
14 Recursion and Negation

Vittorio: Let’s combine recursion and negation.
Riccardo: That sounds hard to me.

Sergio: It’s no problem, just add fixpoint to the calculus, or while to the algebra.
Riccardo: That sounds hard to me.

Vittorio: OK—how about datalog with negation?
Riccardo: That sounds hard to me.

Alice: Riccardo, you are recursively negative.

The query languages considered so far were obtained by augmenting the conjunctive
queries successively with disjunction, negation, and recursion. In this chapter, we

consider languages that provide both negation and recursion. They allow us to ask queries
such as, “Which are the pairs of metro stops which are not connected?”. This query is not
expressible in relational calculus and algebra or in datalog.

The integration of recursion and negation is natural and yields highly expressive lan-
guages. We will see how it can be achieved in the three paradigms considered so far: al-
gebraic, logic, and deductive. The algebraic language is an extension of the algebra with
a looping construct and an assignment, in the style of traditional imperative programming
languages. The logic language is an extension of the calculus in which recursion is provided
by a fixpoint operator. The deductive language extends datalog with negation.

In this chapter, the semantics of datalog with negation is defined from a purely compu-
tational perspective that is in the spirit of the algebraic approach. More natural and widely
accepted model-theoretic semantics, such as stratified and well-founded semantics, are pre-
sented in Chapter 15.

As we consider increasingly powerful languages, the complexity of query evaluation
becomes a greater concern. We consider two flavors of the languages in each paradigm:
the inflationary one, which guarantees termination in time polynomial in the size of the
database; and the noninflationary one, which only guarantees that a polynomial amount
of space is used.1 In the last section of this chapter, we show that the polynomial-time-
bounded languages defined in the different paradigms are equivalent. The set of queries
they define is called the fixpoint queries. The polynomial-space-bounded languages are also
equivalent, and the corresponding set of queries is called the while queries. In Chapter 17,
we examine in more detail the expressiveness and complexity of the fixpoint and while
queries. Note that, in particular, the polynomial time and space bounds on the complexity

1 For comparison, it is shown in Chapter 17 that CALC requires only logarithmic space.
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of such queries imply that there are queries that are not fixpoint or while queries. More
powerful languages are considered in Chapter 18.

Before describing specific languages, we present an example that illustrates the prin-
ciples underlying the two flavors of the languages.

Example The following is based on a version of the well-known “game of life,” which
is used to model biological evolution. The game starts with a set of cells, some of which
are alive and some dead; the alive ones are colored in blue or red. (One cell may have two
colors.) Each cell has other cells as neighbors. Suppose that a binary relation Neighbor
holds the neighbor relation (considered as a symmetric relation) and that the information
about living cells and their color is held in a binary relation Alive (see Fig. 14.1). Suppose
first that a cell can change status from dead to alive following this rule:

A dead cell becomes alive if it has at least two neighbors that are alive(α)

and have the same color. It then takes the color of the “parents.”

The evolution of a particular population for the Neighbor graph of Fig. 14.1(a) is given in
Fig. 14.1(b). Observe that the sets of tuples keep increasing and that we reach a stable state.
This is an example of inflationary iteration.

Now suppose that the evolution also obeys the second rule:

(β) A live cell dies if it has more than three live neighbors.

The evolution of the population with the two rules is given in Fig. 14.1(c). Observe that
the number of tuples sometimes decreases and that the computation diverges. This is an
example of noninflationary iteration.

All languages that we consider use a fixed set of relation schemas throughout the com-
putation. At any point in the computation, intermediate results contain only constants from
the input database or that are specified in the query. Suppose the relations used in the
computation have arities r1, . . . , rk, the input database contains n constants, and the query
refers to c constants. Then the number of tuples in any intermediate result is bounded by∑k

i=1(n + c)ri , which is a polynomial in n. Thus such queries can be evaluated in poly-
nomial space. As will be seen when the formal definitions are in place, this implies that
each noninflationary iteration, and hence each noninflationary query, can be evaluated in
polynomial space, whether or not it terminates. In contrast, the inflationary semantics en-
sures termination by requiring that a tuple can never be deleted once it has been inserted.
Because there are only polynomially many tuples, each such program terminates in poly-
nomial time.

To summarize, the inflationary languages use iteration based on an “inflation of tu-
ples.” In all three paradigms, inflationary queries can be evaluated in polynomial time, and
the same expressive power is obtained. The noninflationary languages use noninflation-
ary or destructive assignment inside of iterations. In all three paradigms, noninflationary
queries can be evaluated in polynomial space, and again the same expressive power is
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Neighbor

a e

b e
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d e

(a) Neighbor

Alive Alive Alive

a blue a blue a blue

b red b red b red

c blue c blue c blue . . .

d red d red d red

e blue e blue

e red e red

(b) Inflationary evolution

Alive Alive Alive Alive Alive

a blue a blue a blue a blue a blue

b red b red b red b red b red . . .

c blue c blue c blue c blue c blue

d red d red d red d red d red

e blue e blue

e red e red

(c) Noninflationary evolution

Figure 14.1: Game of life

obtained. (We note, however, that it remains open whether the inflationary and the non-
inflationary languages have equivalent expressive power; we discuss this issue later.)

14.1 Algebra + While

Relational algebra is essentially a procedural language. Of the query languages, it is the
closest to traditional imperative programming languages. Chapters 4 and 5 described how it
can be extended syntactically using assignment (:=) and composition (;) without increasing
its expressive power. The extensions of the algebra with recursion are also consistent with
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the imperative paradigm and incorporate a while construct, which calls for the iteration
of a program segment. The resulting language comes in two flavors: inflationary and
noninflationary. The two versions of the language differ in the semantics of the assignment
statement. The noninflationary version was the one first defined historically, and we discuss
it next. The resulting language is called the while language.

Noninflationary Semantics

Recall from Chapter 4 that assignment statements can be incorporated into the algebra
using expressions of the form R := E, where E is an algebra expression and R a relational
variable of the same sort as the result of E. (The difference from Chapter 4 is that it is no
longer required that each successive assignment statement use a distinct, previously unused
variable.) In the while language, the semantics of an assignment statement is as follows:
The value of R becomes the result of evaluating the algebra expression E on the current
state of the database. This is the usual destructive assignment in imperative programming
languages, where the old value of a variable is overwritten.

While statements have the form

while change do
begin
〈loop body〉
end

There is no explicit termination condition. Instead a loop runs as long as the execution
of the body causes some change to some relation (i.e., until a stable state is reached). At
the end of this section, we consider the introduction of explicit terminating conditions and
see that this does not affect the language in an essential manner.

Nesting of loops is permitted. A while program is a finite sequence of assignment or
while statements. The program uses a finite set of relational variables of specified sorts,
including the names of relations in the input database. Relational variables that are not in
the input database are initialized to the empty relation. A designated relational variable
holds the output to the program at the end of the computation. The image (or value) of
program P on I, denoted P(I), is the value finally assigned to the designated variable if P
terminates on I; otherwise P(I) is undefined.

Example 14.1.1 (Transitive Closure) Consider a binary relation G[AB], specifying
the edges of a graph. The following while program computes in T [AB] the transitive
closure of G.

T :=G;
while change do

begin
T := T ∪ πAB(δB→C(T ) �� δA→C(G));
end

A computation ends when T becomes stable, which means that no new edges were
added in the current iteration, so T now holds the transitive closure of G.
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Example 14.1.2 (Add-Remove) Consider again a binary relation G specifying the
edges of a graph. Each loop of the following program

• removes from G all edges 〈a, b〉 if there is a path of length 2 from a to b, and

• inserts an edge 〈a, b〉 if there is a vertex not directly connected to a and b.

This is iterated while some change occurs. The result is placed into the binary relation T .
In addition, the binary relation variables ToAdd and ToRemove are used as “scratch paper.”
For the sake of readability, we use the calculus with active domain semantics whenever this
is easier to understand than the corresponding algebra expression.

T :=G;
while change do

begin
ToRemove := {〈x, y〉 | ∃z(T (x, z) ∧ T (z, y))};
ToAdd := {〈x, y〉 | ∃z(¬T (x, z) ∧ ¬T (z, x) ∧ ¬T (y, z) ∧ ¬T (z, y))};
T := (T ∪ ToAdd)− ToRemove;
end

In the Transitive Closure example, the transitive closure query always terminates. This
is not the case for the Add-Remove query. (Try the graph {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}.) The
halting problem for while programs is undecidable (i.e., there is no algorithm that, given
a while program P , decides whether P halts on each input; see Exercise 14.2). Observe,
however, that for a pair (P, I), one can decide whether P halts on input I because, as argued
earlier, while computations are in pspace.

Inflationary Semantics

We define next an inflationary version of the while language, denoted by while+. The
while+ language differs with while in the semantics of the assignment statement. In particu-
lar, in while+, assignment is cumulative rather than destructive: Execution of the statement
assigning E to R results in adding the result of E to the old value of R. Thus no tuple is
removed from any relation throughout the execution of the program. To distinguish the cu-
mulative semantics from the destructive one, we use the notation P += e for the cumulative
semantics.

Example 14.1.3 (Transitive Closure Revisited) Following is a while+ program that
computes the transitive closure of a graph represented by a binary relation G[AB]. The
result is obtained in the variable T [AB].

T +=G;
while change do

begin
T += πAB(δB→C(T ) �� δA→C(G));
end
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This is almost exactly the same program as in the while language. The only difference is
that because assignment is cumulative, it is not necessary to add the content of T to the
result of the projection.

To conclude this section, we consider alternatives for the control condition of loops.
Until now, we based termination on reaching a stable state. It is also common to use explicit
terminating conditions, such as tests for emptiness of the form E = ∅, E �= ∅, or E �= E′,
where E,E′ are relational algebra expressions. The body of the loop is executed as long as
the condition is satisfied. The following example shows how transitive closure is computed
using explicit looping conditions.

Example 14.1.4 We use another relation schema oldT also of sort AB.

T +=G;
while (T − oldT ) �= ∅ do

begin
oldT += T ;
T += πAB(δB→C(T ) �� δA→C(G));
end

In the program, oldT keeps track of the value of T resulting from the previous iteration
of the loop. The computation ends when oldT and T coincide, which means that no new
edges were added in the current iteration, so T now holds the transitive closure of G.

It is easily shown that the use of such termination conditions does not modify the
expressive power of while, and the use of conditions such as E �= E′ does not modify the
expressive power of while+ (see Exercise 14.5).

In Section 14.4 we shall see that nesting of loops in while queries does not increase
expressive power.

14.2 Calculus + Fixpoint

Just as in the case of the algebra, we provide inflationary and noninflationary extensions of
the calculus with recursion. This could be done using assignment statements and while
loops, as for the algebra. Indeed, we used calculus notation in Example 14.1.2 (Add-
Remove). Instead we use an equivalent but more logic-oriented construct to augment the
calculus. The construct, called a fixpoint operator, allows the iteration of calculus formulas
up to a fixpoint. In effect, this allows defining relations inductively using calculus formulas.
As with while, the fixpoint operator comes in a noninflationary and an inflationary flavor.

For the remainder of this chapter, as a notational convenience, we use active domain
semantics for calculus queries. In addition, we often use a formula ϕ(x1, . . . , xn) as an
abbreviation for the query {x1, . . . , xn | ϕ(x1, . . . , xn)}. These two simplifications do not
affect the results developed.
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Partial Fixpoints

The noninflationary version of the fixpoint operator is considered first. It is illustrated in
the following example.

Example 14.2.1 (Transitive Closure Revisited) Consider again the transitive closure
of a graph G. The relations Jn holding pairs of nodes at distance at most n can be defined
inductively using the single formula

ϕ(T )=G(x, y) ∨ T (x, y) ∨ ∃ z(T (x, z) ∧G(z, y))

as follows:

J0 = ∅;
Jn = ϕ(Jn−1), n > 0.

Here ϕ(Jn−1) denotes the result of evaluating ϕ(T ) when the value of T is Jn−1. Note
that, for each input G, the sequence {Jn}n≥0 converges. That is, there exists some k for
which Jk = Jj for every j > k (indeed, k is the diameter of the graph). Clearly, Jk holds
the transitive closure of the graph. Thus the transitive closure of G can be defined as the
limit of the foregoing sequence. Note that Jk = ϕ(Jk), so Jk is also a fixpoint of ϕ(T ). The
relation Jk thereby obtained is denoted by µT (ϕ(T )). Then the transitive closure of G is
defined by

µT (G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))).

By definition, µT is an operator that produces a new relation (the fixpoint Jk) when applied
to ϕ(T ). Note that, although T is used in ϕ(T ), T is not a database relation but rather a
relation used to define inductively µT (ϕ(T )) from the database, starting with T = ∅. T is
said to be bound to µT . Indeed, µT is somewhat similar to a quantifier over relations. Note
that the scope of the free variables of ϕ(T ) is restricted to ϕ(T ) by the operator µT .

In the preceding example, the limit of the sequence {Jn}n≥0 happens to exist and is in
fact the least fixpoint of ϕ. This is not always the case; the possibility of nontermination
is illustrated next (and Exercise 14.4 considers cases in which a nonminimal fixpoint is
reached).

Example 14.2.2 Consider

ϕ(T )= (x = 0 ∧ ¬T (0) ∧ ¬T (1)) ∨ (x = 0 ∧ T (1)) ∨ (x = 1 ∧ T (0)).

In this case the sequence {Jn}n≥0 is ∅, {〈0〉}, {〈1〉}, {〈0〉}, . . . (i.e., T flip-flops between zero
and one). Thus the sequence does not converge, and µT (ϕ(T )) is not defined. Situations
in which µ is undefined correspond to nonterminating computations in the while language.
The following nonterminating while program corresponds to µT (ϕ(T )).
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T := {〈0〉};
while change do

begin
T := {〈0〉, 〈1〉} − T ;
end

Because µ is only partially defined, it is called the partial fixpoint operator. We now
define its syntax and semantics in more detail.

Partial Fixpoint Operator Let R be a database schema, and let T [m] be a relation
schema not in R. Let S denote the schema R ∪ {T }. Let ϕ(T ) be a formula using T and
relations in R, with m free variables. Given an instance I over R, µT (ϕ(T )) denotes the
relation that is the limit, if it exists, of the sequence {Jn}n≥0 defined by

J0 = ∅;
Jn = ϕ(Jn−1), n > 0,

where ϕ(Jn−1) denotes the result of evaluating ϕ on the instance Jn−1 over S whose
restriction to R is I and Jn−1(T )= Jn−1.

The expression µT (ϕ(T )) denotes a new relation (if it is defined). In turn, it can be
used in more complex formulas like any other relation. For example, µT (ϕ(T ))(y, z) states
that 〈y, z〉 is in µT (ϕ(T )). If µT (ϕ(T )) defines the transitive closure ofG, the complement
of the transitive closure is defined by

{〈x, y〉 | ¬ µT (ϕ(T ))(x, y)}.

The extension of the calculus with µ is called partial fixpoint logic, denoted CALC+µ.

Partial Fixpoint Logic CALC+µ formulas are obtained by repeated applications of
CALC operators (∃,∀,∨,∧,¬) and the partial fixpoint operator, starting from atoms. In
particular, µT (ϕ(T ))(e1, . . . , en), where T has arity n, ϕ(T ) has n free variables, and the
ei are variables or constants, is a formula. Its free variables are the variables in the set
{e1, . . . , en} [thus the scope of variables occurring inside ϕ(T ) consists of the subformula
to which µT is applied]. Partial fixpoint operators can be nested. CALC+µ queries over a
database schema R are expressions of the form

{〈e1, . . . , en〉 | ξ},

where ξ is a CALC+µ formula whose free variables are those occurring in e1, . . . , en. The
formula ξ may use relation names in addition to those in R; however, each occurrence P
of such relation name must be bound to some partial fixpoint operator µP . The semantics
of CALC+µ queries is defined as follows. First note that, given an instance I over R and a
sentence σ in CALC+µ, there are three possibilities: σ is undefined on I; σ is defined on I
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and is true; and σ is defined on I and is false. In particular, given an instance I over R, the
answer to the query

q = {〈e1, . . . , en〉 | ξ}

is undefined if the application of some µ in a subformula is undefined. Otherwise the
answer to q is the n-ary relation consisting of all valuations ν of e1, . . . , en for which
ξ(ν(e1), . . . , ν(en)) is defined and true. The queries expressible in partial fixpoint logic
are called the partial fixpoint queries.

Example 14.2.3 (Add-Remove Revisited) Consider again the query in Example
14.1.2. To express the query in CALC+µ, a difficulty arises: The while program initializes
T to G before the while loop, whereas CALC+µ lacks the capability to do this directly.
To distinguish the initialization step from the subsequent ones, we use a ternary relation Q
and two distinct constants: 0 and 1. To indicate that the first step has been performed, we
insert in Q the tuple 〈1, 1, 1〉. The presence of 〈1, 1, 1〉 in Q inhibits the repetition of the
first step. Subsequently, an edge 〈x, y〉 is encoded in Q as 〈x, y, 0〉. The while program in
Example 14.1.2 is equivalent to the CALC+µ query

{〈x, y〉 | µQ(ϕ(Q))(x, y, 0)}

where

ϕ(Q)=
[¬Q(1, 1, 1) ∧ [(G(x, y) ∧ z= 0) ∨ (x = 1 ∧ y = 1 ∧ z= 1)]]
∨
[Q(1, 1, 1) ∧ [(x = 1 ∧ y = 1 ∧ z= 1) ∨

((z= ((z= 0) ∧Q(x, y, 0) ∧ ¬∃w(Q(x,w, 0) ∧Q(w, y, 0))) ∨
((z= ((z= 0) ∧ ∃w(¬Q(x,w, 0) ∧ ¬Q(w, x, 0) ∧

¬Q(y,w, 0) ∧ ¬Q(w, y, 0)))]].

Clearly, this query is more awkward than its counterpart in while. The simulation highlights
some peculiarities of computing with CALC+µ.

In Section 14.4 it is shown that the family of partial fixpoint queries is equivalent to
the while queries. In the preceding definition of µT (ϕ(T )), the scope of all free variables
in ϕ is defined by µT . For example, if T is binary in the following

∃y(P (y) ∧ µT (ϕ(T , x, y))(z, w)),

then ϕ(T , x, y) has free variables x, y. According to the definition, y is not free in
µT (ϕ(T , x, y))(z, w) (the free variables are z,w). Hence the quantifier ∃y applies to the
y in P(y) alone and has no relation to the y in µT (ϕ(T , x, y))(z, w). To avoid confusion,
it is preferable to use distinct variable names in such cases. For instance, the preceding
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sentence can be rewritten as

∃y(P (y) ∧ µT (ϕ(T , x′, y′))(z, w)).

A variant of the fixpoint operator can be developed that permits free variables under the
fixpoint operator, but this does not increase the expressive power (see Exercise 14.11).

Simultaneous Induction

Consider the following use of nested partial fixpoint operators, where G,P , and Q are
binary:

µP(G(x, y) ∧ µQ(ϕ(P,Q))(x, y)).

Here ϕ(P,Q) involves both P and Q. This corresponds to a nested iteration. In each
iteration i in the computation of {Jn}n≥0 over P , the fixpoint µQ(ϕ(P,Q)) is recomputed
for the successive values Ji of P .

In contrast, we now consider a generalization of the partial fixpoint that permits simul-
taneous iteration over two or more relations. For example, let R be a database schema and
ϕ(P,Q) and ψ(P,Q) be calculus formulas using P and Q not in R, such that the arity
of P (respectively Q) is the number of free variables in ϕ (ψ). On input I over R, one can
define inductively the sequence {Jn}n≥0 of relations over {P,Q} as follows:

J0(P )= ∅
J0(Q)= ∅
Jn(P )= ϕ(Jn−1(P ), Jn−1(Q))

Jn(Q)= ψ(Jn−1(P ), Jn−1(Q)).

Such a mutually recursive definition of Jn(P ) and Jn(Q) is referred to as simultaneous
induction. If the sequence {Jn(P ), Jn(Q)}n≥0 converges, the limit is a fixpoint of the map-
ping on pairs of relations defined by ϕ(P,Q) and ψ(P,Q). This pair of values for P and
Q is denoted by µP,Q(ϕ(P,Q),ψ(P,Q)), and µP,Q is a simultaneous induction partial
fixpoint operator. The value for P in µP,Q is denoted by µP,Q(ϕ(P,Q),ψ(P,Q))(P )
and the value for Q by µP,Q(ϕ(P,Q),ψ(P,Q))(Q). Clearly, simultaneous induction
definitions like the foregoing can be extended for any number of relations. Simultaneous
induction can simplify certain queries, as shown next.

Example 14.2.4 (Add-Remove by Simultaneous Induction) Consider again the
query Add-Remove in Example 14.2.3. One can simplify the query by introducing an
auxiliary unary relation Off , which inhibits the transfer of G into T after the first step
in a direct fashion. T and Off are defined in a mutually recursive fashion by ϕOff and ϕT ,
respectively:
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ϕOff (x)= x = 1

ϕT (x, y)= [¬Off (1) ∧G(x, y)]
∨ [Off (1) ∧ ¬∃z(T (x, z) ∧ T (z, y)) ∧
(T (x, y) ∨ ∃z(¬T (x, z) ∧ ¬T (z, x) ∧ ¬T (y, z) ∧ ¬T (z, y))].

The Add-Remove query can now be written as

{〈x, y〉 | µOff ,T (ϕOff (Off , T ), ϕT (Off , T ))(T )(x, y)}.

It turns out that using simultaneous induction instead of regular fixpoint operators
does not provide additional power. For example, a CALC+µ formula equivalent to the
query in Example 14.2.4 is the one shown in Example 14.2.3. More generally, we have
the following:

Lemma 14.2.5 For some n, let ϕi(R1, . . . , Rn) be CALC formulas, i in [1..n], such
that µR1,...,Rn(ϕ1(R1, . . . , Rn), . . . , ϕn(R1, . . . , Rn)) is a correct formula. Then for each
i ∈ [1, n] there exist CALC formulas ϕ′i(Q) and tuples !ei of variables or constants such
that for each i,

µR1,...,Rn(ϕ1(R1, . . . , Rn), . . . , ϕn(R1, . . . , Rn))(Ri)≡ µQ(ϕ
′
i(Q))( !ei).

Crux We illustrate the construction with reference to the query of Example 14.2.4. In-
stead of using two relations Off and T , we use a ternary relation Q that encodes both Off
and T . The extra coordinate is used to distinguish between tuples in T and tuples in Off .
A tuple 〈x〉 in Off is encoded as a tuple 〈x, 1, 1〉 in Q. A tuple 〈x, y〉 in T is encoded as a
tuple 〈x, y, 0〉 in Q. The final result is obtained by selecting from Q the tuples where the
third coordinate is 0 and projecting the result on the first two coordinates.

Note that the use of the tuples !ei allows one to perform appropriate selections and
projections on µQ(ϕ′i(Q)) necessary for decoding. These selections and projections are
essential and cannot be avoided (see Exercise 14.17c).

Inflationary Fixpoint

The nonconvergence in some cases of the sequence {Jn}n≥0 in the semantics of the par-
tial fixpoint operator is similar to nonterminating computations in the while language with
noninflationary semantics. The semantics of the partial fixpoint operator µ is essentially
noninflationary because in the inductive definition of Jn, each step is a destructive assign-
ment. As with while, we can make the semantics inflationary by having the assignment at
each step of the induction be cumulative. This yields an inflationary version of µ, denoted
by µ+ and called the inflationary fixpoint operator, which is defined for all formulas and
databases to which it is applied.



14.2 Calculus + Fixpoint 353

Inflationary Fixpoint Operators and Logic The definition of µ+
T (ϕ(T )) is identical to

that of the partial fixpoint operator except that the sequence {Jn}n≥0 is defined as follows:

J0 = ∅;
Jn = Jn−1 ∪ ϕ(Jn−1), n > 0.

This definition ensures that the sequence {Jn}n≥0 is increasing: Ji−1 ⊆ Ji for each i > 0.
Because for each instance there are finitely many tuples that can be added, the sequence
converges in all cases.

Adding µ+ instead of µ to CALC yields inflationary fixpoint logic, denoted by
CALC+µ+. Note that inflationary fixpoint queries are always defined.

The set of queries expressible by inflationary fixpoint logic is called the fixpoint
queries. The fixpoint queries were historically defined first among the inflationary lan-
guages in the algebraic, logic, and deductive paradigms. Therefore the class of queries
expressible in inflationary languages in the three paradigms has come to be referred to as
the fixpoint queries.

As a simple example, the transitive closure of a graph G is defined by the following
CALC+µ+ query:

{〈x, y〉 | µ+
T (G(x, y) ∨ ∃z(T (x, z) ∧G(z, y))(x, y)}.

Recall that datalog as presented in Chapter 12 uses an inflationary operator and yields
the minimal fixpoint of a set of rules. One may also be tempted to assume that an inflation-
ary simultaneous induction of the form µ+

P,Q(ϕ(P,Q),ψ(P,Q)) is equivalent to a system
of equational definitions of the form

P = ϕ(P,Q)

Q= ψ(P,Q)

and that it computes the unique minimal fixpoint for P and Q. However, one should
be careful because the result of the inflationary fixpoint computation is only one of the
possible fixpoints. As illustrated in the following example, this may not be minimal or
the “naturally” expected fixpoint. (There may not exist a unique minimal fixpoint; see
Exercise 14.4.)

Example 14.2.6 Consider the equation

T (x, y) =G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))
CT (x, y)=¬T (x, y).

One is tempted to believe that the fixpoint of these two equations yields the complement of
transitive closure. However, with the inflationary semantics
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J0(T ) = ∅
J0(CT )= ∅
Jn(T ) = Jn−1(T ) ∪ {〈x, y〉 |G(x, y) ∨ Jn−1(T )(x, y)

∨ ∃z(Jn−1(T )(x, z) ∧G(z, y))}
Jn(CT )= Jn−1(CT ) ∪ {〈x, y〉 | ¬Jn−1(T )(x, y)}

leads to saturating CT at the first iteration.

Positive and Monotone Formulas

Making the fixpoint operator inflationary by definition is not the only way to guarantee
polynomial-time termination of the fixpoint iteration. An alternative approach is to restrict
the formulas ϕ(T ) so that convergence of the sequence {Jn}n≥0 associated with µT (ϕ(T ))
is guaranteed. One such restriction is monotonicity. Recall that a query q is monotone if
for each I, J, I ⊆ J then q(I)⊆ q(J). One can again show that for such formulas, a least
fixpoint always exists and that it is obtained after a finite (but unbounded) number of stages
of inductive applications of the formula.

Unfortunately, monotonicity is an undecidable property for CALC. One can also re-
strict the application of fixpoint to positive formulas. This was historically the first track
that was followed and presents the advantage that positiveness is a decidable (syntactic)
property. It is done by requiring that T occur only positively in ϕ(T ) (i.e., under an even
number of negations in the syntax tree of the formula). All formulas thereby obtained are
monotone, and so µT (ϕ(T )) is always defined (see Exercise 14.10).

It can be shown that the approach of inflationary fixpoint and the two approaches
based on fixpoint of positive or monotone formulas are equivalent (i.e., the sets of queries
expressed are identical; see Exercise 14.10).

Fixpoint Operators and Circumscription

In some sense, the fixpoint operators act as quantifiers on relational variables. This is some-
what similar to the well-known technique of circumscription studied in artificial intelli-
gence. Suppose ψ(T ) is a calculus sentence (i.e., no free variables) that uses T in addition
to relations from a database schema R. The circumscription of ψ(T ) with respect to T ,
denoted here by circT (ψ(T )), can be thought of as an operator defining a new relation,
starting from the database. More precisely, let I be an instance over R. Then circT (ψ(T ))
denotes the relation containing all tuples belonging to every relation T such that (1) ψ(T )
holds for I, and (2) T is minimal under set inclusion2 with this property. Consider now a
fixpoint query. As stated earlier, fixpoint queries can be expressed using just fixpoint op-
erators µT applied to formulas positive in T (i.e., T always appears in ϕ under an even
number of negations). We claim that µT (ϕ(T ))= circT (ϕ′(T )), where ϕ′(T ) is a sentence

2 Other kinds of minimality have also been considered.
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obtained from ϕ(T ) as follows:

ϕ′(T )= ∀x1, . . .∀xn(ϕ(T , x1, . . . , xn)→ T (x1, . . . , xn)),

where the arity of T is n. To see this, it is sufficient to note that µT (ϕ(T )) is the unique
minimal T satisfying ϕ′(T ). This uses the monotonicity of ϕ(T ) with respect to T , which
follows from the fact that ϕ(T ) is positive in T (see Exercise 14.10). Although computing
with circumscription is generally intractable, the fixpoint operator on positive formulas
can always be evaluated in polynomial time. Thus the fixpoint operator can be viewed as a
tractable restriction of circumscription.

14.3 Datalog with Negation

Datalog provides recursion but no negation. It defines only monotonic queries. Viewed
from the standpoint of the deductive paradigm, datalog provides a form of monotonic
reasoning. Adding negation to datalog rules permits the specification of nonmonotonic
queries and hence of nonmonotonic reasoning.

Adding negation to datalog rules requires defining semantics for negative facts. This
can be done in many ways. The different definitions depend to some extent on whether da-
talog is viewed in the deductive framework or simply as a specification formalism like any
other query language. In this chapter, we examine the latter point of view. Then datalog
with negation can essentially be viewed as a subset of the while or fixpoint queries and
can be treated similarly. This is not necessarily appropriate in the deductive framework.
For instance, the basic assumptions in the reasoning process may require that once a fact is
assumed false at some point in the inferencing process, it should not be proven true at a later
point. This idea lies at the core of stratified and well-founded semantics, two of the most
widely accepted in the deductive framework. The deductive point of view is considered in
depth in Chapter 15.

The semantics given here for datalog with negation follows the semantics given in
Chapter 12 for datalog, but does not correspond directly to the semantics for nonrecursive
datalog¬ given in Chapter 5. The semantics in Chapter 5 is inspired by the stratified
semantics but can be simulated by (either of) the semantics presented in this chapter.

As in the previous section, we consider both inflationary and noninflationary versions
of datalog with negation.

Inflationary Semantics

The inflationary language allows negations in bodies of rules and is denoted by datalog¬.
Like datalog, its rules are used to infer a set of facts. Once a fact is inferred, it is never
removed from the set of true facts. This yields the inflationary character of the language.

Example 14.3.1 We present a datalog¬ program with input a graph in binary re-
lation G. The program computes the relation closer(x, y, x′, y′) defined as follows:
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closer(x, y, x′, y′) means that the distance d(x, y) from x to y in G is smaller than the
distance d(x′, y′) from x′ to y′ [d(x, y) is infinite if there is no path from x to y].

T (x, y) ←G(x, y)

T (x, y) ← T (x, z),G(z, y)

closer(x, y, x′, y′)← T (x, y),¬T (x′, y′)
The program is evaluated as follows. The rules are fired simultaneously with all applicable
valuations. At each such firing, some facts are inferred. This is repeated until no new facts
can be inferred. A negative fact such as ¬T (x′, y′) is true if T (x′, y′) has not been inferred
so far. This does not preclude T (x′, y′) from being inferred at a later firing of the rules.
One firing of the rules is called a stage in the evaluation of the program. In the preceding
program, the transitive closure of G is computed in T . Consider the consecutive stages
in the evaluation of the program. Note that if the fact T (x, y) is inferred at stage n, then
d(x, y)= n. So if T (x′, y′) has not been inferred yet, this means that the distance between
x and y is less than that between x′ and y′. Thus if T (x, y) and ¬T (x′, y′) hold at some
stage n, then d(x, y)≤ n and d(x′, y′) > n and closer(x, y, x′, y′) is inferred.

The formal syntax and semantics of datalog¬ are straightforward extensions of those
for datalog. A datalog¬ rule is an expression of the form

A← L1, . . . , Ln,

where A is an atom and each Li is either an atom Bi (in which case it is called positive) or
a negated atom ¬Bi (in which case it is called negative). (In this chapter we use an active
domain semantics for evaluating datalog¬ and so do not require that the rules be range
restricted; see Exercise 14.13.)

A datalog¬ program is a nonempty finite set of datalog¬ rules. As for datalog pro-
grams, sch(P ) denotes the database schema consisting of all relations involved in the pro-
gram P ; the relations occurring in heads of rules are the idb relations of P , and the others
are the edb relations of P .

The semantics of datalog¬ that we present in this chapter is an extension of the fixpoint
semantics of datalog. Let K be an instance over sch(P ). Recall that an (active domain)
instantiation of a rule A← L1, . . . , Ln is a rule ν(A)← ν(L1), . . . , ν(Ln), where ν is a
valuation that maps each variable into adom(P,K). A factA′ is an immediate consequence
for K and P if A′ ∈ K(R) for some edb relation R, or A′ ← L′

1, . . . , L
′
n is an instantiation

of a rule in P and each positive L′
i is a fact in K, and for each negative L′

i = ¬A′
i, A

′
i �∈

K. The immediate consequence operator of P , denoted  P , is now defined as follows. For
each K over sch(P ),

 P(K)= K ∪ {A | A is an immediate consequence for K and P }.

Given an instance I over edb(P ), one can compute  P(I),  2
P (I),  

3
P (I), etc. As suggested

in Example 14.3.1, each application of  P is called a stage in the evaluation. From the
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definition of  P , it follows that

 P(I)⊆  2
P (I)⊆  3

P (I)⊆ . . . .

As for datalog, the sequence reaches a fixpoint, denoted  ∞
P (I), after a finite number of

steps. The restriction of this to the idb relations (or some subset thereof) is called the image
(or answer) of P on I.

An important difference with datalog is that  ∞
P (I) is no longer guaranteed to be a

minimal model of P containing I, as illustrated next.

Example 14.3.2 Let P be the program

R(0)←Q(0),¬R(1)
R(1)←Q(0),¬R(0).

Let I = {Q(0)}. Then P(I)= {Q(0), R(0), R(1)}. Although P(I) is a model of P , it is not
minimal. The minimal models containing I are {Q(0), R(0)} and {Q(0), R(1)}.

As discussed in Chapter 12, the operational semantics of datalog based on the im-
mediate consequence operator is equivalent to the natural semantics based on minimal
models. As shown in the preceding example, there may not be a unique minimal model for
a datalog¬ program, and the semantics given for datalog¬ may not yield any of the minimal
models. The development of a natural model-theoretic semantics for datalog¬ thus calls for
selecting a natural model from among several possible candidates. Inevitably, such choices
are open to debate; Chapter 15 presents several alternatives.

Noninflationary Semantics

The language datalog¬ has inflationary semantics because the set of facts inferred through
the consecutive firings of the rules is increasing. To obtain a noninflationary variant, there
are several possibilities. One could keep the syntax of datalog¬ but make the seman-
tics noninflationary by retaining, at each stage, only the newly inferred facts (see Exer-
cise 14.16). Another possibility is to allow explicit retraction of a previously inferred fact.
Syntactically, this can be done using negations in heads of rules, interpreted as deletions
of facts. We adopt this solution here, in part because it brings our language closer to some
practical languages that use so-called (production) rules in the sense of expert and active
database systems. The resulting language is denoted by datalog¬¬, to indicate that nega-
tions are allowed in both heads and bodies of rules.

Example 14.3.3 (Add-Remove Visited Again) The following datalog¬¬ program
computes in T the Add-Remove query of Example 14.1.2, given as input a graph G.
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T (x, y) ←G(x, y),¬off (1)

off (1) ←
¬T (x, y)← T (x, z), T (z, y), off (1)

T (x, y) ←¬T (x, z),¬T (z, x),¬T (y, z),¬T (z, y), off (1)

Relation off is used to inhibit the first rule (initializing T to G) after the first step.

The immediate consequence operator  P and semantics of a datalog¬¬ program are
analogous to those for datalog¬, with the following important proviso. If a negative literal
¬A is inferred, the fact A is removed, unless A is also inferred in the same firing of
the rules. This gives priority to inference of positive over negative facts and is somewhat
arbitrary. Other possibilities are as follows: (1) Give priority to negative facts; (2) interpret
the simultaneous inference of A and ¬A as a “no-op” (i.e., including A in the new instance
only if it is there in the old one); and (3) interpret the simultaneous inference of A and
¬A as a contradiction that makes the result undefined. The chosen semantics has the
advantage over possibility (3) that the semantics is always defined. In any case, the choice
of semantics is not crucial: They yield equivalent languages (see Exercise 14.15).

With the semantics chosen previously, termination is no longer guaranteed. For in-
stance, the program

T (0) ← T (1)

¬T (1)← T (1)

T (1) ← T (0)

¬T (0)← T (0)

never terminates on input T (0). The value of T flip-flops between {〈0〉} and {〈1〉}, so no
fixpoint is reached.

Datalog¬¬ and Datalog¬ as Fragments of CALC+µ and CALC+µ+

Consider datalog¬¬. It can be viewed as a subset of CALC+µ in the following manner.
Suppose thatP is a datalog¬¬ program. The idb relations defined by rules can alternately be
defined by simultaneous induction using formulas that correspond to the rules. Each firing
of the rules corresponds to one step in the simultaneous inductive definition. For instance,
the simultaneous induction definition corresponding to the program in Example 14.3.3 is
the one in Example 14.2.4. Because simultaneous induction can be simulated in CALC+µ
(see Lemma 14.2.5), datalog¬¬ can be simulated in CALC+µ. Moreover, notice that only a
single application of the fixpoint operator is used in the simulation. Similar remarks apply
to datalog¬ and CALC+µ+. Furthermore, in the inflationary case it is easy to see that the
formula can be chosen to be existential (i.e., its prenex normal form3 uses only existential

3 A CALC formula in prenex normal form is a formula Q1x1 . . .Qkxkϕ where Qi, 1 ≤ i ≤ k are
quantifiers and ϕ is quantifier free.
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quantifiers). The same can be shown in the noninflationary case, although the proof is more
subtle. In summary (see Exercise 14.18), the following applies:

Lemma 14.3.4 Each datalog¬¬ (datalog¬) query is equivalent to a CALC+µ (CALC+µ+)
query of the form

{ !x | µ(+)T (ϕ(T ))(!t)},

where

(a) ϕ is an existential CALC formula, and

(b) !t is a tuple of variables or constants of appropriate arity and !x is the tuple of
distinct free variables in !t .

The Rule Algebra

The examples of datalog¬ programs shown in this chapter make it clear that the semantics
of such programs is not always easy to understand. There is a simple mechanism that
facilitates the specification by the user of various customized semantics. This is done by
means of the rule algebra, which allows specification of an order of firing of the rules
as well as firing up to a fixpoint in an inflationary or noninflationary manner. For the
inflationary version RA+ of the rule algebra, the base expressions are individual datalog¬
rules; the semantics associated with a rule is to apply its immediate consequence operator
once in a cumulative fashion. Union (∪) can be used to specify simultaneous application of
a pair of rules or more complex programs. The expression P ;Q specifies the composition
of P and Q; its semantics is to execute P once and then Q once. Inflationary iteration of
program P is called for by (P )+. The noninflationary version of the rule algebra, denoted
RA, starts with datalog¬ rules, but now with a noninflationary, destructive semantics, as
defined in Exercise 14.16. Union and composition are generalized in the natural fashion,
and the noninflationary iterator, denoted ∗, is used.

Example 14.3.5 Let P be the set of rules

T (x, y)←G(x, y)

T (x, y)← T (x, z),G(z, y)

and let Q consist of the rule

CT (x, y)←¬T (x, y).

TheRA+ program (P )+;Q computes inCT the complement of the transitive closure ofG.

It follows easily from the results of Section 14.4 that RA+ is equivalent to datalog¬,
and RA is equivalent to noninflationary datalog¬ and hence to datalog¬¬ (Exercise 14.23).
Thus an RA+ program can be compiled into a (possibly much more complicated) datalog¬
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program. For instance, the RA+ program in Example 14.3.5 is equivalent to the datalog¬
program in Example 14.4.2. The advantage of the rule algebra is the ease of expressing
various semantics. In particular, RA+ can be used easily to specify the stratified and well-
founded semantics for datalog¬ introduced in Chapter 15.

14.4 Equivalence

The previous sections introduced inflationary and noninflationary recursive languages with
negation in the algebraic, logic, and deductive paradigms. This section shows that the infla-
tionary languages in the three paradigms, while+, CALC+µ+, and datalog¬, are equivalent
and that the same holds for the noninflationary languages while, CALC+µ, and datalog¬¬.
This yields two classes of queries that are central in the theory of query languages: the fix-
point queries (expressed by the inflationary languages) and the while queries (expressed by
the noninflationary languages). This is summarized in Fig. 14.2, at the end of the chapter.

We begin with the equivalence of the inflationary languages because it is the more
difficult to show. The equivalence of CALC+µ+ and while+ is easy because the languages
have similar capabilities: Program composition in while+ corresponds closely to formula
composition in CALC+µ+, and the while change loop of while+ is close to the inflationary
fixpoint operator of CALC+µ+. More difficult and surprising is the equivalence of these
languages with datalog¬, because this much simpler language has no explicit constructs
for program composition or nested recursion.

Lemma 14.4.1 CALC+µ+ and while+ are equivalent.

Proof We consider first the simulation of CALC+µ+ queries by while+. Let {〈x1,. . . ,xm〉 |
ξ(x1,. . . ,xm)} be a CALC+µ+ query over an input database with schema R. It suffices to
show that there exists a while+ program Pξ that defines the same result as ξ(x1, . . . , xm) in
some m-ary relation Rξ . The proof is by induction on the depth of nesting of the fixpoint
operator in ξ , denoted d(ξ). If d(ξ)= 0 (i.e., ξ does not contain a fixpoint operator), then
ξ is in CALC and Pξ is

Rξ += Eξ,

where Eξ is the relational algebra expression corresponding to ξ . Now suppose the state-
ment is true for formulas with depth of nesting of the fixpoint operator less than d(d > 0).
Let ξ be a formula with d(ξ)= d .

If ξ = µQ(ϕ(Q))(f1, . . . , fk), then Pξ is

Q += ∅;
while change do

begin
Eϕ;
Q += Rϕ
end;
Rξ += π(σ(Q)),
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where π(σ(Q)) denotes the selection and projection corresponding to f1, . . . , fk.
Suppose now that ξ is obtained by first-order operations from k formulas ξ1, . . . , ξk,

each having µ+ as root. Let Eξ(Rξ1, . . . , Rξk) be the relational algebra expression corre-
sponding to ξ , where each subformula ξi = µQ(ϕ(Q))(e

i
1, . . . , e

i
ni
) is replaced by Rξi . For

each i, let Pξi be a program that produces the value of µQ(ϕ(Q))(ei1, . . . , e
i
ni
) and places

it into Rξi . Then Pξ is

Pξ1; . . . ; Pξk;
Rξ += Eξ(Rξ1, . . . , Rξk).

This completes the induction and the proof that CALC+µ+ can be simulated by while+.
The converse simulation is similar (Exercise 14.20).

We now turn to the equivalence of CALC+µ+ and datalog¬. Lemma 14.3.4 yields the
subsumption of datalog¬ by CALC+µ+. For the other direction, we simulate CALC+µ+
queries using datalog¬. This simulation presents two main difficulties.

The first involves delaying the firing of a rule until after the completion of a fixpoint
by another set of rules. Intuitively, this is hard because checking that the fixpoint has been
reached involves checking the nonexistence rather than the existence of some valuation,
and datalog¬ is more naturally geared toward checking the existence of valuations. The
solution to this difficulty is illustrated in the following example.

Example 14.4.2 The following datalog¬ program computes the complement of the tran-
sitive closure of a graph G. The example illustrates the technique used to delay the firing
of a rule (computing the complement) until the fixpoint of a set of rules (computing the
transitive closure) has been reached (i.e., until the application of the transitivity rule yields
no new tuples). To monitor this, the relations old-T , old-T -except-final are used. old-T
follows the computation of T but is one step behind it. The relation old-T -except-final
is identical to old-T but the rule defining it includes a clause that prevents it from firing
when T has reached its last iteration. Thus old-T and old-T -except-final differ only in the
iteration after the transitive closure T reaches its final value. In the subsequent iteration,
the program recognizes that the fixpoint has been reached and fires the rule computing the
complement in relation CT . The program is

T (x, y) ←G(x, y)

T (x, y) ←G(x, z), T (z, y)

old-T (x, y) ← T (x, y)

old-T -except-final(x, y)← T (x, y), T (x′, z′), T (z′, y′),¬T (x′, y′)
CT (x, y) ←¬T (x, y), old-T (x′, y′),

¬old-T -except-final(x′, y′)

(It is assumed that G is not empty; see Exercise 14.3.)
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The second difficulty concerns keeping track of iterations in the computation of a
fixpoint. Given a formula µ+

T (ϕ(T )), the simulation of ϕ itself may involve numerous re-
lations other than T , whose behavior may be “sabotaged” by an overly zealous application
of iteration of the immediate consequence operator. To overcome this, we separate the in-
ternal computation of ϕ from the external iteration over T , as illustrated in the following
example.

Example 14.4.3 Let G be a binary relation schema. Consider the CALC+µ+ query
µ+

good(φ(good))(x), where

φ = ∀y (G(y, x)→ good(y)).

Note that the query computes the set of nodes in G that are not reachable from a cycle
(in other words, the nodes such that the length of paths leading to them is bounded). One
application of ϕ(good) is achieved by the datalog¬ program P :

bad(x) ←G(y, x),¬good(y)

delay ←
good(x)← delay,¬bad(x)

Simply iterating P does not yield the desired result. Intuitively, the relations delay and bad,
which are used as “scratch paper” in the computation of a single iteration of µ+, cannot be
reinitialized and so cannot be reused to perform the computation of subsequent iterations.

To surmount this problem, we essentially create a version of P for each iteration of
ϕ(good). The versions are distinguished by using “timestamps.” The nodes themselves
serve as timestamps. The timestamps marking iteration i are the values newly introduced
in relation good at iteration i − 1. Relations delay and delay-stamped are used to delay
the derivation of new tuples in good until bad and bad-stamped (respectively) have been
computed in the current iteration. The process continues until no new values are introduced
in an iteration. The full program is the union of the three rules given earlier, which perform
the first iteration, and the following rules, which perform the iteration with timestamp t :

bad-stamped(x, t)←G(y, x),¬good(y), good(t)

delay-stamped(t) ← good(t)

good(x) ← delay-stamped(t),¬bad-stamped(x, t).

We now embark on the formal demonstration that datalog¬ can simulate CALC+µ+.
We first introduce some notation relating to the timestamping of a program in the sim-
ulation. Let m ≥ 1. For each relation schema Q, let Q be a new relational schema with
arity(Q)= arity(Q)+m. If (¬)Q(e1, . . . , en) is a literal and !z an m-tuple of distinct vari-
ables, then (¬)Q(e1, . . . , en)[!z] denotes the literal (¬)Q(e1, . . . , en, z1, . . . , zm). For each
program P and tuple !z, P [!z] denotes the program obtained from P by replacing each literal
A by A[!z]. Let P be a program and B1, . . . , Bq a list of literals. Then P // B1, . . . , Bq is
the program obtained by appending B1, . . . , Bq to the bodies of all rules in P .



14.4 Equivalence 363

To illustrate the previous notation, consider the program P consisting of the following
two rules:

S(x, y)← R(x, y)

S(x, y)← R(x, z), S(z, y).

Then P [z] // ¬T (x,w, y) is

S(x, y, z)← R(x, y, z),¬T (x,w, y)
S(x, y, z)← R(x, z, z), S(z, y, z),¬T (x,w, y).

Lemma 14.4.4 CALC+µ+ and datalog¬ are equivalent.

Proof As seen in Lemma 14.3.4, datalog¬ is essentially a fragment of CALC+µ+, so
we just need to show the simulation of CALC+µ+ by datalog¬. The proof is by structural
induction on the CALC+µ+ formula. The core of the proof involves a control mechanism
that delays firing certain rules until other rules have been evaluated. Therefore the induction
hypothesis involves the capability to simulate the CALC+µ+ formula using a datalog¬
program as well as to produce concomitantly a predicate that only becomes true when the
simulation has been completed. More precisely, we will prove by induction the following:
For each CALC+µ+ formula ϕ over a database schema R, there exists a datalog¬ program
prog(ϕ) whose edb relations are the relations in R, whose idb relations include resultϕ
with arity equal to the number of free variables in ϕ and a 0-ary relation doneϕ such that
for every instance I over R,

(i) [prog(ϕ)(I)](resultϕ)= ϕ(I), and

(ii) the 0-ary predicate doneϕ becomes true at the last stage in the evaluation of
prog(ϕ) on I.

We will assume, without loss of generality, that no variable of ϕ occurs free and bound,
or bound to more than one quantifier, that ϕ contains no ∀ or ∨, and that the initial query
has the form {x1, . . . , xn | ξ}, where x1, . . . , xn are distinct variables. Note that the last
assumption implies that (i) establishes the desired result.

Suppose now that ϕ is an atom R(!e). Let !x be the tuple of distinct variables occurring
in !e. Then prog(ϕ) consists of the rules

doneϕ ←
resultϕ(!x)← R(!e).

There are four cases to consider for the induction step.

1. ϕ = α ∧ β. Without loss of generality, we assume that the idb relations of
prog(α) and prog(β) are disjoint. Thus there is no interference between prog(α)
and prog(β). Let !x and !y be the tuples of distinct free variables of α and β, re-
spectively, and let !z be the tuple of distinct free variables occurring in !x or !y.
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Then prog(ϕ) consists of the following rules:

prog(α)

prog(β)

resultϕ(!z)← doneα, doneβ, resultα(!x), resultβ(!y)
doneϕ ← doneα, doneβ.

2. ϕ = ∃ x(ψ). Let !y be the tuple of distinct free variables of ψ , and let !z be the tuple
obtained from !y by removing the variable x. Then prog(ϕ) consists of the rules

prog(ψ)

resultϕ(!z)← doneψ, resultψ(!y)
doneϕ ← doneψ.

3. ϕ = ¬(ψ). Let !x be the tuple of distinct free variables occurring in ψ . Then
prog(ϕ) consists of

prog(ψ)

resultϕ(!x)← doneψ,¬resultψ(!x)
doneϕ ← doneψ.

4. ϕ = µS(ψ(S))(!e). This case is the most involved, because it requires keeping
track of the iterations in the computation of the fixpoint as well as bookkeeping
to control the value of the special predicate doneϕ. Intuitively, each iteration
is marked by timestamps. The current timestamps consist of the tuples newly
inserted in the previous iteration. The program prog(ϕ) uses the following new
auxiliary relations:

Relation fixpointϕ contains µS(ψ(S)) at the end of the computation, and
resultϕ contains µS(ψ(S))(!e).
Relation runϕ contains the timestamps.
Relation usedϕ contains the timestamps introduced in the previous stages
of the iteration. The active timestamps are in runϕ − usedϕ.
Relation not-finalϕ is used to detect the final iteration (i.e., the iteration that
adds no new tuples to fixpointϕ). The presence of a timestamp in usedϕ −
not-finalϕ indicates that the final iteration has been completed.
Relations delayϕ and not-emptyϕ are used for timing and to detect an empty
result.

In the following, !y and !t are tuples of distinct variables with the same arity as S. We
first have particular rules to perform the first iteration and to handle the special case of an
empty result:
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prog(ψ)

fixpointϕ(!y)← resultψ(!y), doneψ

delayϕ ← doneψ

not-emptyϕ ← resultψ(!y)
doneϕ ← delayϕ,¬not-emptyϕ.

The remainder of the program contains the following rules:

• Stamping of the database and starting an iteration: For each R in ψ different from S

and a tuple !x of distinct variables with same arity as R,

R(!x,!t)← R(!x), fixpointϕ(!t)
runϕ(!t)← fixpointϕ(!t)
S(!y,!t)← fixpointϕ(!y), fixpointϕ(!t).

• Timestamped iteration:

prog(ψ)[!t]//runϕ(!t),¬usedϕ(!t)

• Maintain fixpointϕ, not-lastϕ, and usedϕ:

fixpointϕ(!y) ← doneψ(!t), resultψ(!y,!t),¬usedϕ(!t)
not-finalϕ(!t)← doneψ(!t), resultψ(!y,!t),¬fixpointϕ(!y)
usedϕ(!t) ← doneψ(!t)

• Produce the result and detect termination:

resultϕ(!z)← fixpointϕ(!e)

where !z is the tuple of distinct variables in !e,

doneϕ ← usedϕ(!t),¬not-finalϕ(!t).

It is easily verified by inspection that prog(ϕ) satisfies (i) and (ii) under the induction
hypothesis for cases (1) through (3). To see that (i) and (ii) hold in case (4), we carefully
consider the stages in the evaluation of progϕ. Let I be an instance over the relations
in ψ other than S; let J0 = ∅ be over S; and let Ji = Ji−1 ∪ ψ(Ji−1) for each i > 0.
Then µS(ψ(S))(I)= Jn for some n such that Jn = Jn−1. The program progϕ simulates the
consecutive iterations of this process. The first iteration is simulated using progψ directly,
whereas the subsequent iterations are simulated by progψ timestamped with the tuples
added at the previous iteration. (We omit consideration of the case in which the fixpoint
is ∅; this is taken care of by the rules involving delayϕ and not-emptyϕ.)
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We focus on the stages in the evaluation of progϕ corresponding to the end of the
simulation of each iteration of ψ . The stage in which the simulation of the first iteration
is completed immediately follows the stage in which doneψ becomes true. The subsequent
iterations are completed immediately following the stages in which

∃!t(doneψ(!t) ∧ ¬usedϕ(!t))

becomes true. Thus let k1 be the stage in which doneψ becomes true, and let ki (2 < i ≤ n)
be the successive stages in which

∃!t(doneψ(!t) ∧ ¬usedϕ(!t))

is true. First note that

• at stage k1

{!y | resultψ(!y)} = ψ(J0);

• at stage k1 + 1

fixpointϕ = J1.

For i > 1 it can be shown by induction on i that

• at stage ki (i ≤ n)

{ !t | doneψ(!t) ∧ ¬usedϕ(!t)} = ψ(Ji−2)− Ji−2 = Ji−1 − Ji−2

{ !y | doneψ(!t) ∧ resultψ(!y,!t) ∧ ¬usedϕ(!t)} = ψ(Ji−1);
{ !t | doneψ(!t) ∧ resultψ(!y,!t) ∧ ¬fixpointϕ(!y)} = ψ(Ji−1)− Ji−1 = Ji − Ji−1;

• at stage ki + 1 (i < n)

fixpointϕ = Ji−1 ∪ ψ(Ji−1)= Ji,

usedϕ = not-lastϕ = doneψ = Ji−1;

• at stage ki + 2 (i < n)

{ !t | runϕ(!t) ∧ ¬usedϕ(!t)} = Ji − Ji−1,

{ !x | R(!x,!t) ∧ runϕ(!t) ∧ ¬usedϕ(!t)} = I(R),

{ !x | S(!x,!t) ∧ runϕ(!t) ∧ ¬usedϕ(!t)} = Ji.

Finally, at stage kn + 1

usedϕ = Jn−1,
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not-lastϕ = Jn−2,

fixpointϕ = Jn = µS(ψ(S))(I),

and at stage kn + 2

resultϕ = µS(ψ(S))(!z)(I),
doneϕ = true.

Thus (i) and (ii) hold for progϕ in case (4), which concludes the induction.

Lemmas 14.4.1 and 14.4.4 now yield the following:

Theorem 14.4.5 while+, CALC+µ+, and datalog¬ are equivalent.

The set of queries expressible in while+, CALC+µ+, and datalog¬ is called the fixpoint
queries. An analogous equivalence result can be proven for the noninflationary languages
while, CALC+µ, and datalog¬¬. The proof of the equivalence of CALC+µ and datalog¬¬
is easier than in the inflationary case because the ability to perform deletions in datalog¬¬
facilitates the task of simulating explicit control (see Exercise 14.21). Thus we can prove
the following:

Theorem 14.4.6 while, CALC+µ, and datalog¬¬ are equivalent.

The set of queries expressible in while, CALC+µ, and datalog¬¬ is called the while
queries. We will look at the fixpoint queries and the while queries from a complexity
and expressiveness standpoint in Chapter 17. Although the spirit of our discussion in this
chapter suggested that fixpoint and while are distinct classes of queries, this is far from
obvious. In fact, the question remains open: As shown in Chapter 17, fixpoint and while
are equivalent iff ptime = pspace (Theorem 17.4.3).

The equivalences among languages discussed in this chapter are summarized in
Fig. 14.2.

Normal Forms

The two equivalence theorems just presented have interesting consequences for the under-
lying extensions of datalog and logic. First they show that these languages are closed under
composition and complementation. For instance, if two mappings f, g, respectively, from
a schema S to a schema S′ and from S′ to a schema S′′ are expressible in datalog¬(¬),
then f ◦ g and ¬f are also expressible in datalog¬(¬). Analogous results are true for
CALC+µ(+).

A more dramatic consequence concerns the nesting of recursion in the calculus and
algebra. Consider first CALC+µ+. By the equivalence theorems, this is equivalent to
datalog¬, which, in turn (by Lemma 14.3.4), is essentially a fragment of CALC+µ+.
This yields a normal form for CALC+µ+ queries and implies that a single application of
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Languages Class of queries

while+
inflationary CALC +µ+ fixpoint

datalog¬

while
noninflationary CALC +µ while

datalog¬¬

Figure 14.2: Summary of language equivalence results

the inflationary fixpoint operator is all that is needed. Similar remarks apply to CALC+µ
queries. In summary, the following applies:

Theorem 14.4.7 Each CALC+µ(+) query is equivalent to a CALC+µ(+) query of the
form

{ !x | µ(+)T (ϕ(T ))(!t)},

where ϕ is an existential CALC formula.

Analogous normal forms can be shown for while(+) (Exercise 14.22) and for RA(+)
(Exercise 14.24).

14.5 Recursion in Practical Languages

To date, there are numerous prototypes (but no commercial product) that provide query and
update languages with recursion. Many of these languages provide semantics for recursion
in the spirit of the procedural semantics described in this chapter. Prototypes implementing
the deductive paradigm are discussed in Chapter 15.

SQL 2-3 (a norm provided by ISO/ANSII) allows select statements that define a table
used recursively in the from and where clauses. Such recursion is also allowed in Starburst.
The semantics of the recursion is inflationary, although noninflationary semantics can be
achieved using deletion. An extension of SQL 2-3 is ESQL (Extended SQL). To illustrate
the flavor of the syntax (which is typical for this category of languages), the following
is an ESQL program defining a table SPARTS (subparts), the transitive closure of the
table PARTS. This is done using a view creation mechanism.

create view SPARTS as
select *
from PARTS
union
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select P1.PART, P2.COMPONENT
from SPARTS P1, PARTS P2
where P1.COMPONENT = P2.PART ;

This is in the spirit of CALC+µ+. With deletion, one can simulate CALC+µ. The system
Postgres also provides similar iteration up to a fixpoint in its query language POSTQUEL.

A form of recursion closer to while and while+ is provided by SQL embedded in full
programming languages, such as C+SQL, which allows SQL statements coupled with C
programs. The recursion is provided by while loops in the host language.

The recursion provided by datalog¬ and datalog¬¬ is close in spirit to production-rule
systems. Speaking loosely, a production rule has the form

if 〈condition〉 then 〈action〉.
Production rules permit the specification of database updates, whereas deductive rules usu-
ally support only database queries (with some notable exceptions). Note that the deletion in
datalog¬¬ can be viewed as providing an update capability. The production-rule approach
has been studied widely in connection with expert systems in artificial intelligence; OPS5
is a well-known system that uses this approach.

A feature similar to recursive rules is found in the emerging field of active databases.
In active databases, the rule condition is often broken into two pieces; one piece, called the
trigger, is usually closely tied to the database (e.g., based on insertions to or deletions from
relations) and can be implemented deep in the system.

In active database systems, rules are recursively fired when conditions become true in
the database. Speaking in broad terms, the noninflationary languages studied in this chapter
can be viewed as an abstraction of this behavior. For example, the database language RDL1
is close in spirit to the language datalog¬¬. (See also Chapter 22 for a discussion of active
databases.)

The language Graphlog, a visual language for queries on graphs developed at the
University of Toronto, emphasizes queries involving paths and provides recursion specified
using regular expressions that describe the shape of desired paths.
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Exercises

Exercise 14.1 (Game of life) Consider the two rules informally described in Example 14.1.

(a) Express the corresponding queries in datalog¬(¬), while(+), and CALC+µ(+).
(b) Find an input for which a vertex keeps changing color forever under the second rule.

Exercise 14.2 Prove that the termination problem for a while program is undecidable (i.e., that
it is undecidable, given a while query, whether it terminates on all inputs). Hint: Use a reduction
of the containment problem for algebra queries.

Exercise 14.3 Recall the datalog¬¬ program of Example 14.4.2.

(a) After how many stages does the program complete for an input graph of diameter n?

(b) Modify the program so that it also handles the case of empty graphs.

(c) Modify the program so that it terminates in order of log(n) stages for an input graph
of diameter n.

Exercise 14.4 Recall the definition of µT (ϕ(T )).

(a) Exhibit a formula ϕ such that ϕ(T ) has a unique minimal fixpoint on all inputs, and
µT (ϕ(T )) terminates on all inputs but does not evaluate to the minimal fixpoint on
any of them.
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(b) Exhibit a formula ϕ such that µT (ϕ(T )) terminates on all inputs but ϕ does not have
a unique minimal fixpoint on any input.

Exercise 14.5

(a) Give a while program with explicit looping condition for the query in Exam-
ple 14.1.2.

(b) Prove that while(+) with looping conditions of the form E = ∅, E �= ∅, E = E′,
and E �= E′, where E,E′ are algebra expressions, is equivalent to while(+) with the
change conditions.

Exercise 14.6 Consider the problem of finding, given two graphs G,G′ over the same vertex
set, the minimum set X of vertexes satisfying the following conditions: (1) For each vertex v,
if all vertexes v′ such that there is a G-edge from v′ to v are in X, then v is in X; and (2) the
analogue for G′-edges. Exhibit a while program and a fixpoint query that compute this set.

Exercise 14.7 Recall the CALC+µ+ query of Example 14.4.3.

(a) Run the query on the input graph G:
{〈a, b〉, 〈c, b〉, 〈b, d〉, 〈d, e〉, 〈e, f 〉, 〈f, g〉, 〈g, d〉, 〈e, h〉, 〈i, j〉, 〈j, h〉}.

(b) Exhibit a while+ program that computes good.

(c) Write a program in your favorite conventional programming language (e.g., C or
LISP) that computes the good vertexes of a graph G. Compare it with the database
queries developed in this chapter.

(d) Show that a vertex a is good if there is no path from a vertex belonging to a cycle to
a. Using this as a starting point, propose an alternative algorithm for computing the
good vertexes. Is your algorithm expressible in while? In fixpoint?

�Exercise 14.8 Suppose that the input consists of a graph G together with a successor relation
on the vertexes of G [i.e., a binary relation succ such that (1) each element has exactly one
successor, except for one that has none; and (2) each element in the binary relation G occurs in
succ].

(a) Give a fixpoint query that tests whether the input satisfies (1) and (2).

(b) Sketch a while program computing the set of pairs 〈a, b〉 such that the shortest path
from a to b is a prime number.

(c) Do (b) using a while+ query.

Exercise 14.9 (Simultaneous induction) Prove Lemma 14.2.5.

♠Exercise 14.10 (Fixpoint over positive formulas) Let ϕ(T ) be a formula positive in T (i.e.,
each occurrence of T is under an even number of negations in the syntax tree of ϕ). Let R be
the set of relations other than T occurring in ϕ(T ).

(a) Show that ϕ(T ) is monotonic in T . That is, for all instances I and J over R ∪ {T }
such that I(R) = J(R) and I(T ) ⊆ J(T ),

ϕ(I) ⊆ ϕ(J).

(b) Show that µT (ϕ(T )) is defined on every input instance.

(c) [GS86] Show that the family of CALC+µ queries with fixpoints only over positive
formulas is equivalent to the CALC+µ+ queries.
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�Exercise 14.11 Suppose CALC+µ+ is modified so that free variables are allowed under
fixpoint operators. More precisely, let

ϕ(T , x1, . . . , xn, y1, . . . , ym)

be a formula where T has arity n and the xi and yj are free in ϕ. Then

µT,x1,...,xn(ϕ(T , x1, . . . , xn, y1, . . . , ym))(e1, . . . , en)

is a correct formula, whose free variables are the yj and those occurring among the ei. The
fixpoint is defined with respect to a given valuation of the yj . For instance,

∃z∃w(P (z) ∧ µT,x,y(ϕ(T , x, y, z))(u,w))

is a well-formed formula. Give a precise definition of the semantics for queries using this
operator. Show that this extension does not yield increased expressive power over CALC+µ+.
Do the same for CALC+µ.

Exercise 14.12 Let G be a graph. Give a fixpoint query in each of the three paradigms that
computes the pairs of vertexes such that the shortest path between them is of even length.

Exercise 14.13 Let datalog¬(¬)rr denote the family of datalog¬(¬) programs that are range
restricted, in the sense that for each rule r and each variable x occurring in r , x occurs in a
positive literal in the body of r . Prove that datalog¬rr ≡ datalog¬ and datalog¬¬rr ≡ datalog¬¬.

Exercise 14.14 Show that negations in bodies of rules are redundant in datalog¬¬ (i.e., for
each datalog¬¬ program P there exists an equivalent datalog¬¬ program Q that uses no nega-
tions in bodies of rules). Hint: Maintain the complement of each relation R in a new relation
R′, using deletions.

♠Exercise 14.15 Consider the following semantics for negations in heads of datalog¬¬ rules:

(α) the semantics giving priority to positive over negative facts inferred simultaneously
(adopted in this chapter),

(β) the semantics giving priority to negative over positive facts inferred simultaneously,

(γ ) the semantics in which simultaneous inference of A and ¬A leads to a “no-op” (i.e.,
including A in the new instance only if it is there in the old one), and

(δ) the semantics prohibiting the simultaneous inference of a fact and its negation by
making the result undefined in such circumstances.

For a datalog¬¬ program P , let Pξ , denote the program P with semantics ξ ∈ {α, β, γ, δ}.
(a) Give an example of a program P for which Pα, Pβ , Pγ , and Pδ define distinct queries.

(b) Show that it is undecidable, for a given program P , whether Pδ never simultaneously
infers a positive fact and its negation for any input.

(c) Let datalog¬¬ξ denote the family of queries Pξ for ξ ∈ {α, β, γ }. Prove that data-
log¬¬α ≡ datalog¬¬β ≡ datalog¬¬γ .

(d) Give a syntactic condition on datalog¬¬ programs such that under the δ semantics
they never simultaneously infer a positve fact and its negation, and such that the
resulting query language is equivalent to datalog¬¬α .
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Exercise 14.16 (Noninflationary datalog¬) The semantics of datalog¬ can be made noninfla-
tionary by defining the immediate consequence operator to be destructive in the sense that only
the newly inferred facts are kept after each firing of the rules. Show that, with this semantics,
datalog¬ is equivalent to datalog¬¬.

�Exercise 14.17 (Multiple versus single carriers)

(a) Consider a datalog¬ program P producing the answer to a query in an idb relation
S. Prove that there exists a program Q with the same edb relations as P and just one
idb relation T such that, for each edb instance I,

[P(I)](S) = π(σ([Q(I)](T ))),

where σ denotes a selection and π a projection.

(b) Show that the projection π and selection σ in part (a) are indispensable. Hint: Sup-
pose there is a datalog¬ program with a single edb relation computing the comple-
ment of transitive closure of a graph. Reach a contradiction by showing in this case
that connectivity of a graph is expressible in relational calculus. (It is shown in Chap-
ter 17 that connectivity is not expressible in the calculus.)

(c) Show that the projection and selection used in Lemma 14.2.5 are also indispensable.

�Exercise 14.18

(a) Prove Lemma 14.3.4 for the inflationary case.

(b) Prove Lemma 14.3.4 for the noninflationary case. Hint: For datalog¬¬, the straight-
forward simulation yields a formula µT (ϕ(T ))(!x), where ϕ may contain negations
over existential quantifiers to simulate the semantics of deletions in heads of rules
of the datalog¬¬ program. Use instead the noninflationary version of datalog¬ de-
scribed in Exercise 14.16.

Exercise 14.19 Prove that the simulation in Example 14.4.3 works.

Exercise 14.20 Complete the proof of Lemma 14.4.1 (i.e., prove that each while+ program
can be simulated by a CALC+µ+ program).

�Exercise 14.21 Prove the noninflationary analogue of Lemma 14.4.4 (i.e., that datalog¬¬ can
simulate CALC+µ). Hint: Simplify the simulation in Lemma 14.4.4 by taking advantage of the
ability to delete in datalog¬¬. For instance, rules can be inhibited using “switches,” which can
be turned on and off. Furthermore, no timestamping is needed.

Exercise 14.22 Formulate and prove a normal form for while+ and while, analogous to the
normal forms stated for CALC+µ+ and CALC+µ.

Exercise 14.23 Prove that RA+ is equivalent to datalog¬ and RA is equivalent to noninfla-
tionary datalog¬, and hence to datalog¬¬. Hint: Use Theorems 14.4.5 and 14.4.6 and Exer-
cise 14.16.

Exercise 14.24 Let the star height of anRA program be the maximum number of occurrences
of ∗ and + on a path in the syntax tree of the program. Show that each RA program is equivalent
to an RA program of star height one.




