T m+i
P̂ k+1(∅)|Sk+1 by (2).

It follows that

(5) 3-T m+i
P̂ k+1(∅)|Sk+1 = 3-T m+i+lk

P̂
(∅)|Sk+1.

Set l(k+1) = lk +m. Combining (2) and (5), we have, for each i ≥ 0,

J|Sk+1 = 3-T
l(k+1)+i
P̂

(∅)|Sk+1 = In|Sk+1.

Together with the inductive hypothesis, we obtain for each i ≥ 0 that

J|S[0,k+1] = 3-T
l(k+1)+i
P̂

(∅)|S[0,k+1] = In|S[0,k+1],

which concludes the proof.

As just seen, each stratifiable program is total under the well-founded semantics. How-
ever, as indicated by Example 15.3.8(b), a datalog¬ program P may yield a 3-valued model
Pwf (I) on some inputs. Furthermore, there are programs that are not stratified but whose
well-founded models are nonetheless total (see Exercise 15.22). Unfortunately, there can
be no effective characterization of those datalog¬ programs whose well-founded semantics
is total for all input databases (Exercise 15.23). One can find sufficient syntactic conditions
that guarantee the totality of the well-founded semantics, but this quickly becomes a te-
dious endeavor. It has been shown, however, that for each datalog¬ program P, one can
find another program whose well-founded semantics is total on all inputs and that produces
the same positive facts as the well-founded semantics of P.

15.4 Expressive Power

In this section, we examine the expressive power of datalog¬ with the various semantics
for negation we have considered. More precisely, we focus on semipositive, stratified, and
well-founded semantics. We first look at the relative power of these semantics and show
that semipositive programs are weaker than stratified, which in turn are weaker than well
founded. Then we look at the connection with languages studied in Chapter 14 that also
use recursion and negation. We prove that well-founded semantics can express precisely
the fixpoint queries.

Finally we look at the impact of order on expressive power. An ordered database
contains a special binary relation succ that provides a successor relation on all constants
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in the active domain. Thus the constants are ordered by succ and in fact can be viewed
as integers. The impact of assuming that a database is ordered is examined at length
in Chapter 17. Rather surprisingly, we show that in the presence of order, semipositive
programs are as powerful as programs with well-founded semantics. In particular, all three
semantics are equivalent and express precisely the fixpoint queries.

We begin by briefly noting the connection between stratified datalog¬ and relational
calculus (and algebra). To see that stratified datalog¬ can express all queries in CALC,
recall the nonrecursive datalog¬ (nr-datalog¬) programs introduced in Chapter 5. Clearly,
these are stratified datalog¬ programs in which recursion is not allowed. Theorem 5.3.10
states that nr-datalog¬ (with one answer relation) and CALC are equivalent. It follows that
stratified datalog¬ can express all of CALC. Because transitive closure of a graph can be
expressed in stratified datalog¬ but not in CALC (see Proposition 17.2.3), it follows that
stratified datalog¬ is strictly stronger than CALC.

Stratified Datalog Is Weaker than Fixpoint

Let us look at the expressive power of stratified datalog¬. Computationally, stratified pro-
grams provide recursion and negation and are inflationary. Therefore one might expect that
they express the fixpoint queries. It is easy to see that all stratified datalog¬ are fixpoint
queries (Exercise 15.28). In particular, this shows that such programs can be evaluated in
polynomial time. Can stratified datalog¬ express all fixpoint queries? Unfortunately, no.
The intuitive reason is that in stratified datalog¬ there is no recursion through negation, so
the number of applications of negation is bounded. In contrast, fixpoint queries allow re-
cursion through negation, so there is no bound on the number of applications of negation.
This distinction turns out to be crucial. We next outline the main points of the argument,
showing that stratified datalog¬ is indeed strictly weaker than fixpoint.

The proof uses a game played on so-called game trees. The game is played on a given
tree. The nodes of the tree are the possible positions in the game, and the edges are the
possible moves from one position to another. Additionally, some leaves of the tree are
labeled black. The game is between two players. A round of the game starting at node
x begins with Player I making a move from x to one of its children y. Player II then makes
a move from y, etc. The game ends when a leaf is reached. Player I wins if Player II picks
a black leaf. For a given tree (with labels), Player I has a winning strategy for the game
starting at node x if he or she can win starting at x no matter how Player II plays. We are
interested in programs determining whether there is such a winning strategy.

The game tree is represented as follows. The set of possible moves is given by a binary
relation move and the set of black nodes by a unary relation black. Consider the query
winning (not to be confused with the predicate win of Example 15.3.1), which asks if Player
I has a winning strategy starting at the root of the tree. We will define a set of game trees G
such that

(i) the query winning on the game trees in G is definable by a fixpoint query, and

(ii) for each stratified program P , there exist game treesG,G′ ∈ G such that winning
is true on G and false on G′, but P cannot distinguish between G and G′.

Clearly, (ii) shows that the winning query on game trees is not definable by a stratified



15.4 Expressive Power 399

datalog¬ program. The set G of game trees is defined next. It consists of the Gl,k and G′
l,k

defined by induction as follows:

• G0,k andG′
0,k have no moves and just one node, labeled black inG0,k and not labeled

in G′
0,k.

• Gi+1,k consists of a copy of G′
i,k, k disjoint copies of Gi,k, and a new root di+1. The

moves are the union of the moves in the copies of G′
i,k and Gi,k together with new

moves from the root di+1 to the roots of the copies. The labels remain unchanged.

• G′
i+1,k consists of k + 1 disjoint copies of Gi,k and a new root d ′i+1 from which

moves are possible to the roots of the copies of Gi,k.

The game treesG4,1 andG′
4,1 are represented in Fig. 15.2. It is easy to see that winning

is true on the game trees G2i,k and false on game trees G′
2i,k, i > 0 (Exercise 15.30).

We first note that the query winning on game trees in G can be defined by a fixpoint
query. Consider

ϕ(T )= (∃y)[Move(x, y) ∧ (∀z)(Move(y, z)→ Black(z))]

∨ (∃y)[Move(x, y) ∧ (∀z)(Move(y, z)→ T (z))].

G4.1

G′4.1

Root

Root

Figure 15.2: Game trees
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It is easy to verify that winning is defined by µT (ϕ(T ))(root), where root is the root of the
game tree (Exercise 15.30). Next we note that the winning query is not expressible by any
stratified datalog¬ program. To this end, we use the following result, stated without proof.

Lemma 15.4.1 For each stratified datalog¬ program P , there exist i, k such that

P(Gi,k)(winning)= P(G′
i,k)(winning).

The proof of Lemma 15.4.1 uses an extension of Ehrefeucht-Fraissé games (the games
are described in Chapter 17). The intuition of the lemma is that, to distinguish between
Gi,k and G′

i,k for i and k sufficiently large, one needs to apply more negations than the
fixed number allowed by P . Thus no stratified program can distinguish between all the
Gi,k and G′

i,k. In particular, it follows that the fixpoint query winning is not equivalent to
any stratified datalog¬ program. Thus we have the following result, settling the relationship
between stratified datalog¬ and the fixpoint queries.

Theorem 15.4.2 The class of queries expressible by stratified datalog¬ programs is
strictly included in the fixpoint queries.

Remark 15.4.3 The game tree technique can also be used to prove that the number of
strata in stratified datalog¬ programs has an impact on expressive power. Specifically, let
Strati consist of all queries expressible by stratified datalog¬ programs with i strata. Then it
can be shown that for all i, Strati ⊂ Strati+1. In particular, semipositive datalog¬ is weaker
than stratified datalog¬.

Well-Founded Datalog¬ Is Equivalent to Fixpoint

Next we consider the expressive power of datalog¬ programs with well-founded semantics.
We prove that well-founded semantics can express precisely the fixpoint queries. We begin
by showing that the well-founded semantics can be computed by a fixpoint query. More
precisely, we show how to compute the set of false, true, and undefined facts of the answer
using a while+ program (see Chapter 14 for the definition of while+ programs).

Theorem 15.4.4 Let P be a datalog¬ program. There exists a while+ program w with
input relations edb(P ), such that

1. w contains, for each relation R in sch(P ), three relation variables Rεanswer, where
ε ∈ {0, 1/2, 1};

2. for each instance I over edb(P ), u ∈ w(I)(Rεanswer) iff Pwf (I)(R(u)) = ε, for
ε ∈ {0, 1/2, 1}.

Crux Let P be a datalog¬ program. The while+ program mimics the alternating fix-
point computation of Pwf . Recall that this involves repeated applications of the operator
conseqP , resulting in the sequence
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I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1.

Recall that the Ii are all total instances. Thus 3-valued instances are only required to
produce the final answer from I∗ and I∗ at the end of the computation, by one last first-
order query.

It is easily verified that while+ can simulate one application of conseqP on total
instances (Exercise 15.27). The only delicate point is to make sure the computation is
inflationary. To this end, the program w will distinguish between results of even and odd
iterations of conseqP by having, for each R, an odd and even version R0

odd and R1
even. R0

odd
holds at iteration 2i + 1 the negative facts of R in I2i+1, and R1

even holds at iteration 2i
the positive facts of R in I2i. Note that both R0

odd and R1
even are increasing throughout the

computation.
We elaborate on the simulation of the operator conseqP on a total instance I. The

programw will have to distinguish between facts in the input I, used to resolve the negative
premises of rules in P , and those inferred by applications of 3-TP . Therefore for each
relation R, the while+ program will also maintain a copy R̄even and R̄odd to hold the facts
produced by consecutive applications of 3-TP in the even and odd cases, respectively. More
precisely, the R̄odd hold the positive facts inferred from input I2i represented in R1

even, and
the R̄even hold the positive facts inferred from input I2i+1 represented in R0

odd. It is easy
to write a first-order query defining one application of 3-TP for the even or odd cases.
Because the representations of the input are different in the even and odd cases, different
programs must be used in the two cases. This can be iterated in an inflationary manner,
because the set of positive facts inferred in consecutive applications of 3-TP is always
increasing. However, the R̄odd and R̄even have to be initialized to ∅ at each application
of conseqP . Because the computation must be inflationary, this cannot be done directly.
Instead, timestamping must be used. The initialization of the R̄odd and R̄even is simulated
by timestamping each relation with the current content ofR1

even andR0
odd, respectively. This

is done in a manner similar to the proofs of Chapter 14.

We now exhibit a converse of Theorem 15.4.4, showing that any fixpoint query can es-
sentially be simulated by a datalog¬ program with well-founded semantics. More precisely,
the positive portion of the well-founded semantics yields the same facts as the fixpoint
query.

Example 15.4.6 illustrates the proof of this result.

Theorem 15.4.5 Let q be a fixpoint query over input schema R. There exists a datalog¬
program P such that edb(P )= R, P has an idb relation answer, and for each instance I
over R, the positive portion of answer in Pwf (I) coincides with q(I).

Crux We will use the definition of fixpoint queries by iterations of positive first-order
formulas. Let q be a fixpoint query. As discussed in Chapter 14, there exists a CALC
formula ϕ(T ), positive in T , such that q is defined by µT (ϕ(T ))(u), where u is a vector of
variables and constants. Consider the CALC formula ϕ(T ). As noted earlier in this section,
there is an nr-datalog¬ program Pϕ with one answer relation R′ such that Pϕ is equivalent
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to ϕ(T ). Because ϕ(T ) is positive in T , along any path in the syntax tree of ϕ(T ) ending
with atom T there is an even number of negations. This is also true of paths in GPϕ .

Consider the precedence graph GPϕ of Pϕ. Clearly, one can construct Pϕ such that
each idb relation except T is used in the definition of exactly one other idb relation, and
all idb relations are used eventually in the definition of the answer R′. In other words, for
each idb relation R other than T , there is a unique path in GPϕ from R to R′. Consider the
paths from T to some idb relation R in Pϕ. Without loss of generality, we can assume that
all paths have the same number of negations (otherwise, because all paths to T have an
even number of negations, additional idb relations can be introduced to pad the paths with
fewer negations, using rules that perform redundant double negations). Let the rank of an
idb relation R in Pϕ be the number of negations on each path leading from T to R in GPϕ .
Now let P be the datalog¬ program obtained from Pϕ as follows:

• replace the answer relation R′ by T ;

• add one rule answer(v)← T (u),where v is the vector of distinct variables occurring
in u, in order of occurrence.

The purpose of replacing R′ by T is to cause program Pϕ to iterate, yielding µT (ϕ(T )).
The last rule is added to perform the final selection and projection needed to obtain the
answer µT (ϕ(T ))(u). Note that, in some sense, P is almost stratified, except for the fact
that the result T is fed back into the program.

Consider the alternating fixpoint sequence {Ii}i≥0 in the computation of Pwf (I). Sup-
pose R′ has rank q in Pϕ, and let R be an idb relation of Pϕ whose rank in Pϕ is r ≤ q.
Intuitively, there is a close correspondence between the sequence {Ii}i≥0 and the iterations
of ϕ, along the following lines: Each application of conseqP propagates the correct result
from relations of rank r in Pϕ to relations of rank r + 1. There is one minor glitch, how-
ever: In the fixpoint computation, the edb relations are given, and even at the first iteration,
their negation is taken to be their complement; in the alternating fixpoint computation, all
negative literals, including those involving edb relations, are initially taken to be true. This
results in a mismatch. To fix the problem, consider a variation of the alternating fixpoint
computation of Pwf (I) defined as follows:

I0 = I ∪ ¬.{R(a1, . . . , an) | R ∈ idb(P ), R(a1, . . . , an) ∈ B(P, I)}
Ii+1 = conseqP (Ii).

Clearly, ⊥≺ I0 ≺ Pwf (I). Then, by Proposition 15.3.10, I
∗
∗ = Pwf (I).

Now the following can be verified by induction for each idb relation R of rank r:

For each i, (Iiq+r)1 contains exactly the facts of R true in Pϕ(ϕ
i(∅)).

Intuitively, this is so because each application of conseqP propagates the correct result
across one application of negation to an idb predicate. Because R′ has rank q, it takes q
applications to simulate a complete application of Pϕ. In particular, it follows that for each
i, (Iiq)1 contains in T the facts true in ϕi(∅).

Thus (I∗)1 contains in T the facts true in µT (ϕ(T )). Finally answer is obtained by a
simple selection and projection from T using the last rule in P and yields µT (ϕ(T ))(u).
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In the preceding theorem, the positive portion of answer for Pwf (I) coincides with
q(I). However, Pwf (I) is not guaranteed to be total (i.e., it may contain unknown facts).
Using a recent result (not demonstrated here), a program Q can be found such that Qwf

always provides a total answer, and such that the positive facts of Pwf and Qwf coincide
on all inputs.

Recall from Chapter 14 that datalog¬ with inflationary semantics also expresses pre-
cisely the fixpoint queries. Thus we have converged again, this time by the deductive data-
base path, to the fixpoint queries. This bears witness, once more, to the naturalness of this
class. In particular, the well-founded and inflationary semantics, although very different,
have the same expressive power (modulo the difference between 3-valued and 2-valued
models).

Example 15.4.6 Consider the fixpoint query µgood(ϕ(good))(x), where

ϕ(good)= ∀y(G(y, x)→ good(y)).

Recall that this query, also encountered in Chapter 14, computes the “good” nodes of the
graph G (i.e., those that cannot be reached from a cycle). The nr-datalog¬ program Pϕ
corresponding to one application of ϕ(good) is the one exhibited in Example 15.3.8(c):

bad(x)←G(y, x),¬good(y)

R′(x) ←¬bad(x)

Note that bad is negative in Pϕ and has rank one, and good is positive. The answer R′ has
rank two. The program P is as follows:

bad(x) ←G(y, x),¬good(y)

good(x) ←¬bad(x)

answer(x)← good(x)

Consider the input graph

G= {〈b, c〉, 〈c, b〉, 〈c, d〉, 〈a, d〉, 〈a, e〉}.

The consecutive values of ϕi(∅) are

ϕ(∅) = {a},
ϕ2(∅)= {a, e},
ϕ3(∅)= {a, e}.

Thus µgood(ϕ(good))(x) yields the answer {a, e}. Consider now the alternating fixpoint
sequence in the computation of Pwf on the same input (only the positive facts of bad and
good are listed, because G does not change and answer = good).
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bad good

I0 ∅ ∅
I1 {b, c, d, e} {a, b, c, d, e}
I2 ∅ {a}
I3 {b, c, d} {a, b, c, d, e}
I4 ∅ {a, e}
I5 {b, c, d} {a, b, c, d, e}
I6 ∅ {a, e}

Thus

ϕ(∅) = (I2)
1(good),

ϕ2(∅)= (I4)
1(good)

and

(I4)
1(answer)= µgood(ϕ(good))(x).

The relative expressive power of the various languages discussed in this chapter is
summarized in Fig. 15.3. The arrows indicate strict inclusion. For a view of these languages
in a larger context, see also Figs. 18.4 and 18.5 at the end of Part E.

The Impact of Order

Finally we look at the impact of order on the expressive power of the various datalog¬
semantics. As we will discuss at length in Chapter 17, the assumption that databases are
ordered can have a dramatic impact on the expressive power of languages like fixpoint
or while. The datalog¬ languages are no exception. The effect of order is spectacular.
With this assumption, it turns out that semipositive datalog¬ is (almost) as powerful as
stratified datalog¬ and datalog¬ with well-founded semantics. The “almost” comes from a

well-founded semantics datalog¬ ≡ fixpoint semantics datalog¬
⇑

stratified datalog¬
⇑

semipositive datalog¬
⇑

datalog

Figure 15.3: Relative expressive power of datalog(¬) languages
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technicality concerning the order: We also need to assume that the minimum and maximum
constants are explicitly given. Surprisingly, these constants, which can be computed with
a first order query if succ is given, cannot be computed with semipositive programs (see
Exercise 15.29).

The next lemma states that semipositive programs express the fixpoint queries on
ordered databases with min and max (i.e., databases with a predicate succ providing a
successor relation among all constants, and unary relations min and max containing the
smallest and the largest constant).

Lemma 15.4.7 The semipositive datalog¬ programs express precisely the fixpoint
queries on ordered databases with min and max.

Crux Let q be a fixpoint query over database schema R. Because q is a fixpoint query,
there is a first-order formula ϕ(T ), positive in T , such that q is defined by µT (ϕ(T ))(u),
where u is a vector of variables and constants. Because T is positive in ϕ(T ), we can
assume that ϕ(T ) is in prenex normal formQ1x1Q2x2 . . .Qkxk(ψ), whereψ is a quantifier
free formula in disjunctive normal form and T is not negated in ψ . We show by induction
on k that there exists a semipositive datalog¬ program Pϕ with an idb relation answerϕ
defining µT (ϕ(T )) [the last selection and projection needed to obtain the final answer
µT (ϕ(T ))(u) pose no problem]. Suppose k = 0 (i.e., ϕ = ψ). Then Pϕ is the nr-datalog¬
program corresponding to ψ , where the answer relation is T . Because ψ is quantifier free
and T is not negated in ψ , Pϕ is clearly semipositive. Next suppose the statement is true
for some k ≥ 0, and let ϕ(T ) have quantifier depth k + 1. There are two cases:

(i) ϕ = ∃xψ(x, v), where ψ has quantifier depth k. Then Pϕ contains the rules
of Pψ , where T is replaced in heads of rules by a new predicate T ′ and one
additional rule

T (v)← T ′(x, v).

(ii) ϕ = ∀xψ(x, v), where ψ has quantifier depth k. Then Pϕ consists, again, of Pψ ,
where T is replaced in heads of rules by a new predicate T ′, with the following
rules added:

R′(x, v) ← T ′(x, v),min(x)

R′(x′, v)← R′(x, v), succ(x, x′), T ′(x′, v)
T (v) ← R′(x, v),max(x),

where R′ is a new auxiliary predicate. Thus the program steps through all x’s
using the successor relation succ, starting from the minimum constant. If the
maximum constant is reached, then T ′(x, v) is satisfied for all x, and T (v) is
inferred.

This completes the induction.

As we shall see in Chapter 17, fixpoint expresses on ordered databases exactly the
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queries computable in time polynomial in the size of the database (i.e., qptime). Thus we
obtain the following result. In comparing well-founded semantics with the others, we take
the positive portion of the well-founded semantics as the answer.

Theorem 15.4.8 Stratified datalog¬ and datalog¬ with well-founded semantics are
equivalent on ordered databases and express exactly qptime. They are also equivalent to
semipositive datalog¬ on ordered databases with min and max and express exactly qptime.

15.5 Negation as Failure in Brief

In our presentation of datalog in Chapter 12, we saw that the minimal model and least
fixpoint semantics have an elegant proof-theoretic counterpart based on SLD resolution.
One might naturally wonder if such a counterpart exists in the case of datalog¬. The
answer is yes and no. Such a proof-theoretic approach has indeed been proposed and
is called negation as failure. This was originally developed for logic programming and
predates stratified and well-founded semantics. Unfortunately, the approach has two major
drawbacks. The first is that it results in a proof-building procedure that does not always
terminate. The second is that it is not the exact counterpart of any other existing semantics.
The semantics that has been proposed as a possible match is “Clark’s completion,” but the
match is not perfect and Clark’s completion has its own problems. We provide here only a
brief and informal presentation of negation as failure and the related Clark’s completion.

The idea behind negation as failure is simple. We would like to infer a negative fact
¬A ifA cannot be proven by SLD resolution. Thus¬Awould then be proven by the failure
to prove A. Unfortunately, this is generally noneffective because SLD derivations may be
arbitrarily long, and so one cannot check in finite time2 that there is no proof of A by SLD
resolution. Instead we have to use a weaker notion of negation by failure, which can be
checked. This is done as follows. A fact ¬A is proven if all SLD derivations starting from
the goal ← A are finite and none produces an SLD refutation for ← A. In other words,
A finitely fails. This procedure applies to ground atoms A only. It gives rise to a proof
procedure called SLDNF resolution. Briefly, SLDNF resolution extends SLD resolution as
follows. Refutations of positive facts proceed as for SLD resolution. Whenever a negative
ground goal←¬A has to be proven, SLD resolution is applied to← A, and ¬A is proven
if the SLD resolution finitely fails for ← A. The idea of SLDNF seems appealing as the
proof-theoretic version of the closed world assumption. However, as illustrated next, it
quickly leads to significant problems.

Example 15.5.1 Consider the usual program PTC for transitive closure of a graph:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y)

2 Because databases are finite, one can develop mechanisms to bound the expansion. We ignore this
aspect here.
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Consider the instance I where G has edges {〈a, b〉, 〈b, a〉, 〈c, a〉}. Clearly, {〈a, c〉} is not
in the transitive closure of G, and so not in T , by the usual datalog semantics. Suppose
we wish to prove the fact ¬T (a, c), using negation as failure. We have to show that SLD
resolution finitely fails on T (a, c), with the preceding program and input. Unfortunately,
SLD resolution can enter a negative loop when applied to ← T (a, c). One obtains the
following SLD derivation:

1. ← T (a, c);

2. ←G(a, z), T (z, c), using the second rule;

3. ← T (b, c), using the fact G(a, b);

4. ←G(b, z), T (z, c) using the second rule;

5. ← T (a, c) using the fact G(b, a).

Note that the last goal is the same as the first, so this can be extended to an infinite
derivation. It follows that SLD resolution does not finitely fail on ← T (a, c), so SLDNF
does not yield a proof of ¬T (a, c). Moreover, it has been shown that this does not depend
on the particular program used to define transitive closure. In other words, there is no
datalog¬ program that under SLDNF can prove the positive and negative facts true of the
transitive closure of a graph.

The preceding example shows that SLDNF can behave counterintuitively, even in
some simple cases. The behavior is also incompatible with all the semantics for negation
that we have discussed so far. Thus one cannot hope for a match between SLDNF and these
semantics.

Instead a semantics called Clark’s completion has been proposed as a candidate match
for negation as failure. It works as follows. For a datalog¬ program P , the completion of
P, comp(P), is constructed as follows. For each idb predicate R, each rule

ρ : R(u)← L1(v1), . . . , Ln(vn)

defining R is rewritten so there is a uniform set of distinct variables in the rule head and so
all free variables in the body are existentially quantified:

ρ′ : R(u′)←∃v′(x1 = t1 ∧ · · · ∧ xk = tk ∧ L1(v1) ∧ · · · ∧ Ln(vn)).

(If the head of ρ has distinct variables for all coordinates, then the equality atoms can be
avoided. If repeated variables or constants occur, then equality must be used.) Next, if the
rewritten rules for R are ρ′1, . . . , ρ

′
l , the completion of R is formed by

∀u′(R(u′)↔ body(ρ′1) ∨ · · · ∨ body(ρ′l)).

Intuitively, this states that ground atom R(w) is true iff it is supported by one of the rules
defining R. Finally the completion of P is the set of completions of all idb predicates of P ,
along with the axioms of equality, if needed.
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The semantics of P is now defined by the following: A is true iff it is a logical conse-
quence of comp(P ). A first problem now is that comp(P ) is not always consistent; in fact,
its consistency is undecidable. What is the connection between SLDNF and Clark’s com-
pletion? Because SLDNF is consistent (it clearly cannot prove A and ¬A) and comp(P )
is not so always, SLDNF is not always complete with respect to comp(P ). For consistent
comp(P ), it can be shown that SLDNF resolution is sound. However, additional conditions
must be imposed on the datalog¬ programs for SLDNF resolution to be complete.

Consider again the transitive closure program PTC and input instance I of Exam-
ple 15.5.1. Then the completion of T is equivalent to

T (x, y)↔G(x, y) ∨ ∃z(G(x, z) ∧ T (z, y)).

Note that neither T (a, c) nor ¬T (a, c) are consequences of comp(PTC,I).
In summary, negation as failure does not appear to provide a convincing proof-

theoretic counterpart to the semantics we have considered. The search for more successful
proof-theoretic approaches is an active research area. Other proposals are described briefly
in the Bibliographic Notes.
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Exercises

Exercise 15.1

(a) Show that, for datalog¬ programs P , the immediate consequence operator TP is not
always monotonic.

(b) Exhibit a datalog¬ program P (using negation at least once) such that TP is mono-
tonic.

(c) Show that it is decidable, given a datalog¬ program P , whether TP is monotonic.

Exercise 15.2 Consider the datalog¬ program P3 = {p←¬r; r←¬p;p←¬p, r}. Verify
that TP3 has a least fixpoint, but TP3 does not converge when starting on ∅.

Exercise 15.3

(a) Exhibit a datalog¬ program P and an instance K over sch(P ) such that K is a model
of $P but not a fixpoint of TP .

(b) Show that, for datalog¬ programs P , a minimal fixpoint of TP is not necessarily a
minimal model of $P and, conversely, a minimal model of $P is not necessarily a
minimal fixpoint of TP .

Exercise 15.4 Prove Lemma 15.2.8.

Exercise 15.5 Consider a database for the Parisian metro and bus lines, consisting of two re-
lations Metro[Station, Next-Station] and Bus[Station, Next-Station]. Write stratifiable datalog¬
programs to answer the following queries.

(a) Find the pairs of stations 〈a, b〉 such that one can go from a to b by metro but not by
bus.

(b) A pure bus path from a to b is a bus itinerary from a to b such that for all consecutive
stops c, d along the way, one cannot go from c to d by metro. Find the pairs of
stations 〈a, b〉 such that there is a pure bus path from a to b.

(c) Find the pairs of stations 〈a, b〉 such that b can be reached from a by some combina-
tion of metro or bus, but not by metro or bus alone.

(d) Find the pairs of stations 〈a, b〉 such that b can be reached from a by some combina-
tion of metro or bus, but there is no pure bus path from a to b.

(e) The metro is useless in a bus path from a to b if by taking the metro at any interme-
diate point c one can return to c but not reach any other station along the path. Find
the pairs of stations 〈a, b〉 such that the metro is useless in all bus paths connecting
a and b.
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Exercise 15.6 The semantics of stratifiable datalog¬ programs can be extended to infinite
databases as follows. Let P be a stratifiable datalog¬ program and let σ = P 1 . . . P n be a
stratification for P . For each (finite or infinite) instance I over edb(P ), σ(I) is defined similarly
to the finite case. More precisely, consider the sequence

I0 = I

Ii = P i(Ii−1|edb(P i))

where

P i(Ii−1|edb(P i))= ∪j>0T
j

Pi
(Ii−1|edb(P i)).

Note that the definition is now noneffective because P i(Ii−1|edb(P i)) may be infinite.
Consider a database consisting of one binary relation succ providing a successor relation on

an infinite set of constants. Clearly, one can identify these constants with the positive integers.

(a) Write a stratifiable datalog¬ program defining a unary relation prime containing all
constants in succ corresponding to primes.

(b) Write a stratifiable datalog¬ program P defining a 0-ary relation Fermat, which is
true iff Fermat’s Last Theorem3 is true. (No shortcuts, please: The computation of
the program should provide a proof of Fermat’s Last Theorem, not just coincidence
of truth value!)

Exercise 15.7 Prove Theorem 15.2.2.

Exercise 15.8 A datalog¬ program is nonrecursive if its precedence graph is acyclic. Show
that every nonrecursive stratifiable datalog¬ program is equivalent to an nr-datalog¬ program,
and conversely.

Exercise 15.9 Let (A,<) be a partially ordered set. A listing a1, . . . , an of the elements in
A is compatible with < iff for i < j it is not the case that aj < ai. Let σ ′, σ ′′ be listings of A
compatible with<. Prove that one can obtain σ ′′ from σ ′ by a sequence of exchanges of adjacent
elements al, am such that al �< am and am �< al.
Exercise 15.10 Prove Lemma 15.2.9.

Exercise 15.11 (Supported models) Prove that there exist stratified datalog¬ programs P1, P2
such that sch(P1)= sch(P2), $P1 ≡$P2, and there is a minimal model I of $P1 such that I is a
supported model for P1, but not for P2. (In other words, the notion of supported model depends
not only on $P , but also on the syntax of P .)

Exercise 15.12 Prove part (b) of Proposition 15.2.11.

Exercise 15.13 Prove Proposition 15.2.12.

♠Exercise 15.14 [Bid91b] (Local stratification) The following extension of the notion of strat-
ification has been proposed for general logic programs [Prz86]. This exercise shows that local
stratification is essentially the same as stratification for the datalog¬ programs considered in this
chapter (i.e., without function symbols).

3 Fermat’s Last Theorem: There is no n > 2 such that the equation an + bn = cn has a solution in the
positive integers.
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A datalog¬ program P is locally stratified iff for each I over edb(P ), ground(PI) is strat-
ified. [An example of a locally stratified logic program with function symbols is {even(0)←;
even(s(x))←¬even(x)}.] The semantics of a locally stratified program P on input I is the
semantics of the stratified program ground(PI).

(a) Show that, if the rules of P contain no constants, then P is locally stratified iff it is
stratified.

(b) Give an example of a datalog¬ program (with constants) that is locally stratified but
not stratified.

(c) Prove that, for each locally stratified datalog¬ program P , there exists a stratified
datalog¬ program equivalent to P .

Exercise 15.15 Let α and β be propositional Boolean formulas (using ∧,∨,¬,→). Prove the
following:

(a) If α and β are equivalent with respect to 3-valued instances, then they are equivalent
with respect to 2-valued instances.

(b) If α and β are equivalent with respect to 2-valued instances, they are not necessarily
equivalent with respect to 3-valued instances.

Exercise 15.16 Prove Lemma 15.3.4.

Exercise 15.17 Let P be a datalog¬ program. Recall the definition of positivized ground
version of P given I, denoted pg(P, I), where I is a 3-valued instance. Prove the following:

(a) If I is total, then pg(P, I) is total.

(b) Let {Ii}i≥0 be the sequence of instances defined by

I0 =⊥
Ii+1 = pg(P, Ii)(⊥)= conseqP (Ii).

Prove that

I0 ≺ I2 · · · ≺ I2i ≺ I2i+2 ≺ · · · ≺ I2i+1 ≺ I2i−1 ≺ · · · ≺ I1.

Exercise 15.18 Exhibit a datalog¬ program that yields the complement of the transitive clo-
sure under well-founded semantics.

Exercise 15.19 Prove that for each datalog¬ program P and instance I over edb(P ), Pwf (I)
is a minimal 3-valued model of P whose restriction to edb(P ) equals I.

♠Exercise 15.20 A total 3-stable model of a datalog¬ program P is called a stable model of P
[GL88] (also called a default model [BF87, BF88]).

(a) Provide examples of datalog¬ programs that have (1) no stable models, (2) a unique
stable model, and (3) several stable models.

(b) Show that Pwf is total iff all 3-stable models are total.

(c) Prove that, if Pwf is total, then P has a unique stable model, but the converse is false.

♠Exercise 15.21 [BF88] Let P be a datalog¬ program and I an instance over edb(P ). Prove
that the problem of determining whether PI has a stable model is np-complete in the size of PI.
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Exercise 15.22 Give an example of a datalog¬ program P such that P is not stratified but
Pwf is total.

.Exercise 15.23 Prove that it is undecidable if the well-founded semantics of a given datalog¬
program P is always total. That is, it is undecidable whether, for each instance I over
edb(P ), PwfI is total.

♠Exercise 15.24 [VanGRS88] This exercise provides an alternative (and historically first) defi-
nition of well-founded semantics. LetL be a ground literal. The complement of L is¬A ifL= A
and A if L=¬A. If I is a set of ground literals, we denote by ¬.I the set of complements of the
literals in I. A set I of ground literals is consistent iff I ∩¬.I= ∅. Let P be a datalog¬ program.
The immediate consequence operator TP of P is extended to operate on sets of (positive and
negative) ground literals as follows. Let I be a set of ground literals. TP (I) consists of all literals
A for which there is a ground rule of P , A← L1, . . . , Lk, such that Li ∈ I for each i. Note that
TP can produce an inconsistent set of literals, which therefore does not correspond to a 3-valued
model. Now let I be a set of ground literals and J a set of positive ground literals. J is said to be
an unfounded set of P with respect to I if for each A ∈ J and ground rule r of P with A in the
head, at least one of the following holds:

• the complement of some literal in the body of r is in I; or

• some positive literal in the body of r is in J.

Intuitively, this means that if all atoms of I are assumed true and all atoms in J are assumed
false, then no atom of J is true under one application of TP .

Let the greatest unfounded set of P with respect to I be the union of all unfounded sets of
P with respect to I, denoted UP(I). Next consider the operator WP on sets of ground literals
defined by

WP(I)= TP (I) ∪ ¬.UP (I).

Prove the following:

(a) The greatest unfounded set UP(I) of P with respect to I is an unfounded set.

(b) The operator WP is monotonic (with respect to set inclusion).

(c) The least fixpoint of WP is consistent.

(d) The least fixpoint of WP equals Pwf .

♠Exercise 15.25 [VanG89] Let P be a datalog¬ program. If I is a set of ground literals, let
P(I) = T ωP (I), where TP is the immediate consequence operator on sets of ground literals
defined in Exercise 15.24. Furthermore, P(I) denotes the complement of P(I) [i.e., B(P, I)−
P(I)]. Consider the sequence of sets of negative facts defined by

N0 = ∅,
Ni+1 =¬.P (¬.P (Ni)).

The intuition behind the definition is the following. N0 is an underestimate of the set of negative
facts in the well-founded model. Then P(N) is an underestimate of the positive facts, and the
negated complement ¬.P (N) is an overestimate of the negative facts. Using this overestimate,
one can infer an overestimate of the positive facts, P(¬.P (N)). Therefore¬.P (¬.P (N)) is now
a new underestimate of the negative facts containing the previous underestimate. So {Ni}i≥0 is
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an increasing sequence of underestimates of the negative facts, which converges to the negative
facts in the well-founded model. Formally prove the following:

(a) The sequence {Ni}i≥0 is increasing.

(b) Let N be the limit of the sequence {Ni}i≥0 and K = N∪P(N). Then K = Pwf .

(c) Explain the connection between the sequence {Ni}i≥0 and the sets of negative facts
in the sequence {Ii}i≥0 defined in the alternating fixpoint computation of Pwf in the
text.

(d) Suppose the definition of the sequence {Ni}i≥0 is modified such that N0 = ¬.B(P )
(i.e., all facts are negative at the start). Show that for each i ≥ 0, Ni =¬.(I2i)

0.

Exercise 15.26 Let P be a datalog¬ program. Let TP be the immediate consequence operator
on sets of ground literals, defined in Exercise 15.24, and let T̄P be defined by T̄P (I)= I∪ TP (I).
Given a set I of ground literals, let P(I) denote the limit of the increasing sequence {T̄ iP (I)}i>0.
A set I− of negative ground literals is consistent with respect to P if P(I−) is consistent. I−
is maximally consistent with respect to P if it is maximal among the sets of negative literals
consistent with P . Investigate the connection between maximal consistency, 3-stable models,
and well-founded semantics:

(a) Is ¬.I0 maximally consistent for every 3-stable model I of P ?

(b) Is P(I−) a 3-stable model of P for every I− that is maximally consistent with respect
to P ?

(c) Is ¬.(Pwf )0 the intersection of all sets I− that are maximally consistent with respect
to P ?

Exercise 15.27 Refer to the proof of Lemma 15.4.4.

(a) Outline a proof that conseqP can be simulated by a while+ program.

(b) Provide a full description of the timestamping technique outlined in the proof of
Lemma 15.4.4.

Exercise 15.28 Show that every query definable by stratified datalog¬ is a fixpoint query.

Exercise 15.29 Consider an ordered database (i.e., with binary relation succ providing a
successor relation on the constants). Prove that the minimum and maximum constants cannot
be computed using a semipositive program.

.Exercise 15.30 Consider the game trees and winning query described in Section 15.4.

(a) Show that winning is true on the game trees G2i,k and false on the game trees G′2i,k,
for i > 0.

(b) Prove that the winning query on game trees is defined by the fixpoint query exhibited
in Section 15.4.




